グラフを用いた NMF の地域分散高速化

越塚 毅¹ 竹内 孝² 松林 達史² 澤田 x^2

概要 : 集計データに対する教師なしのパターン認識技術として, 非負値行列因子分解 (Non-negative Matrix Factorization: NMF) は広く使われている. 特に Non-negative Multiple Matrix Factorization (NMMF) では、複数のデータから共通する項目を共通因子として扱い、効果的に同時分解を行う、本研究では共通因 子に加え,地域性などの物理的に関係性をもつ集計データに焦点を当て,因子分解を行う rNMF(Regional Non-negative Matrix Factorization) を提案する. rNMF は, 物理的に距離の近い地域のデータは同様の特 徴空間で表現し, 分析結果をより直感的にわかりやすいものとする. さらに分析対象のデータが大規模な行 列であっても, 分散システム上で高速に処理を行える.rNMF は, 地域ごとの観測行列 Yi を入力とし, そ れぞれ観測行列を二つの因子行列 $oldsymbol{H}_i, oldsymbol{U}_i$ へと分解する. ただし, i は地域の識別番号を表す. そして, 再 構成誤差の最小化と同時に, 物理的に距離の近い地域の行列からは同様の基底行列が得られるよう, 対象の 基底行列間の距離を最小化する. 図 2 では、 再構成誤差の最小化を $Y_i \simeq H_i U_i$ と表し、 基底行列間の距離 の最小化を $H_i \simeq H_j$ と表している. また, 地域の位置関係はグラフによって与える. さらにグラフの彩色 問題をヒューリスティック的に解くことで、分散システム上で並列に処理することが可能である.本稿で は, まず rNMF を NMF の拡張アルゴリズムとして定式化を行う. そして, 再構成誤差と基底行列間誤差に Frobenius ノルムと一般化 KL ダイバージェンスを用いた場合のパラメータ更新法を示す.地域ごとに集計 された実データを用いた実験では、rNMF を用いることで、隣接した地域データを共通した特徴空間で表 現できること, 従来の NMF に対して汎化性能が悪化しないこと, 分散システム上で高速に動作することを 示す.

キーワード: 行列分解, 並列化, 分散処理

Graph-based regional NMF for distributed computing

Koshizuka Takeshi¹ Koh Takeuchi² Tatsushi Matsubayashi² Hiroshi Sawada²

1. はじめに

NMF(Non-negative Matrix Factorization: 非負値行列 因子分解) [1] [2] は, 非負制約下で観測データを指定した基 底数に分解し, 低ランク近似表現を得る行列分解手法であ る. 文章データ [5], 音源データ [6], 顧客データなどの非負 値の行列で表現されるデータに対して適用し, データの圧 縮や潜在的特徴の可視化を目的とする. 低ランク表現を得 る手法として, 他に主成分分析や特異値分解などがあるが, NMF は非負値行列のみを扱い, 分解後の行列も非負値行列 に制限される. これによって, より直感的な潜在的特徴を抽 出することが可能とされている [7]. 近年は扱えるデータが 増加しており, NMF を用いた分析が可能な場面が増えてい る. 中でも、地域ごとに集計されたデータに対して NMF を 適用する場面は多く考えられる. 例えば地域ごとに集計さ れた顧客データに対して NMF を適用し、潜在的特徴を抽出 することで、地域ごとの販売戦略に生かす場面などが考え られる. このとき、地域ごとのデータから得られる潜在的特 徴を、より直感的にわかりやすいものとするため、物理的に 距離の近い地域のデータは同様の特徴空間で表現したいと いう要求がある. しかしデータが大規模である場合には、各 地域のデータを結合して処理を行うことは現実的でなく、地 域ごとのデータを分散的に処理する必要がある. 本稿では、 以上の要求を解決する rNMF(Region Non-negative Matrix Factorization)を提案する. rNMF は、地域ごとの観測行列 $Y^* = \{Y_1, Y_2, \dots, Y_I\}$ を入力とし、それぞれ観測行列を 二つの因子行列 $\{H_1, H_2, \dots, H_I\}, \{U_1, U_2, \dots, U_I\}$ へと分解する. この時再構成誤差の最小化と同時に、物理

¹ 東京理科大学理工学部情報科学科

² 日本電信電話 (株)NTT コミュニケーション科学基礎研究所

Fig. 1 an intuitive understanding of proposed method

的に距離の近い地域の行列からは同様の基底行列が得られ るよう,対象の基底行列間の距離を最小化する.また,地域 の位置関係はグラフによって与える.ただし,ここでのグ ラフは平面グラフに近いグラフを想定しており,完全グラ フのような頂点に対して辺数が極端に多いものは想定して いない. グラフにおいて,頂点*i*,*j*間に辺が存在しない時 は,行列 *H_i*, *H_j*の更新を非同期的に並列に行うことがで きる.そして,非同期的に並列実行可能な頂点集合を求める 問題は,グラフの彩色問題として解くことができ,本稿で はWelsh-Powellアルゴリズムを用いて解くことで,効率的 な並列化を行う.なお,図1は*I*が6の場合における提案 手法の概要を図式化したものである.以上よりrNMFは, 地域ごとの観測行列からより直感的にわかりやすい因子行 列を得ることや,計算の並列分散化による高速化が期待で きる.

2. 関連研究

NMF(Non-negative Matrix Factorization: 非負値行列 因子分解) [1] [2] は, 行列が持つ潜在的要素を分析するた めに用いる低ランク近似手法の一つであり, 非負値行列を 2 つの非負値行列に分解する行列分解手法である.NMF は 因子行列の非負値制約により, 解釈可能なパターンが抽出 されやすい特徴がある. NMF の拡張として, スパースな行 列に対して有効な手法 [10] や, 非負テンソルを解析する手 法 [2], MapReduce の枠組みを用いて処理の分散高速化を 行う手法 [8] [9] などが提案されている. 中でも本研究と関 連の深い NMF の拡張として, グラフ構造を用いた正則化 項を加える手法 (GNMF) [4] や辞書学習を用いて行列分解 を最適化する手法 (Sparse Coding and Sparse Dictionary Learning) [11], 複数の行列を同時に因子分解する手法 [13] [14] がある. 以下では, 従来の NMF と GNMF の定式化を 述べる.

2.1 NMF

非負値の分解前の行列 $Y = \begin{bmatrix} y_1 & y_2 & \cdots & y_M \end{bmatrix} \in \mathbb{R}_{\geq 0}^{N \times M}$ が与えられる. 基底数を K と定めると, 分解後の行列は基底行列 $H \in \mathbb{R}_{\geq 0}^{N \times K}$ と重み行列 $U \in \mathbb{R}_{> 0}^{K \times M}$ となる.

H, U の積 Ŷ が元の行列 Y の近似となり, Ŷ と Y の距離関数を最小化する問題を解く. 一般的に Frobenius ノル ムや一般化 KL ダイバージェンス, 板倉斉藤距離が距離規 範としてよく用いられる [2]. この距離関数最小化問題には いくつかの数学的解法が提案されている. 乗法的更新ルー ル [2] や ALS(Alternating Least Squares)[3] などが提案さ れている. ここでは, Frobenius ノルムの最小化問題を乗法 的更新ルールを用いて解く例を示す. 乗法的更新ルールで は, まず行列 H, U を非負値で初期化する. その後式 (3) を 繰り返し用いて, 行列 H, U の値を更新する. そして更新 を規定回数行う, または更新前後の変化がある一定値以下 となることで終了する.

minimize
$$||\mathbf{Y} - \hat{\mathbf{Y}}||_F^2 \quad (\hat{\mathbf{Y}} = \mathbf{H}\mathbf{U})$$
 (1)
subject to $\mathbf{H} \ge 0, \ \mathbf{U} \ge 0$

$$H_{n,k} \leftarrow H_{n,k} \frac{[\boldsymbol{Y}\boldsymbol{U}^{\boldsymbol{T}}]_{n,k}}{[\hat{\boldsymbol{Y}}\boldsymbol{U}^{\boldsymbol{T}}]_{n,k}}, \ U_{k,m} \leftarrow U_{k,m} \frac{[\boldsymbol{H}^{\boldsymbol{T}}\boldsymbol{Y}]_{k,m}}{[\boldsymbol{H}^{\boldsymbol{T}}\hat{\boldsymbol{Y}}]_{k,m}}$$
(3)

2.2 GNMF

 $Y = \begin{bmatrix} y_1 & y_2 & \cdots & y_M \end{bmatrix} \in \mathbb{R}_{\geq 0}^{N \times M}$ が与えられる. 基底数を K と定め,因子行列 $H \in \mathbb{R}_{\geq 0}^{N \times K}$ と $U = \begin{bmatrix} u_1 & u_2 & \cdots & u_M \end{bmatrix} \in \mathbb{R}_{\geq 0}^{K \times M}$ へと分解する.次に、 y_j と y_l の近さを表す隣接行列 $W = (w_{j,l})$ を定義する.この 時,目的関数を以下のように定める.

minimize
$$\sum_{i}^{I} D_{R}(\boldsymbol{Y_{i}}|\boldsymbol{H_{i}U_{i}}) + \frac{\lambda}{2} \sum_{j,l=1}^{N} D_{G}(\boldsymbol{u_{i}}|\boldsymbol{u_{j}}) w_{jl}$$

$$(4)$$

subject to $\boldsymbol{H}, \ \boldsymbol{U} \geq 0$

ただし, D_R , D_G は距離関数, λ はハイパーパラメータである. 距離関数を D_R , D_G ともに Frobenius ノルムとした場合, 乗法的更新ルールを用いると以下の更新式が導かれる.

$$H_{n,k} \leftarrow H_{n,k} \frac{[\boldsymbol{Y}\boldsymbol{U}^{\boldsymbol{T}}]_{n,k}}{[\hat{\boldsymbol{Y}}\boldsymbol{U}^{\boldsymbol{T}}]_{n,k}}$$
(5)

$$U_{k,m} \leftarrow U_{k,m} \frac{[\boldsymbol{Y}^{T}\boldsymbol{H}]_{k,m} + \lambda[\boldsymbol{U}^{T}\boldsymbol{W}]_{k,m}}{[\boldsymbol{H}^{T}\hat{\boldsymbol{Y}}^{T}]_{k,m} + \lambda[\boldsymbol{U}^{T}\boldsymbol{D}]_{k,m}}$$
(6)

ただし、
$$\boldsymbol{D} = (d_{j,j}) = \sum_{l} w_{jl}$$
 (7)

GNMFでは, 観測行列の特定の列ベクトル間に潜在的な共 通の構造を想定し, 対応する基底行列の列ベクトル間の距 離を近づけている.一方提案手法は, 観測行列の区分行列 単位での潜在的な共通構造を想定している点で異なる. さ らに, 提案手法では分散処理による高速化の手法について 提案している点においても異なる.

3. 提案手法

本稿では、複数の非負値行列が与えられた時に、同様な基 底行列を用いた低ランク表現を得る手法について述べる. 図1のように地域ごとの行列 { Y_1 , Y_2 , ..., Y_I } が与えら れる. 各区分行列をそれぞれ基底行列 { H_1 , H_2 , ..., H_I } と重み行列 { U_1 , U_2 , ..., U_I } に分解し、この時同時に特 定の基底行列 H_i , H_j の距離を近づける. グラフによって 近づける基底行列の情報を与えることで、柔軟に基底行列 を扱うことが可能となっている.

3.1 定式化

3.1.1 入力

複数の非負値行列 $Y^* = \{Y_1, Y_2, \cdots, Y_I\}$ $(Y_i \ge 0)$ が与えられる.

3.1.2 出力

複数の非負値行列 Y^* から、基底行列 $H^* =$ $\{H_1, H_2, \dots, H_I\}$ と重み行列 $U^* =$ $\{U_1, U_2, \dots, U_I\}$ $(H_i, U_i \ge 0)$ に分解される. 3.1.3 条件

出力で得る H^* のうち, H_i , H_j を同様の行列とし たい場合に, 辺 $(i, j) \in E$ となる無向グラフ G(V = $\{1, 2, \dots, I\}, E)$ を与える. このグラフの隣接行列を $A(G) = (a_{i,j})$ とする. 例として, I = 6の場合のグラフの 例を図 2 に示す.

3.1.4 目的関数

minimize
$$\sum_{i=1}^{I} [D_R(\mathbf{Y}_i | \mathbf{H}_i \mathbf{U}_i) + \frac{\alpha}{2|E_i|} \sum_{(i, j) \in E_i} D_G(\mathbf{H}_i | \mathbf{H}_j)]$$

ただし, E_i は頂点 *i* に接続する辺の集合 (8)
subject to $\mathbf{H}_i, \mathbf{U}_i \ge 0$ ($\forall i \in \{1, 2, \cdots, I\}$),

ただし, D_R , D_G は距離関数, α はハイパーパラメータである. この目的関数について述べる. 左項は従来の NMFでも扱う再構成誤差であり, 右項が提案手法で導入した項である. この項によって, 最終的に得られる基底行

列 H_i , H_j が同様のものとなる狙いがある. 図 2 のグ ラフの例では, シグマ記号の添え字 *i* の値が 1 のとき, $D_R(Y_1|H_1U_1) + \frac{\alpha}{2} \{ D_G(H_1|H_2) + D_G(H_1|H_3) \}$ を計算 する. この項が存在することで, $H_1 \ge H_2$, $H_1 \ge H_3$ の距 離が小さい結果が得られると期待できる.

3.1.5 モデル推定

距離関数を D_R, D_G ともに Frobenius ノルムとした場合, 以下の式9を用いて,目的関数を最小化する最適な H^*, U^* が求められる.

$$H_{i,n,k} \leftarrow H_{i,n,k} \frac{[\mathbf{Y}_{i}U_{i}^{T}]_{n,k} + \frac{\alpha}{|E_{i}|} \sum_{(i,j) \in E_{i}} H_{j,n,k}}{[\hat{\mathbf{Y}}_{i}U_{i}^{T}]_{n,k} + \frac{\alpha}{|E_{i}|} \sum_{(i,j) \in E_{i}} H_{i,n,k}}$$

$$(9)$$

$$U_{i,k,m} \leftarrow U_{i,k,m} \frac{[\mathbf{H}_{i}^{T}\mathbf{Y}_{i}]_{k,m}}{[\mathbf{H}_{i}^{T}\hat{\mathbf{Y}}_{i}]_{k,m}}$$

$$(\therefore \stackrel{\sim}{\sim} \bigcup, \stackrel{\sim}{\mathbf{Y}_{i}} = \mathbf{H}_{i}\mathbf{U}_{i})$$

距離関数を D_G を一般化 KL ダイバージェンスとするとき, 式 10 の目的関数を乗法的更新ルールを用いて最小化する ことはできない.これは, H_i の更新式が非負性を保った更 新式でなくなるためである.そこで, D_G に一般化 KL ダイ バージェンスを用いる時は,目的関数を以下のように定義 する.

minimize
$$\sum_{i=1}^{I} [D_R(\mathbf{Y}_i | \mathbf{H}_i \mathbf{U}_i) + \frac{\alpha}{|E_i|} \sum_{(i, j) \in E_i} D_{KL}(\mathbf{H}_i + \mathbf{1} | \mathbf{H}_j + \mathbf{1})]$$
(10)

ただし, $E_i = \{ j \mid (i, j) \in E_i \}, \mathbf{1} : 全ての要素が1の行列$ subject to $H_i, U_i \ge 0 \quad (\forall i \in \{1, 2, \dots, I\}),$

距離関数を D_R , D_G をともに一般化 KL ダイバージェン スとするとき,式 11 を用いて,目的関数を最小化する最適 な H^*, U^* が求められる.

$$A = [(\mathbf{Y}_{i} \oslash \hat{\mathbf{Y}}_{i}) U_{i}^{T}]_{n,k} + \frac{\alpha}{|E_{i}|} \sum_{(i,j) \in E_{i}} \log (H_{j,n,k} + 1) + \frac{(H_{j,n,k} + 1)}{(H_{i,n,k} + 1)}$$
$$B = \sum_{m=1}^{M} [\mathbf{U}_{i}]_{k,m} + \frac{\alpha}{|E_{i}|} \sum_{(i,j) \in E_{i}} (\log (H_{i,n,k} + 1) + 1) + H_{i,n,k} \leftarrow H_{i,n,k} \frac{A}{B}$$
(11)

$$U_{i,k,m} \leftarrow rac{[H_{I}^{I}(Y_{i} \oslash Y_{i})]_{k,m}}{\sum_{n=1}^{N} [H_{i}]_{n,k}}$$
ただし、 \oslash は要素ごとの除算を表す.

さらに、 D_R, D_G に異なる距離関数を用いることもでき、 $H_{i,n,k}$ の更新式は以下のように整理できる.

$$H_{i,n,k} \leftarrow H_{i,n,k} \frac{NL + \frac{\alpha}{|E_i|} \sum_{(i,j) \in E_i} NR}{DL + \frac{\alpha}{|E_i|} \sum_{(i,j) \in E_i} DR}$$
(12)

 D_R : Frobenius ノルム $NL = [\mathbf{Y}_i \mathbf{U}_i^T]_{n,k}, \ DL = [\hat{\mathbf{Y}}_i \mathbf{U}_i^T]_{n,k}$ D_R : 一般化 KL ダイバージェンス $NL = [(\mathbf{Y}_i \odot \hat{\mathbf{Y}}_i) \mathbf{U}_i^T]$, $DL = \sum_{i=1}^{M} [D_i \mathbf{U}_i^T]$

$$NL = [(\boldsymbol{Y_i} \oslash \hat{\boldsymbol{Y_i}}) \boldsymbol{U_i^T}]_{n,k}, \ DL = \sum_{m=1}^{m-1} [\boldsymbol{U_i}]_{k,m}$$

 D_G : Frobenius $\mathcal{I}\mathcal{N}\mathcal{L}$

$$NR = H_{j,n,k}, DR = H_{i,n,k}$$

 $D_G: 一般化 KL ダイバージェンス$
 $NR = \log(H_{j,n,k} + 1) + \frac{(H_{j,n,k} - 1)}{(H_{j,n,k} - 1)}$

$$DR = \log (H_{i,n,k} + 1) + 1$$

なお,式9,式11の導出方法の詳細は付録に示す.

3.2 欠損値のある行列に対する NMF

T は添え字全体の集合, *J* は欠損値の添え字の集合とし, 行列を定義する.

$$\Omega = (\omega_{i,j}) = \begin{cases} 1 & ((i,j) \in T \setminus J) \\ 0 & ((i,j) \in J) \end{cases}$$
(13)

欠損値のある行列に対する従来の NMF の更新式を示す.

$$H_{i,n,k} \leftarrow H_{i,n,k} \frac{[(\Omega \circ \boldsymbol{Y}_{i})\boldsymbol{U}_{i}^{T}]_{n,k}}{[(\Omega \circ \hat{\boldsymbol{Y}}_{i})\boldsymbol{U}_{i}^{T}]_{n,k}}$$
$$U_{i,k,m} \leftarrow U_{i,k,m} \frac{[\boldsymbol{H}_{i}^{T}(\Omega \circ \boldsymbol{Y}_{i})]_{k,m}}{[\boldsymbol{H}_{i}^{T}(\Omega \circ \hat{\boldsymbol{Y}}_{i})]_{k,m}}$$

ただし, o はアダマール積を表す.

3.3 効率的な並列化

与えられるグラフ G において、頂点 i, j間に辺が存 在しない時は、行列 H_i , H_j の更新を非同期的に並列 に行うことができる.そこで、全体のグラフの頂点集合 $V = \{1, 2, ..., I\}$ をグループ分けし、部分頂点集合の 分割 $\{V_1, V_2, ..., V_G\}$ を求める.ただし、各部分頂点集 合 V_g は、 V_g に含まれる任意の 2 つの頂点間に辺が存在し ない頂点集合とする.この時、各部分頂点集合 V_g に含まれ る頂点に対応する地域の行列は、並列に更新を行うことが できる.さらに分割する集合の数 G を最小化することで 並列数を高めることができる.G を最小化する問題は、グ ラフの頂点彩色問題であり、最小の彩色数を求める問題は NP 困難クラスの問題である.そこでヒューリスティック で近似的に彩色数を求める.一つのヒューリスティックと して、Welsh-Powell アルゴリズム [12] を用いる.このアル ゴリズムを用いて頂点を彩色した例を図 3 に示す.

3.4 アルゴリズム

距離関数を D_R, D_G ともに Frobenius ノルムとした場合のアルゴリズムを Algorithm1 に示す.

Algorithm 1 rNMF

Require: $Y^* = \{Y_1 \ge 0, Y_2 \ge 0, \cdots, Y_I \ge 0\}, K, \alpha, Iteration$ 一様分布からのサンプリングにより初期化: $H_i, U_i \ (1 \le i \le I)$ 頂点集合を Welsh-Powell によって $\{V_1, V_2, \cdots, V_G\}$ へ分解: $\{V_1, V_2, \cdots, V_G\} \leftarrow Welsh-Powell(\{1, 2, , \cdots, I\}, graph)$ for iter = 0 to Iteration - 1 do for g = 1 to G do for each $i \in \mathcal{V}_g$ do in parallel $H_i \leftarrow H_{i,n,k} \frac{[Y_i U_i^T]_{n,k} + \frac{\alpha}{|E_i|} \sum_{(i,j) \in E_i} H_{j,n,k}}{[\hat{Y}_i U_i^T]_{n,k} + \frac{\alpha}{|E_i|} \sum_{(i,j) \in E_i} H_{i,n,k}}$ $U_i \leftarrow U_{i,k,m} \frac{[H_i^T Y_i]_{k,m}}{[H_i^T \hat{Y}_i]_{k,m}}$ end for end for end for

3.4.1 時間計算量

地域ごとの行列 $Y^* = \{Y_1, Y_2, \dots, Y_I\}$ を入力とし, 各行列のサイズを $(N \times M_i)$ とする. Y^* を以下のように 結合し, 1 つの行列として従来手法を適用し, 基底数 K で 分解を行うとき, イテレーション回数を T とすれば, 時間

Y* に対し提案手法を適用し, 他は同様の条件で分解を行う. Welsh-Powell アルゴリズムによって, 全体のグラフの頂点 集合 $V = \{1, 2, ..., I\}$ から集合族 $\{V_1, V_2, ..., V_G\}$ を求める. ただし, 各部分頂点集合 $V_g \subset V$ は V_g 内の頂点 間に辺が存在しない集合とする. この時, 時間計算量のオー ダーは $O(\sum_{g=1}^{G} \max_{i \in V_g} M_i NKT)$ となる. よって, 理論上提案 手法は従来手法より高速に動作する. また, 与えられるグ ラフが平面グラフかつ単純グラフである場合, $G \leq 6$ とな り, 十分に高速に動作する.

4. 実験

4.1 実験概要

実験では、基底行列と重み行列の更新に式3を用いる従 来手法と、式9を用いる提案手法の比較を行った.問題設 定としては、まず地域ごとの行列 Y₁, Y₂, ..., Y_I が与え られる.特に断りのない限り、一台の CPU でマルチプロセ ス実行を行うプログラムとし、従来手法を元の行列 Y に適 用する場合は逐次実行を行うプログラムとした.

4.2 使用データ

全ての評価実験でNewYork市のタクシー乗車数のデータ を用い、サイズの異なる2種類の行列を元に実験を行った.

行列データ1: Y^{*}_{small} = {Y₁, Y₂, ..., Y₆}
行列データ1は、NewYork市のタクシー乗車数を NewYorkの6地域ごとに集計したデータである。各
行列Y_i (*i* = 1, 2, ..., 6)のサイズは (24 × 365)であ り、Y_i = (y⁽ⁱ⁾_{n,m})は地域番号*i*における *m*日の *n*時 から *n* + 1時までのタクシー乗車数を表す. Y^{*}_{small} を列方向に結合した行列は Y_{small} (24 × 2190)であ り、行列 Y_{small} = (y_{n,m})は、地域番号 [^m/₆]における *m*(*mod* 6)日の *n*時から *n* + 1時までのタクシー乗車 数を表す.なお、地域番号と実際の地域との対応は以 下のようになっている.

- 1 Bronx
- 2 Brooklyn
- 3 EWR
- 4 Manhattan
- 5 Queens
- 6 Staten Island
- 行列データ2: $Y_{large}^{*} = \{Y_1, Y_2, \dots, Y_{234}\}$ 行列データ2は、NewYork市のタクシー乗車数を NewYorkの234地域ごとに集計したデータである。 行列データ1では、6地域ごとに集計されていたが、さ らに細かく地域を分けて集計したものとなっている。各 行列 Y_i ($i = 1, 2, \dots, 234$)のサイズは (144×365)で あり、 $Y_i = (y_{n,m}^{(i)})$ は地域番号 i における m 日の 10n分 から 10(n+1)分までのタクシー乗車数を表す。 Y_{large}^{*} を列方向に結合した行列は Y_{large} (144×85410)で あり、行列 $Y_{large} = (y_{n,m})$ は、地域番号 $\lceil \frac{m}{234} \rceil$ におけ るm (mod 234) 日の 10n分から 10(n+1)分までのタ クシー乗車数を表す。

4.3 グラフの構築

グラフの頂点は NewYork の各地域に対応するように構築した. つまり行列データ1を用いる時はグラフの頂点数は6とし, 行列データ2を用いる時はグラフの頂点数は234

図 4: 地域数 6 のデータにおけるグラフ G Fig. 4 a graph G of 6 region

図 5: 基底行列間の距離 Fig. 5 Distance of basic matrix

とした. グラフの辺は, 実際の隣接している地域間に作り, 重みは1とした. 図4は, 行列データ1を用いた実験で与 えたグラフの図であり, NewYork 市の6地域の隣接関係が 表された図となっている. 以下は, 図4のグラフの隣接行 列である.

$$\boldsymbol{A}(G) = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(14)

4.4 基底行列の評価

4.4.1 評価手法

行列データ1を用いて基底行列間の距離が近づいている かの評価実験を行った.まず基底行列をヒートマップを用 いて可視化し,従来手法を Y_{small} に適用する場合,提案手 法を Y_{small} に適用する場合で比較を行った.従来手法適 用時の再構成誤差, D_R , D_G は全て Frobenius ノルムとし, $\alpha = 500$ として実験を行った.

次に評価値を $D = \sum_{(i,j) \in E_i} D_G(\mathbf{H}_i | \mathbf{H}_j)$ として求め,定 量的な評価を行った.評価値Dの値は,小さいほど同様の特 徴空間で隣接地域のデータを表現できていると言える.提 案手法において指定するハイパーパラメータ α の値を変化 させ,評価値Dを求めた結果を表5に示した.なお, $\alpha = 0$ の時が従来手法を \mathbf{Y}^*_{small} に適用した場合と等しい.提案手 法適用時の D_R , D_G は全て Frobenius ノルムとした.実験 の詳細条件を以下で述べる.特徴数K = 5, イテレーショ ン数 Iteration = 500 とし, \mathbf{H}_i , U_i の初期化には,値域が $[0.0, \sqrt{\frac{4.0\sum_{n,m}Y_{i,n,m}}{624365}}]$ の一様乱数を用いた.この乱数を用 いることで,初期値の期待値が $E[[\hat{Y}_i]_{n,m}] = \frac{\sum_{(n,m)}Y_{i,n,m}}{nm}$ を満たす.

4.4.2 結果

まず, ヒートマップを用いた実験結果について述べる. 図 6,7を比較すると, 従来手法では全てが異なっているのに 対し, 提案手法では Bronx, Brooklyn, EWR, Manhattan, Queens の基底行列が同様な行列になっていることがわか る. すなわち提案手法では, グラフで連結な頂点に対応する 基底行列の距離を小さくすることができている. さらにグ ラフで連結成分を持たなかった Staten Island の基底行列 は, 他の地域とは別の結果を得ることができている. この ことからグラフを用いて, 共通の基底を用いて表現する行 列を選択できる点で, 従来の NMF よりも柔軟性の高い分 析が可能であると言える. 次に D の値を用いた定量的な評 価実験の結果について述べる. グラフ5から, α の値が大き くなるほど D の値が小さくなっているとわかる. よって, α の値を大きくするほど, 近い特徴空間で隣接地域のデー タを表現できると言える.

4.5 汎化性能の評価

4.5.1 評価手法

行列データ1を用いて、従来手法を Y_{small} に適用する 場合、提案手法を Y_{small} に適用する場合、 Y_{small}^* を3階 テンソル $Y_{small}^{(t)}$ として扱い、非負値テンソル因子分解 (Non-negative Tensor Factorization: NTF)を適用する場 合で比較を行った. なお3階テンソル $Y_{small}^{(t)}$ のサイズ は、(6×24×365)である.評価手法としては、まず与え られた観測行列の約5パーセントの要素をマスクし、欠 損のある行列とみなして式13を用いて行列分解を行う. すなわちマスクする添え字の集合をJとすれば、入力行 列 $[Y]_{i,j}(i,j) \in J$ は欠損値として扱う. そして因子行 列から再構成した行列 \hat{Y} を得て、汎化性能の評価値を $L = \sum_{(n,m)\in J} \log L([Y]_{(n,m)}) [\hat{Y}]_{(n,m)})$ として算出する. ただし、L は元の観測行列 Y の従う分布の対数尤度関数で ある.NMFの統計的解釈によると、 D_R をFrobenius ノル ムとした時、 $Y_{i,n,m}$ は正規分布に従う仮定を置いている.実 験では、 D_R 、 D_G をともに Frobenius ノルムとし、kの値を 3、4、5、6と変化させ、性能評価値を比較した.実験の詳細 条件を以下で述べる.イテレーション数 *Iteration* = 500 とし、 H_i 、 U_i の初期化には、値域が $[0.0, \sqrt{\frac{4.0\sum_{n,m}Y_{i,n,m}}{624365}}]$ の一様乱数を用いた.この乱数を用いることで、初期値の 期待値が $E[[H_iU_i]_{n,m}] = \frac{\sum_{(n,m)}Y_{i,n,m}}{nm}$ を満たす.提案手 法の更新式では、 $\alpha = 500$ を用いた.

4.5.2 結果

実験結果を図 8 に示した. rNMF と NMF を比較すると 大きな差はなく, 汎化性能において提案手法は従来手法の NMF に対して悪化していない. NTF と比較すると, rNMF と従来の NMF は汎化性能において劣っている.

4.6 計算時間の評価 (実験1)

4.6.1 評価手法

行列データ1を用いて, 従来手法を Y_{small} に適用する場合, 提案手法を Y_{small}^* に適用する場合で比較を行った.提案手法の実用上の工夫として, パラメータ H_i , U_i の更新を数回まとめて行うことで, 高速化する方法が考えられる. 本実験では, 提案手法は逐次実行, マルチプロセス実行, 10回の更新をまとめて行うマルチプロセス実行の三通りの異なる実装を行い, 実行時間を比較した.なお D_R , D_G はともに Frobenius ノルムとし, k の値は 5, 10, 50, 100 と変化させた.実験の詳細条件を以下で述べる. イテレーション数 Iteration = 500 とし, H_i , U_i の初期化には, 値域が $[0.0, \sqrt{\frac{4.0\sum_{n,m}Y_{i,n,m}}{624365}}]$ の一様乱数を用いた.この乱数を用いることで, 初期値の期待値が $E[[H_iU_i]_{n,m}] = \frac{\sum_{(n,m)}Y_{i,n,m}}{nm}$ を満たす.提案手法の更新式では, $\alpha = 500$ を用いた. 4.6.2 結果

実験結果を図9に示した.マルチプロセス実行を行う提 案手法と従来手法では,マルチプロセス実行を行う提案手 法の方が計算時間が速く,優位性があると言える.逐次実 行を行う提案手法と従来手法では計算時間に差はなく,並 列化によって高速化が実現できていると言える.10回の更 新をまとめて行う提案手法と通常のマルチプロセス実行を 行う提案手法とでは,10回の更新をまとめて行った方が実 行時間が速い.ただし,まとめて更新を行う回数を増やし すぎると本来の分析結果と大きく異なった結果が得られて しまう恐れがある.目的関数の値の変化が大きい序盤の更 新は,通常のマルチプロセス実行の提案手法で行い,終盤は 数回の更新をまとめて行う提案手法を用いるという実用上 の工夫が考えられる.

4.7 計算時間の評価 (実験 2)

4.7.1 評価手法

サイズの大きい行列データ2を用いて評価実験を行った. 従来手法を全体行列 Y_{large} に適用する場合,提案手

(a) Bronx の基底行列

(d) Manhattan の基底行列

(b) Brooklyn の基底行列

(e) Queens の基底行列

(c) EWR の基底行列

(f) Staten Island の基底行列

(a) Bronx の基底行列

(d) Manhattan の基底行列

(b) Brooklyn の基底行列

	15.998	1.59616			6.73584
a 41 21 20 1	8.60839	1.258430-24		15.1988	2.40997e-10
	0.000472885	3.47885		5.16008	9.03287e-18
	1.36232e-29	5.4903	12,5868	1.42545e-27	5.2700e-14
	155405e-22	6.13467	18.0072	4.838550-28	1.48297
3	0.29333	9,28333	8.84232	8.90993	0.546407
- 3	3.16997	12.3669	5.39649	17.7515	0.502795
3	0.93612	18.6665	0.729907	33.1555	0.0472433
1020202102018.018.018.018.018.018.018.018.018.018.	1.00315	19.895	3.7302e-13		2.18107
	0.104582	15.8984	1.62964	33,6463	14.3852
	1.43091e-06	14,1359	5.39155		25.6381
	5.66853	12.6206	5.05609	19.2385	24.99
	1.69655	14,7528	8.86438	54,8712	29.0557
	1.81794	17.9631	10.8078	11.8968	33.7877
	7.57583	20.2305	10.8407	9.13404	27.884
	8.72260		14.2447	9.20005	32.6101
	12.3206	32.9001	12.0651	13.1902	27.8237
	16.5006		13.155	17.4364	21.9337
	15.8613		12.327		12.02
	19.5405		10.8721	20.2003	10.0993
	19.576		11.3649	15.0982	14.8053
	28.5758	38.8766	9.56542	9.6322	17.6377
	\$2,5850		9.40108	6.12237	16.7177
- 22	39,8288		11.354	3.47218	12,7662

(e) Queens の基底行列

(c) EWR の基底行列

(f) Staten Island の基底行列

法を Y_{large} に適用する場合で比較を行った.提案手法は マルチプロセス実行,10回の更新をまとめて行うマルチ プロセス実行の二通りの異なる実装を行い,実行時間を比 較した.なお D_R , D_G はともに Frobenius ノルムとし, kの値は 5,10,50,100 と変化させた.実験の詳細条件を 以下で述べる.イテレーション数 Iteration = 100 とし, H_i , U_i の初期化には,値域が $[0.0, \sqrt{\frac{4.0\sum_{n,m} Y_{i,n,m}}{624365}}]$ の一 様乱数を用いた.この乱数を用いることで,初期値の期待 値が $E[[H_iU_i]_{n,m}] = \frac{\sum_{(n,m)} Y_{i,n,m}}{nm}$ を満たす.提案手法の更 新式では, $\alpha = 500$ を用いた.

4.7.2 結果

実験結果を図 10 に示した.計算時間の優位性の順序関 係は,実験1と同様な結果となった.行列サイズが大きい 実験2の方がより計算時間の差が明らかとなっており,サ イズの大きい行列に対する提案手法の優位性を強く示せた

図 8: 汎化性能(縦軸Lが大きいほど良い) Fig. 8 generalization performance

図 9: 計算時間の評価 (実験 1)

図 10: 計算時間の評価 (実験 2) Fig. 10 evaluation of execution time (the experiment 2)

と言える.

5. 考察

本稿では、主に地域ごとのデータに対して適用する rNMF

を提案した. rNMF は, 隣接した地域データを共通した特 徴空間で表現し、なおかつ分散システム上で高速に動作す ることを目的とした手法である.本稿では、まず本手法で 扱う問題の定式化を行ったのち,距離関数として Frobenius ノルムを用いた場合と、一般化 KL ダイバージェンスを用 いた場合の問題の解法を示した.その後 NewYork 市のタ クシー乗車数のデータを用いて実験を行い、指定した基底 行列間の距離が小さくなっていること, 従来手法と比較し て汎化性能が劣らないことを示した. 計算時間は, 二つの サイズの行列データに対して適用し,従来手法と提案手法 の比較を行なった. サイズの小さい行列に適用した場合も サイズの大きい行列データに適用した場合も提案手法が従 来手法に対して優位性を示した.また,10回の更新をまと めて行う提案手法と通常のマルチプロセス実行を行う提案 手法とでは, 10回の更新をまとめて行った方が実行時間が 速く、実用上の工夫として有効であることを示した. 提案 した手法が持つ課題や拡張の余地としては,良い分析結果 を得るためのグラフ構築手法の定式化, 非負値テンソル因 子分解の高速化への応用などが考えられる. 謝辞

参考文献

- D.D. Lee and H.S. Seung, "Learning the parts of objects with nonnegative matrix factorization," Nature, vol. 401, pp. 788-791, 1999.
- [2] A. Cichocki, R. Zdunek, A.H. Phan, and S. Amari. Nonnegative Matrix and Tensor Factorizations : Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, Wiley, 2009.
- [3] Cichocki, A., Zdunek, R. and Amari, S.: Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization, Proc. ICA (2007).
- [4] Cai, D., He, X. and Han, J.: Graph regularized non-negative matrix factorization for data representation, IEEE Trans. Pattern Analysis and Machine Intelli-gence, Vol.33, pp.1548–1560 (2011).
- [5] Xu, W., Liu, X. and Gong, Y.: Document clustering based on non-negative matrix factorization, Proc. SIGIR (2003).
- [6] P. Smaragdis and J.C. Brown, "Non-negative matrix factorization for polyphonic music transcription," In Proc. WASPAA 2003, pp. 177-180, Oct. 2003.
- [7] Eggert, J. and Korner, E.: Sparse coding and nmf, Proc. IJCNN (2004).
- [8] Liu, C., Yang, H., Fan, J., He, L. and Wang, Y.: Distributed nonnegative matrix factorization for webscale dyadic data analysis on MapReduce, Proc. WWW (2010).
- [9] S. Liu, P. Flach, and N. Cristianini, "Generic Multiplicative Methods for Implementing Machine Learning Algorithms on MapReduce," CoRR, 2011.
- [10] P.O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457–1469, 2004.
- [11] V. Sindhwani and A. Ghoting, "Large-scale distributed nonnegative sparse coding and sparse dictionary learning," Proceedings of the 18th ACM SIGKDD interna-

表 A·1: 記法 Table A·1 notation

記号	意味
Y	入力行列
H	Y の因子行列 (基底)
U	Y の因子行列 (重み)
\hat{Y}	因子行列の積 HU
N	入力行列の行数
K	因子行列の基底数.
M	入力行列の列数
Y*	入力行列の小行列の集合
H^*	Y * の小行列から得られる因子行列 (基底) の集合
U^*	Y * の小行列から得られる因子行列 (重み) の集合
Ι	入力行列を分割した小行列の数
Y_i	入力行列を分割した i 番目の小行列
H_i	Y _i から得られる因子行列 (基底)
U_i	Y _i から得られる因子行列 (重み)
\hat{Y}_i	因子行列の積 H _i U _i
D_R	再構成誤差
D_G	基底行列間の距離関数
α	ハイパーパラメータ
E	グラフの辺の集合
E_i	頂点 <i>i</i> と連結な頂点集合
Y_{small}	実験で用いたサイズが小さい入力行列
Y^*_{small}	入力行列 Y _{small} の小行列の集合
Y_{large}	実験で用いたサイズが大きい入力行列
Y^*_{large}	入力行列 Y _{large} の小行列の集合. 分割単位が小さい.
Y_{large}^{**}	入力行列 Y _{large} の小行列の集合. 分割単位が大きい.

tional conference on Knowledge discovery and data mining - KDD ' 12, p.489,2012.

- [12] Welsh, D. J. A.; Powell, M. B., "An upper bound for the chromatic number of a graph and its application to timetabling problems", The Computer Journal 10 (1): 85–86, 1967.
- [13] 竹内 孝,石黒 勝彦,木村 昭悟,澤田 宏,「非負値制約 下における複合行列分解とそのソーシャルメディア解 析への応用」 Multiple Matrix Factorization under the Non-negative Constraints and its Applications for Social Media Analysis, 2013.
- [14] 幸島 匡宏, 松林 達史, 澤田 宏,「属性情報を考慮した 消費者行動パターン抽出のための非負値多重行列因子 分解法」Non-negative Multiple Matrix Factorization for Consumer Behavior Pattern Extraction by Considering Attribution Information, 2015.

付 録

A.1 記法

A.2 更新式の導出

距離関数を D_R , D_G ともに Frobenius ノルムとした場合, この問題は乗法的更新ルールを用いて解くことが可能であ る. 更新式の導出を以下に示す.

$$f(\boldsymbol{H^*}, \boldsymbol{U^*}) = \sum_{i=1}^{I} \{ ||\boldsymbol{Y_i} - \boldsymbol{H_i}\boldsymbol{U_i}||_F^2 + \frac{\alpha}{2|E_i|} \sum_{(i,j)\in E_i} ||\boldsymbol{H_i} - \boldsymbol{H_j}||_F^2 \}$$
$$= \sum_{i=1}^{I} [\sum_{(n,m)} |Y_{i,n,m}|^2 - 2Y_{i,n,m} [\boldsymbol{H_i}\boldsymbol{U_i}]_{n,m} + |[\boldsymbol{H_i}\boldsymbol{U_i}]_{n,m}|^2$$
$$+ \frac{\alpha}{2|E_i|} \sum_{(i,j)\in E} \sum_{(n,k)} |H_{i,n,k} - H_{j,n,k}|^2]$$

Jensen の不等式より,

$$\leq \sum_{i=1}^{I} \left[\sum_{(n,m)} |Y_{i,n,m}|^2 - 2Y_{i,n,m} [\boldsymbol{H}_i \boldsymbol{U}_i]_{n,m} + \sum_{t=1}^{K} \frac{H_{i,n,t}^2 U_{i,t,m}^2}{\lambda_{i,t,n,m}} + \frac{\alpha}{2|E_i|} \sum_{(i,j)\in E_i} \sum_{(n,k)} |H_{i,n,k} - H_{j,n,k}|^2 \right]$$
$$= G(\boldsymbol{H}^*, \boldsymbol{U}^*)$$
$$\left(\sum_{t=1}^{K} \lambda_{i,t,n,m} = 1, \lambda_{i,t,n,m} \ge 0 \right)$$

 $G(\mathbf{H}^*, \mathbf{U}^*)$ を最小化することで,元の目的関数 $f(\mathbf{H}^*, \mathbf{U}^*)$ が最小化される.

$$\lambda_{i,t,n,m} \leftarrow \arg\min_{\lambda_{i,t,n,m}} \frac{H_{i,n,t}U_{i,t,m}}{\sum_{t'} H_{i,n,t'}U_{i,t',m}}$$

を用いると以下のように偏微分できる.

$$\frac{\partial G(\boldsymbol{H}^*, \boldsymbol{U}^*)}{\partial H_{i,n,k}} = -2[\boldsymbol{Y}_{\boldsymbol{i}}\boldsymbol{U}_{\boldsymbol{i}}^T]_{n,k} + 2\sum_{m=1}^M \frac{[\boldsymbol{H}_{\boldsymbol{i}}]_{n,k}[\boldsymbol{U}_{\boldsymbol{i}}]_{k,m}^2}{\lambda_{i,k,n,m}}$$
$$+2\frac{\alpha}{|\boldsymbol{E}_{\boldsymbol{i}}|}\sum_{(i,j)\in\boldsymbol{E}_{\boldsymbol{i}}} (H_{i,n,k} - H_{j,n,k}) = 0$$
$$\frac{\partial G(\boldsymbol{H}^*, \boldsymbol{U}^*)}{\partial U_{i,k,m}} = -2[\boldsymbol{H}_{\boldsymbol{i}}^T\boldsymbol{Y}_{\boldsymbol{i}}]_{k,m} + 2\sum_{n=1}^N \frac{[\boldsymbol{H}_{\boldsymbol{i}}]_{n,k}^2[\boldsymbol{U}_{\boldsymbol{i}}]_{k,m}}{\lambda_{i,k,n,m}} = 0$$

これを解けば、式9の更新式が得られる.