F—=EZR—=RAYAF A 103—3
(1995. 5. 25)

JDMF OBEFAICBIT B AV v K

Michael Bjorn, BB/
ik K¥
HEeT2WER
DEHRREELI—-1-1

IDMFO 7 ut ZBRELEDTH AV v KREAT S, T RTOEFAEESEF T2 VB
LIDMFOT7T 70 —F %A L TERILTIIAY v K237V =2 FLBDEREITH. AV Y
FiZEDA v E 72— (RS AEZRYE) THESTOLhIR-hERELBIT, —dEoRE
HEFTO=r bEi2d., BERITEAIZTTFNERBT D DICERBBOELE Y 5 A%H
ALTER, FROBBLEMNEL XY v REHE LciE# (feature) LW 5 BEARIZONTHTiTH
DL E-TEFAN BT D HMAZRETS.

ARERIA TV =l NOBDIBNEDLOORRET I hIFTIIRV. BBICHEE TICEA
TWEAY v F%F TV b EEDIEREITONTHRRS.

Methods in the Core Model of JDMF

Michael Bjorn, Ryosuke Hotaka

University of Tsukuba
Doctoral Program of Socio-Economic Planning
1-1-1 Tennodai, Tsukuba, Ibaraki 305, JAPAN

e-mail: michael @wiz.sk.tsukuba.ac.jp, hotaka@shako.sk.tsukuba.ac.jp
fax: INT+ 81 (0)298 53 5070, phone: INT+ 81 (0)298 53 5424

In this paper, we extend the "every modelling conceptis an object" approach of IJDMF to include modelling
of methods. If we identify a method with its interface (or the parameters to the method), we can regard this as
a kind of attributed object. In our earlier paper, we describedour model using infinite chain of attribute
classes. Similar characterizationis proposed using the concept of feature that is the integration of both
attribute and method concept.

It is however important to note that we still do not model behaviour as such.
We also briefly introduce a prototype implementation which treats methods as objects.

1. Introduction

All systems contain data structures and procedures. In systems written in procedural languages, dala structures are
defined within procedures making it difficult to manage code for large systems where data dependencies between
different procedures usually occur. Object-oriented systems attempt to solve this probicm by grouping data
structures together with the procedures that operate on them in classes. In the data-oricnted modelling approach
used for JDMF we take the approach that methods are totally dependent on the data structures they operaie on [1].
We concentrate on defining our data structures (classes and attributes) and then write the methods that implement
the behaviour of those data structures.

Seen this way, JDMF is a tool for structural definition. For this reason, we have until now primarily only
concerned ourselves with class and attribute definitions. Attributes are said to define structure and methods are
said to define behaviour. However, all methods have names and parameters which are part of the system'’s
structure (as opposed to the system's behaviour). Thus, if we want to model all structure, we must not overlook the
structural part of method definitions, i.e. their names and interfaccs (parameters).

We have previously characterized the core model of JDMF as an object-oriented, conceptually "lean” model
which is structurally self-descriptive in order to be extensible [2]. As a result of these design decisions, we would
like to treat methods as objects, which then in our conceptually "lean” model can be treated in a similar way to
other structures in the model, so that we can economize on conceptual constructs.

By concentrating on the similarities between attributes and methods we see that we can model method
interfaces as collections of "attributes” in a similar way that we previously have modelled “attributes” of
attributes. In this paper we redefine our model with a general Feature class and the classes Attribute and Method
as subclasses of Feature.

2. Related Works

There is currently no binary standard for object-oriented languages. The most obvious problem is that different
languages employ different and incompatible object models, but a not so obvious problem is that different
compilers for a certain language employ different and incompatible linkage conventions. This means that code
reuse which has been a buzzword in the object-oriented programming community until now hasn't been realized.
Ironically, code reuse is much easier in procedural languages, where formats for Dynamically Linked Librarics
(DLLs) have been de facto standardized on various platforms. DLLs provide common linkage formats that enable
code sharing across language boundaries.

The Common Object Request Broker Architecture (CORBA) [3] developed by the Object Management Group
(OMG) is the first serious attempt to provide inter-language as well as cross-platform compatibility for classes of
objects, using a common object model also developed by OMG. One of the first CORBA-compliant
implementations is the System Object Model (SOM) 2.0 [4] developed by IBM.

SOM is a technology aimed at producing class libraries, which like procedural DLLs can be shared by many
applications. A program can use SOM libraries as fully object-oriented class hierarchies (including instantiation,
subclassing, inheritance etc.). SOM decouples the interface and the implementation of a class in the following
way:

(¢))] A standard Interface Definition Language (IDL) is used for structural class definitions in an IDL source
file. This includes class name, superclass name(s), attribute definitions and method interfaces.

(2) These structural definitions are then compiled by an IDL compiler for the language specified for the
implementation. OMG has so far only specified an IDL binding for C, and SOM also has an IDL binding
for C++ but bindings for other languages such as Smalltalk are under development. The IDL compiler
generates an implementation template file with a skeleton for the behavioural implementation of the class
and two language specific header files with SOM specific bindings for use by the implementation template
and program files.

(3) The implementation is then done by filling out the "holes” in the template file with program code using the
conventions of the selected implementation language.

(4) The compiler for the selected implementation language is used for compilation of a library which then can
be shared by other programming projects. :

The implication for the implementation of the next version of the core model of JDMF is that we will use an

object-oriented language with an IDL binding (C++) to producc a library version of JDMF. By doing this, we do
not need to develop a new programming language for JDMF, but can use any language which has an IDL binding.

3. The Core Model
In this section we update the basic design of the core model and introduce methods as objects.

As in our previous paper [5] we use the symbol "¢" to identify an instance which has a value (such as a class
name) which makes it unique in the context under discussion, and the symbols "<<" and ">>" around the name of
the class when we talk about an unspecified instance of a certain class

The generalization relationships in JDMF are made explicit in a class called SuperSubRelation. [6] We have
updated the class hierarchy of the Core Model in the following way:

0*Object
Feature*0
Attribute
Method
Feature*1
Feature¥2
Feature*3
... (infinitely many)
SuperSubRelation
ListObject
1*Object
2*Object
3*Object
... (infinitely many)

Since every modelling concept is an object in our model, we describe it by describing the instances of the classes
in our model.

For each meta level i (i20) we define a base class i*Object, which satisfies the following conditions:
(A) i*Object¢ €: (i+1)*Object¢
(B) (i+1)*Object¢ < i*Objectg

The instances of the i*Object base classes can schematically be viewed as follows:

Class Instances Meta level
0*Object {(No direct instances) 0

1*Object {0*Objecte, SuperSubRelationg, Feature*0¢, 1
Feature*1¢ ... Feature*j¢, Attribute, Method

2*Object | 1*Objecty 2
3*Object | 2*Objectyt

i*Object | (i-1)*Objecty i

Fig. 1: Overview of instances in the i*Object hierarchy

The Core Model has infinitely many Feature*i¢ which are orthogonal to the i*Object¢ sequence. Instances of
Feature*O¢ characterize the instance features (attributes and methods) of all non-Feature*i classes, whereas
instances of any other Feature*i¢ characterize instance featurcs for Feature*(i-1)¢. This means that we can easily
extend the characteristics of any Feature*i¢ by making new instances of Fealurc*(|+l)¢ To separate different
classes of feature descriptions, we talk about feature levels.

An overview of how instances of Feature*i¢ characterize features of other classes is given below:

Feature level 0 1 2 i
Feature*Q Feature*1 Feature*2
Features w__ PrinmryClass_]Name!m PrimaryClass Namc!:\ Primzu’yClass‘|Namc!bh
for all “3“‘ . <<Feature*0>> <<Feature*1>>~ <<Fealure*2>> «_ =
F]eature '\ : ~ <<Feature*1>> 9 <<Feaure*2>> |~
classes
<<Feature*0>> y <<Feature*1>>
A A 7 A <<Featre*1>>
Auribute 1 / A <<Feature*1>>
& *
Attributes._ Domain / <<Fealure*1>>
forallnon- . N <<Feature*0>% |/ / <<Feature*1>>
Feature*i | s I
classes N <<Featdre*;9>> / |
ay / ;
/ T
» Yy’ Method 4 y .
Methods ~w_ In | Out FunctionValueI Implementation Y < — — X : X characterizes Y
for alt non- . <<Method>> Z
Feature*i | . : 9: W is a subclass of Z
classes <<Method>> W

Fig. 2: Instances of Feature*i classes define features for all classes

4. The Feature Class

As mentioned in the introduction, all features are instances in the core model of JDMF. The class Feature*0 for
this reason provides the basic structure that all features in JDMF will have. It is here important to point out that
this is not the only structure that features can have; to the contrary. Since the core model of JDMF will be
designed as a class library, users of JDMF will be able to make subclasses of Feature to provide their own
specialized features. Such features can have additional structure, and, indeed, additional behaviour.

We have defined two subclasses of Feature, Attribute and Method. We will now look briefly at these two classes.

4.1 The Attribute Class
The Attribute class corresponds (o the definition of the class with the same name in JDMF, and to what is
normally considered to be an attribute in most other object-oricnted models. It will not be further discussed here.

4.2 The Method Class
We will explain the basic method structure as defined in Method, and then go on to discuss the limited number of
methods to be provided in the Core Model.

Method has six direct features, which are as follows.

In: Specifies the list of parameters supplied to the method

Out: Specifies a list for return values when a method is executed.

FunctionValue: Specifies a list for retumn of function values when a method is executed as a function.
Implementation: Specifies the location of the library which contains the code to be executed.

4.2.1 New and Delete

We have defined two New methods.

The 1*Object¢.New method handles all instantiation at meta level 0 and the 2*Object¢. New method handles
instantiation at all other meta levels. The New methods use hard-coded sysiem operations for allocation of
memory.

We have defined only one Delete method, in 0*Object¢, which handles deletion of all methods. The Delete
method uses hard-coded system operations for deallocation of memory.

JDMF clients can implement their own New and Delete to override the predefined ones. However, all such
methods must include a call to the corresponding predefined method to make sure that the basic conventions of
the core model are maintained.

4.2.2 Utility methods

To implement the ListObject, we need to provide some mcthods that allow the user to insert and remove
instances. ListObject class corresponds to the definition of the class with the same name in JDMF, and is not
explicitly included in the prototype implementation.

4.2.3 Query operations

Initially, we wanted to define queries as methods as well, but since we have found that queries do not implement
the behaviour of an object, there is no specific object to which queries belong. For this reason, we will define the
query language as a set of operations, and supply it as an external library.We will in another paper define a simple
conditional query language based on first-order logic.

5. Calling Methods

We use simple dot notation of the form object .method(optional parameter list) for accessing
features. The "." (dot) itself represents a hard coded accessor operation.

Let us for example say that we have an Employee class for the employces of a company. The class has an
employee_number feature (or more specifically, attribute) which can be accessed through an accessor, for
example:)
¢V Employee.Show(In: (theEmployee, employee_number), Out: (theEmpNo), FunctionValue: (),

Implementation: System/company/
employee.lib)
(2) Employee.Update(In: (theEmployee, employee_number, 37), Out: (), FunctionValue: (), Implementation:
System/company/
employee.lib)

The Implementation feature is accessed separately through the CodeLocation method, and can for this reason be
omitted from the call. Thus we can rewrite the above as follows:

(1) Employee.Show(In: (theEmployee, employee_number), Out: (theEmpNo), FunctionValue: ()) -

(2) Employee.Update(In: (theEmployee, employee_number, 37), Out: (), FunctionValue: ())

Furthermore, features which contain no values can be omitted from the call:
(1) Employee.Show(In: (theEmployee, employee_number), Out: (theEmpNo))
(2") Employee.Update(In: (theEmployee, employec_number, 37), Out: ())

When calling a method which has no parameters, we are allowed to drop the optional parameier list totally, if we
wish:
“) theEmployee.retire()
or, equivalently
(4) theEmployee.retire
When combining the dot.notation with the assignment opcrator "=", we do not need to explicitly use a
FunctionValue parameter.
(&)} theEmployee.age((FunctionValue: EmpAge))
or, using "="
(&) theEmpAge = theEmployee.EmpAge

In examples (4) and (5') we see that we no longer know if we are dealing with a method or an attribute, which
means that we can simply model it as a feature until we know more about how it should be implemented. We do
not need to rewrite our interfaces when we later on decide if we want to migrate the feature to an attribute or 10 a
method.

6. Merits of the Feature Class

We have now showed how Features generalize attributes and methods, and how these concepts can be
implemented as instances. The reason we do this is that we see three distinct advantages to this approach, namely:

(1) Economy of concepts
By modelling all features as objects, we can keep our model lean and do not need to introduce extra concepts

which clutter up the model and make it more difficult to define.

(2) Wider scope of modelling activity
By introducing a Method class we can extend our modelling activity to include method interfaces. It is important
to notice that we do not model behaviour as such.

(3) Ambiguity when modelling attributes, derived attributes and methods

When performing object-oriented modelling, practitioners often note that there is some ambiguity. Let us continue
with the Employee class example. An employee has an employee_number which he/she is given upon being
contracted by the company and which doesn't change until the contract is revoked — employee_number should
definitely be modelled as an atiribute. Furthermore, an employcc might be able to perform_skills according to
his/her education and position in the company — it is equally obvious that perform_skills should be modelled as a
method.

But suppose we also want to model the employee_age. Usually we think of employee_age as an attribute, but
it is in fact a time function derived from employee_birthdate (another obvious attribute) and the present date. Now
we suddenly have a number of modelling choices. We can model employee_age as an attribute and manually
update the value on the employees birthday; or we can define employee_age as a derived attribute which is
automatically updated on the employees birthday; or we could simply model employee_agc as a method. Now,
this is an extremely simple modelling case, but as the modelling tasks become more complex, the difficulty of
differing between attributes and methods incrcases.

Usually, attributes are said to describe structure of a class (or state of an objcct) and methods are said to
describe behaviour, but we see from the above discussion that this is a truth with some limitations. For this rcason,
we prefer to think of attributes and methods as describing the features in general of an object. This approach has
been taken to its fullest in the language Eiffel [7] where attributes and methods are indeed treated as feauters.

Since Feature is an abstract class with no instances and with semantics that are difficult to explain, we do not
explicitly define a Feature class in our model, but the underlying philosophy is the same. Instead we cxplicitly
define infinitely many levels for both attributes and methods, so that the definition of our features can be adapted
to our modelling needs.

Let us say that we have an employee object with the value 37 for the attribute employee_age. All we know is
that employee_age has a certain state, but not how we it has reached this state. For our modelling purposes it
suffices to know that it is a feature.

6. Prototype Implementation
We have made a prototype implementation of the model introduced in the paper. In this section we provide all
tables of instances in the model that were output from the prototype.

INSTANCES OF 1*Object (OID: 40389268)

OID Class Delete ClassName New

40388264 <<2*Object>> <<Method>> 0*Object <<Method>>
40388216 <<2*Object>> <<Method>> Feature*0 <<Mecthod>>
40388192 <<2*Object>> <<Method>> Feature* 1 <<Method>>
40388168 <<2*Object>> <<Method>> Feature*2 <<Method>>
40388120 <<2*Object>> <<Method>> SuperSubRelation <<Method>>
40389272 <<2*Object>> <<Method>> Method <<Method>>

Table 1: INSTANCES OF 1*Object

INSTANCES OF 2*Object (OID: 40389264)

OID Class Delete ClassName New

40389268 <<3*Object>> <<Method>> 1*Object <<Method>>

Table 2: INSTANCES OF 2*Object

INSTANCES OF 3*Object (OID: NONE)

OID Class Delete ClassName New
40389264 NONE <<Mcthod>> 2*Ohject <<Method>>
Table 3: INSTANCES OF 3*Object

INSTANCES OF Feature*0 (OID: 40388216)

ﬂ) Class Delete PrimaryClass Name
40388048 <<}*Object>> <<Method>> <<2*Object>> ClassName
40388036 <<1*Object>> <<Method>> <<1*Object>> Super
40388024 <<1*Object>> <<Method>> <<1*Object>> Sub
40388012 <<1*Object>> <<Method>> <<1*Object>> PrimaryClass
40388000 <<1*Object>> <<Method>> <<1*Object>> MethodName
40387988 <<1*Object>> <<Method>> <<1*Ohject>> Code
40387976 <<1*Object>> <<Method>> <<1*Object>> Class
Table 4: INSTANCES OF Feature*0

INSTANCES OF Feature*1 (OID: 40388192)
OID Class Delete PrimaryClass Name
40387944 <<1*Object>> <<Method>> <<1*Qbject>> PrimaryClass
40387928 <<1*Object>> <<Method>> <<l *Object>> Name
40387916 <<1*Object>> <<Method>> <<1*Object>> In
40387904 <<1*Object>> <<Method>> <<1*Qbject>> Out
40387892 <<1*Object>> <<Method>> <<1*Object>> FunctionValue
40387880 <<1*Object>> <<Method>> <<1*Object>> Exceptions
40387868 <<1*Object>> <<Method>> <<1*Qhject>> Implementation

Table 5: INSTANCES OF Feature*l

INSTANCES OF Feature*2 (OID: NONE)

OID Class Delete PrimaryClass Name
40387836 <<1*Object>> <<Method>> <<1*Object>> PrimaryClass
40387820 <<1*Object>> <<Method>> <<1*Qhject>> Name
Table 6: INSTANCES OF Feature*2

INSTANCES OF Method (OID: 40389272)
OID Class Delete PrimaryClass Name
40387620 <<]*Object>> <<Method>> <<2*Object>> New
40387584 <<1*Object>> <<Method>> <<3*Object>> New
40387548 <<1*Object>> <<Method>> <<1*Object>> Delete
Table 7A: INSTANCES OF Method

INSTANCES OF Method (O1D): 40389272)
OID In Out FunctionValue Implementation
40387620) (<<1*Object>>) @) 1*Object.New
40387584 Q (<<2*Object>>) () 2*Object.New
40387548 [(<<0*Qbject>>)) 0*Object.Delete

Table 7B: INSTANCES OF Method (continued)

INSTANCES OF SuperSubRelation (OID: 40388120)

OID Class Delete Super Sub

40387792 <<1*Object>> <<Method>> <<1*Object>> <<2*Object>>
40387784 <<1*QObject>> <<Method>> <<1*Object>> <<1*Object>>
40387776 <<1*Object>> <<Method>> <<1*Object>> <<1*Obhject>>
40387768 <<1*Object>> <<Method>> <<1*Object>> << [*Object>>
40387760 <<1*Object>> <<Method>> <<1*Object>> <<1*Object>>
40387752 <<1*Object>> <<Method>> <<1*Object>> << 1*Object>>
40387744 <<1*Object>> <<Method>> <<2*Object>> <<3*Object>>
40387736 <<1*Object>> <<Method>> <<1*Object>> <<1*Object>>

Table 8: INSTANCES OF SuperSubRelation

Note that Attribute does not exist in the prototype implementation. This is becausce the "attributes” used so far are
extremely simple and can be sufficiently modelled as instances of class Featurc. The class Attribute is first
introduced when more powerful attributes are needed, such as auributes with domains (used for strong typing).
Since the Core Model is self-descriptive, we can define the class attribute using already introduced concepts.

8. Conclusions and Further Research
In this paper, we show how to model methods as objects. We do this by first recognizing that there is a structural
part to methods, namely the method interface (or the parameters to the method). Then we treat this interface as
being composed of attributes, which we can model as objects. To combine attributes and methods we replace the
infinite chain of attribute classes of earlier versions with an infinite chain of feature classes and introduce an
Attribute class as well as a Method class as subclasses of Feature*0 .
We see three main benefits to extending the model in this way:
« Economy of concepts
» Wider scope of modelling activity
* Less ambiguity prbolems when modelling attributes, derived attributes and methods
We also briefly introduce a prototype implementation which treats methods as objects.

In this paper we have assumed that all methods execute without fault. This is however not always the case. When
the execution fails, an exception is raised and we necd to include some sort ol exception handling. Our first
approach was to include an exception feature in the Method class, but this was not totally satisfactory. We
probably need do introduce exceptions as events, but this needs further study.

Another area which needs further investigation is the definition of accessors. In this paper we have used hard-
coded accessor operations which are invoked using the dot notation. It would however be desirable to explicitly
include accessors as Get and Set methods so that the user could include constraint checking directly into the
accessor methods. When we tried to define accessor methods for the class 1*Objcct, an infinite chain of accessor
calls occurred, so we had to leave out this functionality until we find a better approach.

9. References

[1] H.K. Kim, M. Bjomn, H. Yao, R. Hotaka, "A Sentential Function Mapping Mcthod for Object-
Oriented Analysis and Design", Proceedings of First Asia-Pasific Software Engineering Conference,
IEEE Computer Society Press, 1994

2] Hotaka, R. and M. Bj6m, "Data-Oriented Approach to Business Information Modelling”, Proceedings
of ICODP '94, North-Holland, 1994

31 OMG, "The Common Object Request Broker Architecture and Specification (CORBA)", Object
Management Group, 1992

[4] IBM, "Object-Oriented Programming Using SOM and DSOM", IBM, 1994

[5] M. Bjom, H.K. Kim, R. Hotaka, "A Self-Descriptive Conceptual Schema Modclling Facility, its
Implementation and Extension, Proceddings of ISCO3, IFIP, Chapman & Hall, 1995

{61 JSA, "A Data Modeling Facility: JDMF/MODEL-1992", Japanese Standards Association: 1-22, 1993

7 B. Meyer, "Object-Oriented Software Construction”, Prentice-Hall, 1988

