
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Automating Time-series Safety Analysis
for Automotive Control Systems

Using Weighted Partial Max-SMT

Shuichi Sato1,a) Shogo Hattori2,b) Hiroyuki Seki2 Yutaka Inamori1 Shoji Yuen2

Received: May 8, 2019, Accepted: November 7, 2019

Abstract: We propose a method to automate the detection of signal disturbance for a given unsafe property. To in-
corporate a signal disturbance, we introduce an auxiliary variable, called a cushion variable, for each signal variable
to store a value altered by the disturbance that causes unintended state transitions. The signal disturbance is defined to
negate the equalities between signal variables and their cushion variables. We develop a method to efficiently detect
the signal disturbance by using a weighted partial maximum satisfiability modulo theories (Max-SMT) technique as a
set of variables altered by faults resulting in an undesirable condition. By assigning the weights properly to the equa-
tions, we control the derivation of signal disturbance patterns with the required property. We present an experimental
application of our method to a simplified cruise control system as a practical case study in two well-known methods
of safety analysis, namely system theoretic process analysis (STPA) and fault tree analysis (FTA), for the automatic
detection of time-series signal disturbances.

Keywords: safety analysis, reliability design, FTA, STPA, automotive control systems, state transition systems, trace
formula, time-series analysis

1. Introduction

Modern automotive systems comprise numerous electronic
control units (ECUs) connected over a controller area network.
With the advances in wireless network technology, automotive
systems can now be connected to external networks as seen
in vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)
communication [8], and to electronic devices such as smart-
phones through Wi-Fi or Bluetooth. Designing automotive con-
trol systems often requires elaborate safety analyses owing to
these connections which might increase the chances of unex-
pected signal disturbances.

Several approaches have been proposed for automobile safety
analysis, of which the major ones include fault tree analysis
(FTA) [14], failure mode and effect analysis (FMEA) [12], and
the hazard and operability study (HAZOP) [28]. System theoretic
process analysis (STPA) [29], [30] has recently been proposed as
a new safety analysis technique.

We focus on the analysis of an unsafe situation caused by signal
disturbances. In automobile control, it is difficult to perfectly pre-
vent signal disturbances from occurring and therefore the system
needs to be carefully designed while taking these disturbances
into account. In the safety analysis approaches above, analyzing
the impact of time-series multi-signal disturbances on safety us-
ing these techniques is time-consuming in the case of complex

1 Toyota Central R&D Lab. Inc., Nagakute, Aichi 480–1192, Japan
2 Nagoya University, Nagoya, Aichi 464–8601, Japan
a) shuichi-sato@mosk.tytlabs.co.jp
b) hatsutori@sqlab.jp

systems. To ease the analysis, we propose automating the anal-
ysis of signal disturbances leading to undesirable conditions by
checking the properties of traces with a bounded length. Here un-
desirable conditions mean system conditions that are undesirable
in terms of safety. This study focuses on the time-series safety
analysis of the undesirable conditions of the system. We charac-
terize the transition system as a trace formula [11], [22], which
comprises a set of traces. With no signal disturbance, the trace
formula with the property of undesirable conditions is not satis-
fied because the system is designed to avoid these conditions. If
the system reaches an undesirable condition, some signal values
must be altered through signal disturbances.

When some signal values are altered by some fault, the unde-
sirable condition may become satisfiable because of the mismatch
between the trace formula and the undesirable conditions. To in-
corporate this mismatch, we introduce auxiliary variables, called
cushion variables, for the original signal variables. A signal dis-
turbance assigns different values to signal variables and the corre-
sponding cushion variables. As constraints, we add equations be-
tween the original and the cushion variables, which may not hold
when a signal disturbance occurs. The property of undesirable
conditions can be satisfied by negating the equations between the
signal variables and the corresponding cushion variables. Identi-
fying these equations, which enable the property of undesirable
conditions to hold, leads to detection of a signal disturbance.

In designing automotive control systems, an undesirable con-
dition needs to be considered over a certain period of time. In this
respect, the expression of an undesirable condition is required to

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

address its time series. Furthermore, to efficiently identify signal
disturbances causing undesirable conditions by using the mini-
mum possible number of incorrect values, we limit the number of
failures needed to acquire intermittent multi-signal disturbances.

The satisfiability checking of the formula allowing some fail-
ure is formalized as follows. By allowing to violate the equa-
tions between signal variables and cushion variables, the trace
formula and fault property can be true simultaneously. We ob-
tain a value assignment by regarding the cushion variable equa-
tions as soft clauses in the weighted partial maximum satisfiabil-
ity modulo theories (Max-SMT) problem. To enumerate all signal
disturbances causing the undesirable condition, we add blocking
clauses repeatedly after obtaining a value assignment.

The main contribution of this paper is the development of an
automated method for locating signal disturbances causing un-
desirable conditions in various safety analysis processes. Our
method can automate the process of obtaining time-series signal
disturbances using a weighted partial Max-SMT solver. This pa-
per generalizes and extends the method proposed by Hattori [17]
and Sato [33], and performs new experiments to show that the
proposed method applies to most prevalent safety analysis pro-
cesses.

The rest of this paper is organized as follows: Section 2 de-
scribes the model of the problem as constraints with the signal
patterns causing undesirable conditions by violating equalities
between signal variables and cushion ones. In Section 3, we
present a method to solve the problem using a weighted partial
Max-SMT. In Section 4, we show two case studies for a simpli-
fied automotive control system with cruise control to demonstrate
the effectiveness of the proposed method. Section 5 discusses re-
lated work, and Section 6 presents concluding remarks and de-
scribes the future work.

2. Behavioral Model by Constraints

We model the behavior of an automotive control system as a
set of finite traces of state transitions with signal variables in dis-
crete event systems, where a signal variable stores a value for
controlling the system and a state is characterized by a value as-
signment. A set of bounded traces is characterized by constraints
over signal variables, called trace formulae, as a series of equa-
tions between signal variables. A behavioral property holds for
traces if the conjunction of the property and the trace formula is
satisfiable.

2.1 Trace Formulae
In this study an automotive control system is expressed as a

finite-state transition model where a state is distinguished by an
assignment of values to signal variables and a control mode. In
this model a state transition occurs through a value update of sig-
nal variables. A trace formula [11], [22] is a Boolean formula
satisfied by value assignments for traces that are obtained by un-
rolling cycles in the transition system for a fixed number of times.
In a trace formula, the variables indexed by unrolling steps are
used and a state transition is expressed as a conjunction of equa-
tions among these variables. A trace formula is satisfied only
when all indexed variables are assigned to express the transition

Fig. 1 Simple heater controller.

exactly. We convert a finite-state transition system to the trace
formula with the bounded length of K.

Let M = (S , X, sinit,W) be given, where S = {s1, · · · , sm} is the
set of control modes, X is the set of signal variables, sinit ∈ S is
the initial control mode, and W is the set of transitions between
control modes. Here, w ∈ W is given as a triple (s, g, f , s′), where
s, s′ ∈ S , g indicates a guard condition a constraint over X in s,
and f shows a constraint over X in s and X′ in s′. The state of M

is (s, νX), where s ∈ S and νX is a value assignment for X. For
a state (s, νX) and transition w = (s, g, f , s′), a state transition of
M is given as (s, νX) → (s′, ν′X) when νX , ν

′
X |= f (X, X′), mean-

ing that assignment νX for X and assignment ν′X for X′ satisfy the
constraint f (X, X′).

A trace of M is an alternating sequence of control modes and
transitions beginning with the initial control mode md(0). Given a
trace tr = md(0)w(1)md(1)w(2) · · ·w(k)md(k), X(i) is the set of signal
variables for md(i). A trace formula for tr of M is in the form

∧

i≤K

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
∧

x(i)∈X(i)

(x(i) = v(i))

⎞⎟⎟⎟⎟⎟⎟⎠ ∧ g(i+1)(X(i)) ∧ f (i+1)(X(i), X(i+1))

⎞⎟⎟⎟⎟⎟⎟⎠

where w(i) = (md(i), g(i+1), f (i+1),md(i+1)), v(i) is a possible value
for a signal variable x(i) and ν(i)X , ν

(i+1)
X |= f (i+1)(X(i), X(i+1)). A

trace formula is satisfiable if and only if there exists a sequence
of signal variable assignments along the trace.

For example, Fig. 1 specifies a simple heater controller as the
transition system ({COLD,WARM}, {H, t},COLD,W), where

W =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(COLD, t < T ∧ H = on, COLD),
(COLD, t ≥ T ∧ H = off , WARM),
(WARM, t < T ∧ H = on, COLD),
(WARM, t ≥ T ∧ H = off , WARM)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

and T is a fixed constant as the target temperature.
Beginning from the COLD mode, where the heater is on (H :=

on), the temperature continues to rise until it reaches T . When the
temperature becomes T , the transition from COLD to WARM oc-
curs and the heater is turned off (H := off). When the temperature
decreases below T , the heater is turned on by setting H := on.

Suppose T is 25 and t is initially 20 and the trace is given as
COLD; COLD; COLD; COLD; WARM; WARM; WARM; COLD.
Here we omit the description of the transitions since a single tran-
sition exists between control modes. A satisfiable trace formula
for the trace is

t(0) = 20 ∧ H(0) = on ∧ t(1) = 22 ∧ H(1) = on ∧ t(2) = 24

∧H(2) = on ∧ t(3) = 26 ∧ H(3) = on ∧ t(4) = 26

∧H(4) = off ∧ t(5) = 25 ∧ H(5) = off ∧ t(6) = 24

∧H(6) = off ∧ t(7) = 24 ∧ H(7) = on.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

The trace formula for those traces with a length equal to or less
than K is denoted as TF≤K . In what follows, we only assign an
integer to each signal variable. (For a Boolean variable, 1 is true

and 0 is false.)

2.2 Property of Undesirable Condition
An automotive control system is designed to never meet unde-

sirable conditions if it stays in an incorrect state just for a moment
(due to, e.g., electrical noise). But it may reach undesirable con-
ditions when it stays in incorrect states for more than a certain
period. For example, a vehicle in cruise-control mode can reach
the undesirable condition that the control system causes an un-
expected delay for issuing the acceleration commands. Thus, an
undesirable condition (UDC) is reasonably expressed by a for-
mula satisfied by a time series of the assignment of improper val-
ues to n-consecutive variables in traces. For this n, we introduce
n-UDC≤K

F as the UDC property over a trace as follows:

n-UDC≤K
F ≡∃i.(i ≤ K − n + 1)

∧ F(md(i), X(i),md(i+1), X(i+1), · · · ,md(i+n−1), X(i+n−1))

where K is the trace bound length, F is a predicate defined over
the control modes and the signal variables, and md(i) and X(i) are,
respectively, a control mode and a vector of signal variables at
the execution step i. In the example of a vehicle in cruise control
mode, as mentioned above, F comprises variables indicating an
acceleration command and a distance to the leading vehicle and
n is the number of certain consecutive clock cycles. Automotive
control systems have some signals that maintain safety. We as-
sume that UDCs can be detected by observing these values.

2.3 Signal Disturbances by Cushion Variables
Provided that the system is meticulously designed and no

fault causing the property of the undesirable condition occurs,
TF≤K∧n-UDC≤K

F is not satisfiable. If νX is an assignment that sat-
isfies TF≤K , then νX never satisfies n-UDC≤K

F . However, let νX be
an assignment where some values of signal variables are changed
and νX may satisfy n-UDC≤K

F . We specify the unintended change
in signal values as a signal disturbance. Signal disturbances are
regarded as mismatches among signal variables in the execution
fragments. To present the mismatches, we explicitly assign values
different from the original values to make the faults hold along
with the trace. For this purpose, we introduce an extra variable,
called a cushion variable, to each signal variable. Here each sig-
nal variable for X(i) is expressed by u(i)

j (j = 1, · · · ,Q), where Q

is the number of signal variables. The cushion variable for u(i)
j is

written as uc(i)
j . With no disturbance, u(i)

j = uc(i)
j holds for all js

and all i-th steps in the trace formula. If a signal value is altered
by signal disturbance, a different value is assigned to the cushion
variable regardless of the value of the original signal variable. It
is possible to trace failure points by checking for the equations
between the original signal variables and cushion variables. The
equation is:

ΩK
X ≡
∧

i≤K

∧

j≤Q

u(i)
j = uc(i)

j .

A value assignment not satisfying ΩK
X may contain disturbed sig-

nals. Given a signal value assignment, a disturbed signal pattern
is defined as a set of equations negated by the assignment. In
what follows, we write σ for a signal value assignment including
cushion variables.
Definition 1 (Signal disturbance pattern)

Let X be a set of signal variables. A signal disturbance pattern

for signal value assignment σ, DSPX(σ) is a set of equations

DSPX(σ)= {u(i)
j =uc(i)

j | σ(u(i)
j) � σ(uc(i)

j), 1≤ i≤K, 1≤ j≤Q}

We modify a trace formula TF≤K by replacing u(i)
j on the left-

hand side of the equations with uc(i)
j for all 1 ≤ i ≤ K and

1 ≤ j ≤ Q. The modified trace formula with the cushion vari-
ables is written as TF≤K

c .
TF≤K

c ∧ ΩK
X ∧ n-UDC≤K

F is clearly not satisfiable under the
above assumption. Removing the equations between the signal
and cushion variables allows the faults causing the property of an
undesirable condition. This is presented by removing the signal
disturbance pattern from ΩK

X . σ satisfies TF≤K
c under a predicate

F, written as σ |=F TF≤K
c , iff TF≤K

c ∧ (ΩK
X −DSPX(σ))∧n-UDC≤K

F

is true. In general, for a given K and F, conducting the fault anal-
ysis basically reduces to the task of finding an assignment σ such
that σ |=F TF≤K

c .

2.4 Intermittent Signal Disturbance
In designing a system, intermittent signal disturbances are usu-

ally the most difficult to find. Although an intermittent signal
disturbance has fewer signal disturbances than consecutive dis-
turbances, it still leads to undesirable conditions. To adjust the
scope of the signal disturbances, we limit the number of value
alterations in the case of a signal disturbance pattern within a cer-
tain period of execution fragments. The constraints are defined as
follows:

Ψ ≡ ∀i, j, 1 ≤ i ≤ K − p + 1, 1 ≤ j ≤ N.
∑p−1

r=0 R(u(i+r)
j , uc(i+r)

j) ≤ L. (1)

where

R(u(i)
j , u

c(i)
j) =

⎧⎪⎪⎨⎪⎪⎩
0 if u(i)

j = uc(i)
j

1 if u(i)
j � uc(i)

j .

Here, L is given based on the intermittent signal disturbance that
engineers assume. Ψ restricts traces such that signal disturbance
occurs no more than L times in p execution steps.

3. Detecting Signal Disturbances by Satisfi-
ability Using Weighted Partial Max-SMT
Solvers

In the proposed method, signal disturbances are automatically
detected using the weighted partial Max-SMT solver. We ex-
plain the outline of the weighted partial Max-SMT problem in
Section 3.1, and describe how to detect signal disturbances by
satisfiability checking with weighted partial Max-SMT solvers in
Section 3.2.

3.1 Weighted Partial Max-SMT Problem
The weighted partial Max-SMT problem is an extension of the

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 2 Outline of proposed method.

partial Max-SMT problem, which is a combination of the partial
Max-SAT problem [3] and the SMT problem [31]. In this section,
we first explain the partial Max-SAT and SMT problems, and then
introduce the weighted partial Max-SMT problem.

For a Boolean formula φ = C1 ∧ C2 ∧ ... ∧ Cn in conjunction
normal form, the Max-SAT problem is to find an assignment of
Boolean variables that satisfies the maximum number of clauses.

The partial Max-SAT problem is an extension of the Max-SAT
problem. For a Boolean formula φ = CH

1 ∧ ...∧CH
l ∧CS

1 ∧ ...∧CS
m,

we call CH
i a hard clause (1 ≤ i ≤ l) and CS

j a soft clause
(1 ≤ j ≤ m). The partial Max-SAT problem finds an assign-
ment such that, for a given φ, all hard clauses are satisfied and the
maximum possible number of soft clauses is satisfied.

The SMT problem is a generalization of the SAT problem.
Given a formula as the conjunction of clauses in first-order logic,
an answer to the SMT problem determines if there exists an as-
signment of variables that satisfies all clauses. While the SAT
problem only accepts Boolean formulas (propositional formulas),
the SMT problem supports background theories, such as linear
arithmetic, the theory of lists, the theory of arrays, and the theory
of bit vectors. Compared with the SAT problem, the SMT prob-
lem is more useful because the formula can be simplified owing
to its expressiveness.

The partial Max-SMT problem accepts a formula in first-order
logic with various background theories, as is the case with the
SMT problem, and the answer is an assignment that satisfies all
hard clauses and the maximum possible number of soft clauses,
as is the case with the partial Max-SAT problem.

The weighted partial Max-SMT problem is an extension of the
partial Max-SMT problem. For each i = 1, ..., n, the soft clause
CS

i in the partial Max-SMT problem is assigned a cost cost(CS
i).

The weighted partial Max-SMT problem finds an assignment that
minimizes

∑

i

f (CS
i), where f (CS

i) = 0 if CS
i is satisfied and

f (CS
i) = cost(CS

i) if CS
i is not satisfied. The partial Max-SMT

problem can be thought of as a weighted partial Max-SMT prob-
lem in which the cost is unity for all soft clauses.

3.2 Detecting Signal Disturbances by Satisfiability
Having assumed that a signal disturbance is a set of unsatisfied

equations between the signal and cushion variables, we can au-
tomate the detection of signal disturbances by deriving the set of
unsatisfied equations that cause TF≤K

c ∧ n-UDC≤K
F to hold.

Our method consists of the two phases shown in Fig. 2. The
repetition of these phases enables the enumeration of signal dis-
turbances causing undesirable conditions. Phase 1 constructs a

formula based on the behavior of the target system with bound
K, lists of signals that may be disturbed, and a property of un-
desirable condition. In Phase 2, the pattern of the disturbance
signals causing faults is automatically extracted by a weighted
partial Max-SMT solver. Each phase is described in detail below.

In Phase 1, given a state transition system, a property of unde-
sirable condition, and a set of variables X that may be disturbed,
we create a formula Φ as follows:

Φ ≡ TF≤K
c ∧ n-UDC≤K

F ∧ Ψ ∧ΩK
X . (2)

where Ψ specifies the extra constraints such as the intermittent
conditions.

In Phase 2, we mark ΩK
X in Φ as soft clauses and the remainder

ofΦ as hard clauses. We then solve the constraint as the weighted
partial Max-SMT problem.

We specify weights for all equations in ΩK
X . There may be

many signal disturbance patterns that lead to undesirable con-
ditions. The weights are used to control the order of deriving
signal disturbance patterns. Specifying weights requires a heuris-
tic that depends upon the expected signal disturbance patterns.
If we assign uniform weights to all soft clauses, this minimizes
the number of signal alterations, because a weighted partial Max-
SMT problem is solved by minimizing the sum of weights of soft
clauses that are not satisfied. Phase 2 is automated by applying a
weighted partial Max-SMT solver such as Yices to Φ. The solver
attempts to find a variable assignment that satisfies all hard con-
straints and soft clauses with the minimum sum of weights. If
the solver finds such an assignment, the values of each variable
and the soft clauses that are not satisfied are returned. Then, the
obtained set of soft clauses forms a signal disturbance pattern.

The following are typical examples of the weight policy. If a
signal disturbance pattern with the shortest period is required, we
assign smaller weights for earlier steps, namely wt(i)

j < wt(i′)
j iff

i < i′. For example, wt(i)
j = i can be assigned to equations in

ΩK
X . Given that a weighted partial Max-SMT solver falsifies soft

clauses with small weights, a signal disturbance pattern DSPX(σ)
consisting of smaller values of i is more likely to be found.

By contrast, if a uniform weight is assigned to all equations in
ΩK

X , we do not have a preference for signal disturbance patterns.
Changing L in the intermittent constraint Φ to a smaller value is
intended to find a subtle combination of signal disturbances that
may cause undesirable conditions.

Blocking clauses We add the hard clauses to Φ, rejecting the
acquired signal disturbance patterns as blocking clauses, and re-
peat Phase 2. For example, if DSPX(σ) = {(u(1)

1 = uc(1)
1), (u(3)

4 =

uc(3)
4)} is acquired as the disturbed pattern, we add the following

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

hard clauses:

u(1)
1 = uc(1)

1 ∨ u(3)
4 = uc(3)

4 .

Owing to the existence of these hard clauses, the solver finds a
different pattern satisfying u(1)

1 = uc(1)
1 or u(3)

4 = uc(3)
4 , instead of

the same patterns already obtained. We repeat the procedure until
Φ is not satisfied to enumerate all signal disturbance patterns for
the undesirable condition. Although this procedure may not ter-
minate with a little repetition, observing the part of the repeated
results is very useful for engineers in order to find a solution for
avoiding the undesirable condition by discovering the key signals
in the obtained disturbed patterns.

4. Case Study

We present a case study for a simplified automotive control
system with a cruise control function. Section 4.1 describes the
target system, and Section 4.2 shows the experimental results,
where our method is applied in the process of two well-known
safety analyses. In Section 4.3, we discuss the results. Since we
are using the same example in Ref. [33], some figures and tables
for explanations of the system are taken from our previous pa-
per [33].

4.1 Target System
We use a simplified automotive control system with an adaptive

cruise control functionality for the case study. This system has
three ECUs: adaptive cruise control, neutral transmission control
(TC), and an arbiter (ABT). Table 1 shows the behavior of these
ECUs. When the leading vehicle runs further away from our car,
an acceleration command is issued by the cruising functionality

Table 1 ECUs in target system.

Name Function
ACC Controls acceleration and deceleration in accordance

with leading vehicle
TC Shifts into neutral gear during brief stops to improve

gas mileage
ABT Arbitrates multiple control requests

Fig. 3 Overview of simplified automotive control system. Each number refers to an explanatory entry in Table 2.

unless the brake pedal is pressed under the cruise control. As a
result, the car accelerates if the transmission gears are properly
engaged. The simplified automotive control system is supposed
to have the specification that a vehicle needs to move forward by
issuing the acceleration command even when it is in a stop state.
This might be considered as a correct behavior in some cars. This
property is just for a simple example to demonstrate the existence
of inconsistency in the system.

Figure 3 shows an overview of the signal flows in the automo-
tive control system and the signals used in this system are listed
in Table 2. Each ECU is executed periodically to process the
signals given in Table 2.

CarModel in Fig. 3 shows the physical behavior of the
vehicle, where linear arithmetic, comparison, and condi-
tional branch operations are included. The control logic in
ACC ECU includes a comparison between VehicleSpeed and
LeadingVehicleSpeed. CarModel has linear arithmetic func-
tions to calculate VehicleSpeed. The ACC and TC ECUs con-
tain transitions in the control mode. For example, a transition in
the ACC ECU occurs among each control mode according to the
guard condition gi j as shown in Fig. 4, where i and j indicate the
control mode of the ECU before and after the transition, respec-
tively. When the control mode is equal to 1 in the ACC ECU,
ACC AccelControlData / ACC BrakeControlData can be gener-
ated.

4.2 Experimental Results
We applied our method to the simplified automotive control

system by performing two well-known safety analyses: FTA and
STPA. Section 4.2.1 and Section 4.2.2 present the results for
FTA and STPA, respectively. Signals except IGSWOn in Table 2
are possibly disturbed in this experiment. The experiments are
benchmarked on a machine with Intel Core TM i5-3470 RAM
6.0 GB and Microsoft Windows 7 Professional. We used the
Yices SMT solver [13] 1.0.29 as a weighted partial Max-SMT
solver in this experiment.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 2 Target system signals.

No. Name Type Meaning
1 IGSWOn bool True iff ignition switch is on
2 RadarCruiseSWOn bool True iff ACC main switch is on
3 VehicleSpeedOK bool True iff vehicle speed is in [0,150]
4 AccelPedalOn bool True iff gas pedal is stepped on
5 BrakePedalOn bool True iff brake pedal is stepped on
6 ShiftRange int Shift range (−2:P −1:R 0:N 1–5:D)
7 LeadingVehicleSpeed int Speed of leading vehicle
8 Distance int Distance to leading vehicle
9 VehicleMoving bool True iff vehicle is moving
10 ABT AccelControlOn bool True iff ABT AccelControlData > 0
11 ABT BrakeControlOn bool True iff ABT BrakeControlData > 0
12 AccelPedal int Extent to which gas pedal is depressed
13 BrakePedal int Extent to which brake pedal is depressed
14 ACC AccelControlData int Acceleration control value from ACC ECU
15 ACC BrakeControlData int Braking control value from ACC ECU
16 TC NeutralControlData bool Neutral control value from TC ECU
17 ABT AccelControlData int Integrated acceleration control value
18 ABT BrakeControlData int Integrated braking control value
19 VehicleSpeed int Speed of vehicle

Fig. 4 Transition among each control mode in ACC ECU.

4.2.1 Application to FTA
FTA is the most popular and traditional approach to perform-

ing safety analysis for automobiles. In FTA, an engineer lists the
hazardous states of the vehicle and hierarchically enumerates the
factors related to their occurrences. We investigate a hazardous
state in which the vehicle on the road does not accelerate in cruise
control mode even though the leading vehicle moves away from
it. As described in Section 4.1, the ACC function normally tries
to maintain a certain distance from the leading vehicle based on
the information provided by the on-board sensor used to mea-
sure that distance. Applying FTA to the system encountering this
hazard, the fault tree is derived as in Fig. 5. We use the hazard,
“Keeps stopping in cruise control mode for n consecutive times
even though the leading vehicle moves away from it.” To gener-
ate the disturbed signal patterns leading to the hazardous state in
Fig. 5 by way of the signal disturbance, let n-UDC≤K

F be defined
as follows:

n-UDC≤K
F ≡ ∃ i.1 ≤ i ≤ K − n + 1

∧
n−1∧

r=0

(LeadingVehicleSpeed(i+r) > 0

∧ Distance(i+r) > Cd

∧ BrakePedal(i+r) = 0 ∧ AccelPedal(i+r) = 0

∧ RadarCruiseSWOn(i+r) = true

∧ VehicleSpeed(i+r) = 0).

K, n, and Cd were set to 10, 5, and 70, respectively. L in Eq. (1)
was set to 1. Values were assigned to the variables as follows:

• IGSWon(i) = true

• RadarCruiseSWOn(i) = true

• ShiftRange(i) = 4
• BrakePedal(i) = 0
• LeadingVehicleSpeed(i) changes as: 30, 60, 90, 90,

120, 120, ...
• VehicleSpeedinit = 0

Here VehicleSpeedinit indicates the initial value of VehicleSpeed.
The weight of each equation in ΩK

X was set to 10.
We did not obtain any disturbed pattern consisting of a sin-

gle signal. This means that the automotive control system we
use does not reach the hazardous state by the intermittent dis-
turbance of a single signal. Table 3 shows one of the experi-
mental results, which is a signal disturbance pattern consisting
of two signals. In this pattern, BrakeControlData is disturbed
to 21 or namely, the cushion variable for BrakeControlData is
equal to 21, at the execution step i = 2, and BrakePedal is dis-
turbed to 21 or namely, the cushion variable for BrakePedal is

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 5 Fault tree.

Table 3 Example including signal disturbance pattern with two signals.

Step i BrakePedal BrakeControlData
Normal Value Disturbance Result Normal Value Disturbance Result

1 0 0 0 0
2 0 0 0 21
3 0 0 0 0
4 0 21 21 21
5 0 0 0 0

Table 4 Pattern of signals directly affecting vehicle speed.

Step i TC NeutralControlData BrakeControlData AccelControlData
1 false 0 0
2 false 21 160
3 true 0 220
4 false 21 220
5 true 0 280

equal to 21, at i = 4. These disturbances indirectly affect the
satisfiability of n-UDC≤K

F , with a delay owing to the character-
istics of the state transition system representing the automotive
control system. Table 4 shows the pattern of the signals di-
rectly affecting the speed of a vehicle, namely AccelControlData,
BrakeControlData, and TC NeutralControlData. The signal dis-
turbance presented in Table 3 causes the signal pattern presented
in Table 4. Through the use of the signal pattern given in Ta-
ble 4, the vehicle stops at 1 ≤ i ≤ 5. We obtained other pat-
terns consisting of BrakeControlData and BrakePedal by adding
blocking clauses that refrained from generating the pattern given
in Table 3. The target system has numerous intermittent distur-
bance patterns when we consider a time series, even if the num-
ber of disturbance signals is limited to two. In particular, the
existence of continuous signals, such as VehicleSpeed, leads to
various disturbances leading to n-UDC≤K

F . We repeatedly added
blocking clauses that refrained from generating the patterns that
consist of signal combinations included in the obtained patterns
and obtained Table 5. This table lists all names of the signals
in each pattern consisting of two signals obtained by the pro-
posed method. The obtained signal disturbance patterns could
have caused a situation in which the system kept stopping for five
consecutive time steps in the cruise mode, despite increasing the
distance to the leading vehicle.

Figure 6 shows the computation time required to obtain a dis-
turbance signal pattern with different numbers of possibly dis-

Table 5 Signals in each disturbance pattern.

Signal Names
VehicleSpeed LeadingVehicleSpeed
BrakePedal Distance
BrakePedal VehicleSpeed

VehicleSpeed Distance
ShiftRange VehicleSpeed

VehicleSpeed BrakePedalOn
VehicleSpeed BrakeControlOn

Distance ACC BrakeControlData
LeadingVehicleSpeed ACC BrakeControlData

Distance BrakeControlData
VehicleSpeed BrakeControlData
VehicleSpeed ACC BrakeControlData

LeadingVehicleSpeed BrakeControlData
LeadingVehicleSpeed Distance

VehicleSpeed ACC AccelControlData
BrakePedal ACC BrakeControlData
BrakePedal LeadingVehicleSpeed

VehicleSpeed AccelControlDataDistance
VehicleSpeed TC NeutralControlData
VehicleSpeed VehicleSpeedOK

RadarCruiseSWOn VehicleSpeed
ACC BrakeControlData BrakeControlData

BrakePedal BrakeControlData

Fig. 6 Computation time with different numbers of possibly disturbed
signals in FTA.

turbed signals. Each value is an average of 10 computation times.
The possibly disturbed signals were randomly selected 10 times,
except for the case where the number of possibly disturbed sig-
nals is equal to 0. In Fig. 6, no signal disturbance patterns were
obtained when the numbers of possibly disturbed signals were 0
and 1. Even if the number of possibly disturbed signals was in-
creased, the computation time was not increased.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Step 1: Identify Unsafe Control Actions
Step 2: Identify Causes of Unsafe Control Actions

Fig. 7 STPA procedure.

4.2.2 Application to STPA
STPA [29], [30] has recently been proposed as a new safety

analysis technique for complex systems. STPA has two funda-
mental procedures as shown in Fig. 7, where an unsafe control ac-
tion (UCA) is a control action, such as an operation command to
an actuator, that may lead to a hazardous state. Engineers perform
these procedures by using the guide words. Abdulkhaleq [2] has
shown that analyzing each control path’s possibility of causing
UCAs in Step 2 is time-consuming and requires detailed knowl-
edge on the target system. It is particularly difficult to treat inter-
mittent multi-signal disturbances arising from some undesired in-
cidents such as temporal wire disconnections, when we use STPA
in the later design phase, because we have to consider a huge
number of time-series patterns in multiple signals.

In this experiment, we investigate the same hazardous state as
the one in Section 4.2.1. Applying STPA to the system encounter-
ing this hazard, Step 1 derived a UCA (unsafe control action): An
acceleration command is not provided for five consecutive clock
cycles in cruise control mode, even though the leading vehicle
moves further away. Let a n-UDC≤K

F be defined as follows:

n-UDC≤K
F ≡ ∃i.1 ≤ i ≤ K − n + 1 ∧

∧n−1
r=0 (LeadingVehicleSpeed(i+r)>0∧Distance(i+r)>Cd

∧ BrakePedal(i+r) = 0 ∧ AccelPedal(i+r) = 0

∧ RadarCruiseSWOn(i+r) = true

∧ ABT AccelControlData(i+r) = 0).

K, n, and Cd were set to 10, 5, and 70, respectively. L in
Eq. (1) was set to 1. The same values as those in Section 4.2.1
were assigned to variables IGSWOn(i), RadarCruiseSWOn(i),
ShiftRange(i), BrakePedal(i), LeadingVehicleSpeed(i), and
VehicleSpeedinit.

We did not obtain any signal pattern consisting of a single sig-
nal. This fact is the same as the application of the proposed
method to the FTA process. Table 6 shows one of the experi-
mental results, which is the signal disturbance pattern consisting
of two signals. In this pattern, VehicleSpeed is disturbed to 151
at the execution step i = 2 and BrakePedalOn is disturbed to true

at i = 4. We added blocking clauses that refrained from gener-
ating the patterns that consist of the signal combination included
in the obtained patterns and obtained Table 7. This table lists the
names of all signals in each pattern consisting of two signals ob-
tained by the proposed method. The obtained signal disturbance
patterns can cause a situation in which the system did not provide
an acceleration command at 1 ≤ i ≤ 5 in cruise mode, despite
increasing the distance to the leading vehicle.

Figure 8 shows the computation time required to obtain a dis-
turbance signal pattern with different numbers of possibly dis-
turbed signals. In Fig. 8, no signal disturbance patterns are ob-
tained when the numbers of possibly disturbed signals are 0 and
1. As in the case of application to FTA, the computation time was
not increased even if the number of possibly disturbed signals was
increased.

Table 6 Example including signal disturbance pattern with two signals.

Step i VehicleSpeed BrakePedalOn
Normal Value Disturbance Result Normal Value Disturbance Result

1 0 0 false false
2 0 151 false false
3 0 0 false false
4 0 0 false true
5 0 0 false false

Table 7 Signals in each disturbance pattern.

Signal Names
ShiftRange VehicleSpeed

RadarCruiseSWOn VehicleSpeed
VehicleSpeedOK VehicleSpeed
BrakePedalOn VehicleSpeed

Fig. 8 Computation time with different numbers of possibly disturbed
signals in STPA.

We see that all four patterns in Table 7 have VehicleSpeed.
This fact indicates that keeping VehicleSpeed not disturbed by
some means can eliminate the possibility of causing the satisfac-
tion of n-UDC≤K

F by two-signal disturbances *1. This observation
shows that no two-signal disturbances can cause n-UDC≤K

F . If we
use the constraint that VehicleSpeed is not disturbed, we obtain
three-signal disturbances in Table 8.

4.3 Discussion
Manually obtaining the disturbed signal patterns in both the

FTA and STPA processes is a time-consuming task. For two-
signal disturbances of five execution steps, the total possible num-
ber of value pairs for two signals was approximately 1.5 × 1014,
even if each signal was binary; for three-signal disturbances
of five execution steps, the total number was approximately
2.8×1019. Hence, enumerating the disturbed signal patterns lead-
ing to undesirable conditions by hand is difficult, even for short
time series. The proposed method can be applied to obtain the
disturbed patterns in both the FTA and STPA processes, as seen
in Sections 4.2.1 and 4.2.2.

As described in Section 4.2.2, our method provides a better
understanding of the signals essential for maintaining vehicle
safety by observing the signal patterns. This understanding leads
engineers to design the minimum countermeasures for ensuring
safety.

From the benchmark in Sections 4.2.1 and 4.2.2, the compu-
tation time to find a signal disturbance stays reasonably short in

*1 It is a design decision whether a certain mechanism is introduced in the
system to protect a critical signal (VehicleSpeed, in this example) from
disturbance, though protecting all signals against disturbance is unreal-
istic.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 8 Example including signal disturbance pattern with three signals in STPA.

Step i ShiftRange VehicleSpeedOK LeadingVehicleSpeed
Normal Value Disturbance Result Normal Value Disturbance Result Normal Value Disturbance Result

1 4 4 true true 30 30
2 4 3 true true 60 60
3 4 4 true true 90 −21
4 4 4 true false 90 90
5 4 4 true true 120 120

the FTA and STPA processes even if the number of possibly dis-
turbed signals is increased. We expect the proposed method to be
put to practical use in the earlier design phase when some mea-
sures against signal disturbances are not considered. That is to
say, it is expected that engineers can design optimal safety mea-
sures from an overall perspective by obtaining the signals essen-
tial for maintaining safety with the proposed method before some
safety measures are designed.

5. Related Work

Other safety analysis techniques are found in the automotive
functional safety standard, ISO 26262 [21]. Here we mention
FMEA [12] and HAZOP [28] since these are often used for au-
tomobiles.

FMEA is used to analyze component failures to identify the ef-
fect of the failures in a consistent manner, where the component
includes systems and subsystems as well as parts. FMEA was
originally applied to hardware failures. But today we see some
works to apply this methodology to software systems [24]. In
FMEA, we first enumerate component failures. After that, the
effects of these failures are considered based on the enumera-
tion. On the contrary, the proposed method is used to find out
the causes that lead to undesired phenomena. Therefore, the pro-
posed method cannot be used in the FMEA process.

HAZOP was originally proposed for chemical plants, but re-
cently, some studies have applied it to software [32]. Nowadays,
HAZOP is used in the automotive field. It is defined in IEC
61882 [19]. In HAZOP, the deviations from expected control ac-
tions are assumed based on guide words and the hazards from
these deviations and the factors causing them are extracted based
on the specification of the system. In other words, HAZOP in-
cludes both top-down and bottom-up approaches. The proposed
method is considered to be used to enumerate the factors causing
the deviations from the expected control actions in the HAZOP
process. For example, the situation in which the control action
in the system unexpectedly stops for a certain period is extracted
using one of the guide words, “NO OR NOT,” and the proposed
method can be used to automatically find out signal disturbance
patterns that lead to that situation. HAZOP is both a top-down
and bottom-up approach and can start from middle, while FTA is
a top-down approach and FMEA is a bottom-up approach.

Software model checking is a technology used for applying
well-established finite-state model checking algorithms to veri-
fying programs that are inherently infinite-state because of data
structures such as arrays and pointers and/or control structures
such as recursion and parallelism. For example, BLAST [18] and
SLAM [6] are software model checkers based on predicate ab-
straction and refinement. As shown below, there has been an-

other stream, called bounded model checking (BMC), which fo-
cuses on fault or bug detection rather than correctness verifica-
tion. BMC assumes a bound on the execution steps, the number
of loop iterations, or the recursion depth so that a simpler logical
framework can be used, e.g., satisfiability checking of proposi-
tional logic rather than temporal logic. This paper aims to apply
such a fault localization method based on BMC to the safety anal-
ysis of automotive control systems.

One of the earliest papers on SAT-based BMC [7] showed that a
trace formula was introduced to represent the behavior of a pro-
gram by unfolding a loop and in-lining a recursive call within
a bounded number of times. CBMC [11] is a software model
checker for C and C++ programs based on Biere’s method [7].
Let P be a given program and TP be the trace formula constructed
from P. In addition, let us assume that an undesirable property H

for P is given. A SAT solver is used to decide whether the formula
TP∧H is satisfiable. If TP∧H is satisfiable, TP contains a fault and
a satisfying assignment corresponds to an example that brings P

to an undesirable condition. If TP is unsatisfiable, TP is fault-free
as long as P runs within the assumed bound. Given that various
data values in a given program must be encoded as Boolean val-
ues and variables in a trace formula in propositional logic, there
is a vast increase in the formula size. To overcome the problem
of size explosion and inefficiency of verification caused by this,
SMT (satisfiability modulo theories such as integer, real number,
and array) solvers have been used instead of SAT solvers [4], [25].

We can see that SAT-based and SMT-based approaches are
applied to the problem of fault localization. Jose and Majum-
dar [22], [23] has applied a SAT-based approach to that problem.
The fault localization for a program P and the property of an
undesirable condition H is to compute a maximal set of state-
ments in P that can remain unchanged for the program to become
correct w.r.t. H, or equivalently, to identify a minimum set of
statements in P as a fragment (or slice) of the program contain-
ing an undesirable condition defined by H. Bug-Assist [22] con-
structs a trace formula for the pair of a program P and an input
I to P (I is a counterexample generated by CBMC for P) and
a minimum set of statements is obtained by a partial Max-SAT
solver. Könighofer [23] also applies Max-SMT to the fault lo-
calization problem and considers multiple inputs simultaneously.
Christ [10] improved the fault localization method by a partially
flow-sensitive static analysis for developing a formula. Lam-
raoui [26], [27] further extended the method and implemented a
full flow-sensitive fault localization tool SNIPER, which can de-
tect and locate multiple faults. Our method also uses a Max-SMT
solver to locate a fault in the model of an automotive control sys-
tem. The difference between the previous studies and ours is that
in our setting, a fault is not just a subset of statements in a pro-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

gram but a series of signals in a system. Moreover, we introduce
cushion variables to concisely represent a fault in a logical for-
mula.

Expressing a fault as an illegal assignment of values to vari-
ables in a logical formula can be found in the previous stud-
ies [5], [16]. An advantage of the method proposed in this paper
compared to the previous studies is that we separate the original
variables and cushion variables so that a Max-SMT solver can au-
tomatically identify the fault as soft clauses u(i)

j = uc(i)
j (the value

of an original variable equals that of the corresponding cushion
variable) that are not satisfied in a maximal solution. Another ad-
vantage of the proposed method is that we can deal with real-time
properties. Given a set of fault-tolerable states (or the closure) C

as well as a set of fault-free states S such that S ⊆ C, a system is
defined to be fault-tolerant if and only if whenever a system tran-
sits to a state in C, the system can eventually return to a state in
S [5], [16]. For a real-time system such as an automotive control
system, it is further required that if the system falls into a state in
C, it must return to a state in S within a certain time or certain
steps. To verify that such a requirement is met, we define a prop-
erty of an undesirable condition as not a property of a single state
but that of consecutive states of certain length, depending on an
application.

We can see some studies on the analysis of fault trees by using
model checking techniques. For example, Schäfer [34] used du-
ration calculus with liveness and Thums [35] used clocked CTL
as logical frameworks for model checking. Bozzano [9] proposed
a forward and backward reachability analysis in symbolic model
checking for fault tree construction. He applied a dynamic cone
of influence technique to the backward analysis. However, his
study is based on a finite-state model checking and does not scale
when a model contains data variables. STPA regards a system as
a set of control loops and identifies safety requirements and con-
straints at the system level. Some case studies at the system level
have been reported [15], [20]. In contrast, Abdulkhaleq [1] pro-
posed a formal verification method at the code level with respect
to the requirement obtained at the system level and reported a case
study on a formal verification that a cruise control system satis-
fies a safety requirement using a symbolic model verifier (SMV).
However, the formal model constructed by Abdulkhaleq is rather
small and the safety requirement is not a detailed one as in the
case of the properties considered in this paper.

Automated hazard analysis in the automotive field by using
the partial Max-SAT was first presented by the authors in the pa-
per [17]. Our previous paper [33] proposes an automating safety
analysis method for automotive control systems using Unsafe
Control Action (UCA) in the STPA process. This paper im-
proves and extends our previous method [33] as follows. We
present UDCs as an abstraction of both UCAs in Ref. [33] and
hazardous states and extend n-UCA≤K

F in Ref. [33] to n-UDC≤K
F ,

so that we specify constraints on n-consecutive states of the sys-
tem in a more general manner. To demonstrate that our method
in this paper is applied to the existing analysis frameworks, we
conducted a new case study on a system designed by FTA in ad-
dition to STPA in Ref. [33]. We presented the new experiments
to show the scalability of our method and how it contrasts with

other verification methods.

6. Conclusion

This paper proposes a method to automate the identification
of unsuitable behavior due to signal disturbances in automotive
control systems by using weighted partial Max-SMT solvers. Our
method is useful, especially when dealing with intermittent multi-
signal disturbances that are difficult to locate manually. The sys-
tem behavior is characterized by trace formulae modified with
extra variables, called cushion variables, to model faulty signal
values. A modified trace formula with the constraints leading to
an undesirable condition becomes satisfiable when the cushion
variables have faulty signal values. Signal disturbances are de-
tected as a set of negated equations between signal variables and
cushion variables in value assignments to the modified trace for-
mula. By defining these equations as soft clauses, signal distur-
bances are automatically detected by checking the satisfiability of
the modified trace formula together with undesirable conditions
using a partial Max-SMT solver, such as Yices. In applying the
solver, weights assigned to soft clauses are used to control the
order of detection of signal disturbances.

We apply our method to a simplified virtual automotive con-
trol system with three ECUs, including cruise control. The pro-
posed method successfully identifies signal disturbance patterns,
leading to hazardous states in the FTA and UCAs in the STPA
process. In FTA, our proposed method obtains all types of signal
disturbance patterns, leading to the hazardous state, which cause
undesirable acceleration forces, braking forces, and transmission
states. Furthermore, our method is successful in detecting inter-
mittent multi-signal disturbances that are difficult to enumerate
manually within a reasonable time. The observation of the ob-
tained signal patterns by the proposed method can often make
engineers discover key signals to prevent the system from going
to the behavior satisfying the UDC property, as shown in Sec-
tion 4.2. By referring the key signals to clue, the engineers can
redesign the system architecture and / or build a real-time mon-
itoring function that observes the data in the system and gives a
certain action to the system before reaching the undesirable con-
dition. Furthermore, in automotive control systems, each signal
does not have an equal probability of being disturbed. The pro-
posed technique can take these probabilities into consideration
by putting different values to the weights of the soft clauses in
Eq. (2).

The remaining challenges in this study are as follows. An ap-
propriate boundary K for unrolling loops can be considered as a
scalability parameter. For periodic behavior, finding an appropri-
ate value of K is possible. Moreover, the compositional extension
of the proposed method is required to deal with all automotive
control systems, with an appropriate value of K that is very large.

We will consider ways to analyze practical and efficient mea-
sures for ensuring safety based on the proposed method in the
future. It is very difficult to build perfect countermeasures that
prevent specific signals from being disturbed, because the system
has uncontrollable factors including sensor noise. We plan to use
more relaxed hard constraints, such as |u(i)

j − uc(i)
j | < ε instead of

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

u(i)
j = uc(i)

j , to analyze the effect of introducing the countermea-
sures of the safety. Furthermore, we plan to investigate a method
to use the time-series information from signal disturbance pat-
terns to design sophisticated countermeasures.

References

[1] Abdulkhaleq, A. and Wagner, S.: A Software Safety Verification
Method Based on System-Theoretic Process Analysis, Next Gener-
ation of System Assurance Approaches for Safety-Critical Systems,
Proc. SAFECOMP Workshop, pp.401–412 (2014).

[2] Abdulkhaleq, A. and Wagner, S.: Experiences with Applying STPA to
Software-Intensive Systems in the Automotive Domain, Proc. STAMP
Workshop (2013).

[3] Argelich, J.: Max-SAT Formalisms with Hard and Soft Constraints,
AI Communications, Vol.24, No.1, pp.101–103 (2011).

[4] Armando, A., Mantovani, J. and Platania, L.: Bounded Model Check-
ing of Software Using SMT Solvers Instead of SAT Solvers, Intl. J.
Software Tools for Technology Transfer, pp.69–83 (2009).

[5] Arora, A. and Gouda, M.G.: Closure and Convergence: A Founda-
tion of Fault-tolerant Computing, IEEE Trans. Software Engineering,
Vol.19, No.11, pp.1015–1027 (1993).

[6] Ball, T. and Rajamani, S.K.: Automatically Validating Temporal
Safety Properties of Interfaces, Proc. Intl. SPIN Workshop, pp.103–
122 (2001).

[7] Biere, A., Cimatti, A., Clarke, E.M. and Zhu, Y.: Symbolic Model
Checking without BDDs, Proc. Intl. Conf. Tools and Algorithms for
Construction and Analysis of Systems, pp.193–207 (1999).

[8] Biswas, S., Tatchikou, R. and Dion, F.: Vehicle-to-vehicle Wire-
less Communication Protocols for Enhancing Highway Traffic Safety,
IEEE Communications Magazine, Vol.44, No.1, pp.74–82 (2006).

[9] Bozzano, M., Cimatti, A. and Tapparo, F.: Symbolic Fault Tree Anal-
ysis for Reactive Systems, Proc. Intl. Symp. Automated Technology for
Verification and Analysis, pp.162–176 (2007).

[10] Christ, J., Ermis, E., Schäf, M. and Wies, T.: Flow Sensitive Fault
Localization, Proc. Intl. Conf. Verification, Model Checking, and Ab-
stract Interpretation, pp.189–208 (2013).

[11] Clarke, E., Kroening, D. and Lerda, F.: A Tool for Checking ANSI-C
Programs, Tools and Algorithms for the Construction and Analysis of
Systems, pp.168–176, Springer (2004).

[12] Department of Defence: Procedure for Performing a Failure Mode Ef-
fect and Criticality Analysis, United States Military Procedure, MIL-
P-1629 (1949).

[13] Dutertre, B. and Moura, L.D.: The YICES SMT Solver (online), avail-
able from 〈http://yices.csl.sri.com/〉 (accessed 2019-05-07).

[14] Ericson, C.: Fault Tree Analysis–A History, Proc. Intl. System Safety
Conference, (1999).

[15] Fleming, C.H., Spencer, M., Thomas, J., Leveson, N.G. and
Wilkinson, C.: Safety Assurance in NextGen and Complex Trans-
portation Systems, Safety Science, Vol.55, pp.173–187 (2013).

[16] Gärtner, F.C.: Fundamentals of Fault-tolerant Distributed Comput-
ing in Asynchronous Environments, ACM Computing Surveys, Vol.31,
No.1, pp.1–26 (1999).

[17] Hattori, S., Yuen, S., Seki, H. and Sato, S.: Automated Hazard Anal-
ysis with pMAX-SMT for Automobile Systems, Pre-proc. Intl. Work-
shop on Automated Verification of Critical Systems, (2015).

[18] Henzinger, T., Jhala, R., Majumdar, R. and Sutre, G.: Software Verifi-
cation with Blast, Proc. Intl. SPIN Workshop, pp.235–239 (2003).

[19] IEC 61882: Hazard and Operability Studies (HAZOP studies) - Ap-
plication Guide (1992).

[20] Ishimatsu, T., Leveson, N.G., Thomas, J.P., Fleming, C.H., Katahira,
M., Miyamoto, Y., Ujiie, R., Nakao, H. and Hoshino, N.: Haz-
ard Analysis of Complex Spacecraft Using Systems-theoretic Process
Analysis, J. Spacecraft and Rockets, Vol.51, No.2, pp.509–522 (2014).

[21] ISO 26262: Road Vehicles - Functional Safety (2011).
[22] Jose, M. and Majumdar, R.: Cause Clue Clauses: Error Localization

Using Maximum Satisfiability, ACM SIGPLAN Notices, Vol.46, No.6,
pp.437–446 (2011).

[23] Könighofer, R. and Bloem, R.: Automated Error Localization and
Correction for Imperative Programs, Proc. Intl. Conf. Formal Meth-
ods in Computer-Aided Design, pp.91–100 (2011).

[24] Kraig, T.S.: Using FMEA to Improve Software Reliability, Proc. Pa-
cific Northwest Software Quality Conference (2013).

[25] Lal, A., Qadeer, S. and Lahiri, S.K.: A Solver for Reachability Modulo
Theories, Proc. Intl. Conf. Computer Aided Verification, pp.427–443
(2012).

[26] Lamraoui, S.M. and Nakajima, S.: A Formula-based Approach for
Automatic Fault Localization of Multi-fault Programs, J. Information
Processing, Vol.24, No.1, pp.88–98 (2016).

[27] Lamraoui, S.M. and Nakajima, S.: A Formula-based Approach for
Automatic Fault Localization of Imperative Programs, Proc. Intl.
Conf. Formal Engineering Methods (2014).

[28] Lawley, H.G.: Operability Study and Hazard Analysis, Chemical En-
gineering Progress, Vol.70, No.4, pp.45–56 (1974).

[29] Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied
to Safety, MIT Press (2011).

[30] Leveson, N.G.: A Systems-Theoretic Approach to Safety in Software
Intensive Systems, IEEE Trans. Dependable and Secure Computing,
Vol.1, pp.66–86 (2004).

[31] Moura, L.D. and Bjorner, N.: Satisfiability Modulo Theories: An Ap-
petizer, Formal Methods: Foundations and Applications, pp.23–36,
Springer (2009).

[32] Redmill, F., Chudleigh, M. and Richard, J.C.: System Safety: HAZOP
and Software HAZAOP, Wiley-Blackwell (1999).

[33] Sato, S., Hattori, S., Seki, H., Inamori, Y. and Yuen, S.: Automating
Time Series Safety Analysis for Automotive Control Systems in STPA
Using Weighted Partial Max-SMT, Proc. Intl. Workshop on Formal
Techniques for Safety-Critical Systems, pp.39–54, Springer (2016).

[34] Schäfer, A.: Combining Real-time Model-checking and Fault-tree
Analysis, Proc. Intl. Symp. Formal Methods Europe, pp.522–541
(2003).

[35] Thums, A. and Schellhorn, G.: Model Checking FTA, Proc. Intl.
Symp. on Formal Methods Europe, pp.739–757 (2003).

Shuichi Sato was born in 1967. He re-
ceived his M.S. degree from Osaka Uni-
versity in 1992 and has been engaged in
Toyota Central R&D Labs., Inc. He re-
ceived his Ph.D. degree from Osaka Uni-
versity in 2005. He was a visiting pro-
fessor at Nagoya University from 2014 to
2018. His research interests are system

safety and reliability. He is a member of the Japan Society of
Mechanical Engineers.

Shogo Hattori was born in 1992. He re-
ceived his M.S. degree from Nagoya Uni-
versity in 2016. His research interest is
system safety and reliability.

Hiroyuki Seki received his Ph.D. degree
from Osaka University in 1987. He was
an Assistant Professor, and later, an Asso-
ciate Professor in Osaka University from
1987 to 1994. In 1994, he joined Nara In-
stitute of Science and Technology, where
he was a Professor during 1996 to 2013.
Currently, he is a Professor in Nagoya

University. His current research interests include formal language
theory and formal approach to software development.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Yutaka Inamori was born in 1969. He
received his M.S. degree from Kyoto Uni-
versity in 1994 and has been engaged in
Toyota Central R&D Labs., Inc. His re-
search interests are software engineering
and socio-technical system engineering.
He is a member of Information Process-
ing Society of Japan.

Shoji Yuen was born in 1963. He re-
ceived his Dr. degree of Engineering. from
Nagoya University in 1997. He has been a
Professor at the Graduate School of Infor-
matics of Nagoya University since 2007.
His research interests are theories and ap-
plications of concurrency, especially for
communicating software systems. Based

on the theoretical framework of communicating processes, he has
been working on the additional notion of data, probability, and
time to extend the application of the framework. He is a member
of Information Processing Society of Japan, Japan Society for
Software Science and Technology, and the Association for Com-
puting Machinery.

c© 2020 Information Processing Society of Japan

