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Abstract: We propose a Cayley hash function-map based on LPS-type Ramanujan graphs, which is expected
to resist a variant of a lifting attack. A security of a Cayley hash function-map is inherited from one of Charles
et al.’s proposal in ’09. We also give an agenda to extend the families of a Cayley hash function-map along
the expected theoretical improvements of how to construct explicit LPS-type Ramanujan graphs in general.
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1. Introduction

Including the advent of Shor’s algorithm [44] in ’94, many

variants of quantum algorithms have appeared to mainly

solve integer factorization, discrete logarithm problem, and

elliptic curve discrete logarithm problem. These facts are

assumed to threaten the standard cryptographic usages in

real life. From these contexts, National Institute of Stan-

dards and Technology (NIST) suggests to standardize post-

quantum cryptography [33] in ’16. Many researchers are

investigating on various kinds of cryptographic schemes and

their underlying mathematical hard problems which avoid

the existing attacks by quantum algorithms.

In 2009, Charles, Goren, and Lauter [5], [6] introduced

cryptographic hash functions from expander graphs and ex-

plained the hardness of problems behind those schemes.

They proposed two kinds of hash functions based on two

families of Ramanujan graphs. One of their proposals is

based on Ramanujan graphs by Lubotzky, Phillips, and Sar-

nak (in short, LPS) [26], which are Cayley graphs over the

projective group with respect to well-chosen generating sets.

Petit et al. [35] presented the quasi-polynomial time algo-

rithms to find their preimages and collisions via a variant of

“lifting attacks”. Jo et al. [21] showed that the cryptana-

lyisis of Cayley hash functions based on Chiu’s Ramanujan

graphs in a similar way to Petit et al.’s and also suggested

the possibilities to avoid lifting attacks and the extension to

the explicit Ramanujan graphs as open problems.

This study leads to construct LPS-type Ramanujan

graphs [23], [24] whose norm equations are composed of

sums of four squares with larger coefficients, not fixed ones
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as LPS’s case and Chiu’s case. These facts not only add

up a new parameter which can affect the security of their

Cayley hash functions but also produce affluent classes for

constructing a new generation of a Cayley hash function.

In this article, we suggest Cayley hash function-map us-

ing infinitely many candidates of LPS-type graphs [23], [24]

whose distinct norm equations of based quaternion algebras.

A Cayley hash function-map has a potential way to be ex-

tended more in general along the expected improvement [23]

of LPS-type Ramanujan graphs.

This article is organized as follows: In Section 2, we

present some required preliminaries of expander graphs and

Ramanujan graphs, and also of quaternion algebra theory.

In Section 3, we explain a way to generalize the explicit

constructions of LPS-type Ramanujan graphs in the case of

“P = 13”. In Section 4, we design a Cayley hash function-

map, primarily, based on Cayley hash function upon LPS-

type Ramanujan graphs in the case of “P = 13”. In Sec-

tion 5, we mention a security of a Cayley hash function-map

against the most powerful cryptanalysis tool “lifting attack”.

In Section 6, we summarize the arguments in this article and

specify some unclarifed problems and the expected follow-up

works.

2. Preliminaries: Ramanujan graph and

quaternion algebra

2.1 Ramanujan graph

An expander graph is well known as a ubiquitous object

in various research areas, especially in computer science

for designing communication networks. It is said to be a

sparse, but highly connected graph. The quality of the

network on expander graphs is considered as the expanding

ratio. Throughout this article, we assume that all graphs

are finite, undirected, simple (i.e., no loops or multi edges)

and connected. Suppose that X = (V,E) is a k-regular

graph, composed of a vertex set V = V (X) with n vertices
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and an edge set E = E(X). For a subset T of V , the

boundary ∂T of T is defined as

∂T = {(x, y) ∈ E|x ∈ T and y ∈ V \ T},
where V \ T is the complement of T in V . The expanding

constant e(X) of X, which is defined as below, is a discrete

analogue of the Cheeger constant in differential geometry

[27]:

e(X) = min T⊂V

0<|T |≤n/2

|∂T |
|T | .

We give the definition of an expander graph.

Definition 1. A family of k-regular graphs (Xj)j≥1 such

that |V (Xj)| → +∞ as j → +∞ is called an expander

family if there is an ε > 0 such that the expanding con-

stant e(Xj) satisfies e(Xj) ≥ ε for all j.

For analysis of graphs, the adjacency matrix A of the

graph X plays an important role; it is a square matrix

indexed by pairs of vertices u, v whose (u, v)-entry Au,v is

the number of edges between u and v. Since we assume that

X has n vertices, A is an n-by-n, symmetric (0, 1)-matrix

without diagonal entries (i.e., Au,u = 0). For such a

graph X, the adjacency matrix A of X has the spectrum

k = λ0 > λ1 ≥ · · · ≥ λn−1. It is known [1], [11] that

k−λ1

2 ≤ e(X) ≤
√

2k(k − λ1).

If the spectral gap k − λ1 is larger, the quality of the net-

work of X is getting better as well. However, it is shown by

Alon-Boppana as follows that it cannot be too large.

Theorem 1. Let (Xj)j≥1 be a family of k-regular graphs

with |V (Xj)| → +∞ as j → +∞. Then

lim infj→+∞ λ1(Xj) ≥ 2
√
k − 1.

This fact motivates the definition of a Ramanujan graph.

Definition 2. A k-regular graph X is Ramanujan if, for

every member λ of the spectrum of the adjacency matrix of

X other than ±k, one has |λ| ≤ 2
√
k − 1. We call 2

√
k − 1

the Ramanujan bound (RB).

For a more detailed exposition of the theory, see [9], [27],

[45].

2.2 Quaternion algebra

In order to explain how to construct the families of LPS-

type Ramanujan graphs, we recall basic facts and terminolo-

gies of quaternion algebras [48].

Let F be a field and F× its unit group. Let A = AF
be a quaternion algebra over F , i.e., a central simple al-

gebra of dimension 4 over F . In this article, we always

assume that F is not of characteristic 2. Then, there exist

a, b ∈ F× such that it can be written as A = AF (a, b) =

{α = x + yi + zj + wk |x, y, z, w ∈ F}, where i, j, k sat-

isfy i2 = a, j2 = b and ij = −ji = k (and hence

k2 = −ab). For α = x + yi + zj + wk ∈ A, its conju-

gate, the reduced trace and the reduced norm are defined

by α = x − yi − zj − wk, T (α) = α + α = 2x ∈ F and

N(α) = αα = αα = x2−ay2−bz2+abw2 ∈ F , respectively.

2.2.1 Quaternion algebras over Fq

Throughout this article, we denote by P the set of all

prime numbers. For a prime p ∈ P and d ∈ N, let Fpd
be the field of pd elements. Let us fix q ∈ P \ {2}. It

is known that, for any a, b ∈ F×q , the quaternion algebra

A = AFq
(a, b) is isomorphic to the matrix algebra M2(Fq)

of the 2-by-2 matrices over Fq. Let
( ·
·
)

be the Kronecker

symbol. When
(
a
q

)
=
(−b
q

)
= 1, that is,

√
a,
√
−b ∈ Fq,

one has the following isomorphism.

Lemma 1. Assume that
(
a
q

)
=
(−b
q

)
= 1. Then, the map

ψq : A → M2(Fq) defined by

ψq(x+yi+zj+wk) =

[
x+ y

√
a

√
−b(z + w

√
a)

−
√
−b(z − w

√
a) x− y

√
a

]

is an isomorphism satisfying det(ψq(α)) = N(α) and

ψq (α) = ψq(α) for α ∈ A. Here,

[
s t

u v

]
=

[
v −t
−u s

]

for

[
s t

u v

]
∈ M2(Fq).

For a ring R, we denote by R× the group

of units of R. Let GL2(Fq) = M2(Fq)× and

SL2(Fq) = {A ∈ GL2(Fq) | detA = 1}. More-

over, let PGL2(Fq) = GL2(Fq)/Z(GL2(Fq)) and

PSL2(Fq) = SL2(Fq)/Z(SL2(Fq)). Here, for a group

G, we denote by Z(G) the center of G. We can nat-

urally see that PSL2(Fq) is a subgroup of PGL2(Fq) of

index 2 because now q is odd. Additionally, we remark

that |PGL2(Fq)| = q(q2 − 1) and |PSL2(Fq)| = q(q2−1)
2 .

Since A ' M2(Fq), we have A× ' GL2(Fq) via (the

restriction of) ψq and hence obtain the isomorphism

βq : A×/Z(A×)→ PGL2(Fq).
We need the following lemma later.

Lemma 2. [9], Chapter 3 Assume that
(
a
q

)
=
(−b
q

)
= 1.

Let α ∈ A with N(α) = p ∈ P \ {q}, which implies

that α ∈ A×. Then, βq(αF×q ) ∈ PSL2(Fq) if and only

if
(
p
q

)
= 1.

2.2.2 Quaternion algebras over Q
Let a, b ∈ Z \ {0} and A = AQ(a, b) be a quaternion al-

gebra over Q. A place v of Q is said to be split in A if

Av := A ⊗Q Qv ' M2(Qv), where Qv is the v-adic com-

pletion of Q and is said to be ramified if Av is a division

algebra. We denote by Ram(A) the set of all places which

are ramified in A. Notice that Ram(A) is a finite set, has

an even cardinality, and determines an isomorphism class of

quaternion algebras over Q. The product of all primes (=

finite places) in Ram(A) is called the discriminant of A and

is denoted by D. From now on, we assume that A is defi-

nite, that is, the infinite place ∞ is ramified in A, whence

there are an odd number of primes which are ramified in A.
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Notice that A = AQ(a, b) is definite if and only if a < 0 and

b < 0.

A lattice I ⊂ A is a free Z-submodule of A of rank 4. A

lattice O ⊂ A is called an order if it is a ring with unity.

In particular, it is called maximal if it is not properly con-

tained in any other order. Notice that, if O is an order of

A, then O ⊗Z Zp is an order of Ap for p ∈ P. Here, Zp is

the ring of p-adic integers. Let O be an order of A. We call

a lattice I of A a left (resp. right) O-ideal if OL(I) = O
(resp. OR(I) = O), where OL(I) = {α ∈ A |αI ⊂ I}
(resp. OR(I) = {α ∈ A | Iα ⊂ I}). We say that two left

(resp. right) O-ideals I and J are equivalent if there ex-

ists α ∈ A× such that I = Jα (resp. I = αJ ). This is

an equivalence relation. We denote by h(O) the number of

equivalence classes, which is shown to be finite, independent

on left or right. We call h(O) the class number of O.

3. The families of LPS-type graphs

We give the definition of a Cayley graph. LetG be a group

and S a generating set, which is symmetric (i.e. S = S−1)

and does not contain the identity of G. A Cayley graph

over G with respect to S is a |S|-regular graph with a ver-

tex set V and an edge set E, where V = G and E consists of

(g1, g2) ∈ G×G such that g1 = g2s for some s ∈ S. We de-

note a Cayley graph over G with respect to S as Cay(G,S).

Now we recall Ibukiyama’s construction [19] of maximal

orders of definite quaternion algebras over Q which is rami-

fied at given primes.

Proposition 1 ([19]). Let r be an odd positive integer

and P1, P2, . . . , Pr distinct prime numbers. Set M =

P1P2 · · ·Pr. Take a prime number Q such that Q ≡ 3

(mod 8) and (−QPi
) = −1 for all i except for i with Pi =

2. Moreover, take an integer T such that T 2 ≡ −M
(mod Q). Then, AQ(−M,−Q) is a definite quaternion al-

gebra which is ramified only at ∞, P1, P2, . . . , Pr. More-

over, let

ω1 =
1 + j

2
, ω2 =

i+ k

2
and ω3 =

Tj + k

Q
.

Then, O−M,−Q = Z+Zω1 +Zω2 +Zω3 is a maximal order

of AQ(−M,−Q).

3.1 The recipe

In [23], [24] a specific recipe for constructing LPS-type

graphs is presented, and is shown below:

1. Fix a p ∈ P.

2. Take P ∈ {2, 3, 5, 7, 13} such that P 6= p.

3. We take a prime Q satisfying

Q ≡ 3 (mod 8),
(−Q
P

)
= −1 unless P = 2

and an integer T satisfying T 2 ≡ −P (mod Q). By

Proposition 1, we have a definite quaternion algebra

AQ(−P,−Q) (i.e., i2 = −P, j2 = −Q, ij = −ji = k)

and its maximal order O = O−P,−Q = Z+Zω1+Zω2+

Zω3 with class number 1, where

ω1 =
1 + j

2
, ω2 =

i+ k

2
and ω3 =

Tj + k

Q
.

4. Find all elements in O× = {α ∈ O | N(α) = 1}.
5. Find all elements in {α ∈ O | N(α) = p}. More-

over, seek a suitable complete representative of {α ∈
O | N(α) = p}/O×. Define S by the suitable complete

representative. Then |S| is exactly equal to p+1, which

follows by h = 1 condition [7], Proposition 3.4.

6. Take a q ∈ P \ {2} satisfying q 6= p,
(−P
q

)
=
(
Q
q

)
= 1

and
(
p
q

)
= 1.

7. Via the isomorphism ψq in Lemma 1 and using Lemma

2, we realize S as a subset of PSL2(Fq). Write SJSY

for the subset.

8. We have a Cayley graphX
(p,q)
P,Q =Cay(PSL2(Fq), SJSY ).

4. Cayley hash function-map

4.1 Hash function

A hash function is a function that accepts a message as

an arbitrarily long string of bits and outputs a hash value as

a finite, fixed length string of bits. An efficiency of hashing

process is a basic requirement in a practical point. Such a

function should satisfy certain properties, such as collision

resistant, second preimage resistant and preimage resis-

tant.

Let f ∈ N and letH : {0, 1}∗ → {0, 1}f ;m 7→ h = H(m),

where {0, 1}∗ is the set of bit strings of arbitrary length and

{0, 1}f is the set of bit strings of a fixed length f . The

function H is said to be

• Collision resistant if it is computationally infeasible

to find m,m′ ∈ {0, 1}∗,m 6= m′, such that H(m) =

H(m′),

• Second preimage resistant if m ∈ {0, 1}∗ is given,

it is computationally infeasible to find m′ ∈ {0, 1}∗,
m 6= m′, such that H(m) = H(m′),

• Preimage resistant if h ∈ {0, 1}f is given, it is com-

putationally infeasible to find m ∈ {0, 1}∗ such that

h = H(m).

4.2 Cayley hash function

Let G be a non-commutative group and S =

{s0, . . . , sp} ⊂ G be a generating set for the group

G, symmetric (S = S−1) and not having the identity

(1G 6∈ S). Charles et al. [5] and Petit et al. [34], [37]

described a definition of Cayley hash functions, by which

the input to hash is used as directions for walking around

a graph, and the ending vertex is the output of the hash

function.

A message m is given as a string m1 · · ·m`, where mi ∈
{0, . . . , p − 1}. (i.e. m is a p-base number.) Then the re-

sulting hashing value h of m will be obtained as a group

product

h := H(m) = gST sm1sm2 · · · sm` ,

where gST is a fixed starting element in G. (We usually

put gST as the identity 1G in G.) To dispose a proper se-

quence of hashing bits inductively, we define a choice func-
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tion π which assigns a next hashing bit with the bit of the

message m and the previous hashing bit, while avoiding a

back-tracking (i.e. ss−1 or s−1s ). We choose a function

π : {0, . . . , p− 1} × S → S (1)

such that for any s ∈ S the set π({0, . . . , p − 1} × {s}) is

equal to S \ {s−1}.
The security of Cayley hash functions lies on the hardness

of solving word problems for group theory, which are one of

the most challenging open problems. It is described in datail

in [22], [27], [29], [37].

4.3 Cayley hash function-map

By following the recipe in Section 3, we set up n numbers

of LPS-type Ramanujan graphs (the case of P = 13) for

constructing Cayley hash function-map, for an arbitrary

n ∈ N. In other words, we construct n numbers of

X
(p,q)

13,Q(i) = Cay(PSL2(Fq), S(i)
JSY ) for i ∈ {1, . . . , n}.

1. We fix p ∈ P, which determines the regularity (p + 1)

of LPS-type Ramanujan graphs.

2. We choose n numbers of distinct Q(i) ∈ P which satis-

fies with Q(i) ≡ 3 (mod 8) and
(
−Q(i)

P

)
= −1.

3. We fix q ∈ P \ {2, p} which satisfies with
(−13

q

)
=(

Q(i)

q

)
= 1 and

(
p
q

)
= 1 for all i ∈ {1, . . . , n}.

Then we have the same group PSL2(Fq) of the size q(q2−1)
2

and n numbers of corresponding generating sets S
(i)
JSY for

each X
(p,q)

13,Q(i) .

Let M be the set {X(p,q)

13,Q(1) , X
(p,q)

13,Q(2) , . . . , X
(p,q)

13,Q(n)}.

A Cayley hash function-map H is a composition of n num-

bers of Cayley hash functions H(i) with each individual

choice function π(i), which will be described as shown below.

In the case of n = 1, we consider it as an original Cayley

hash function.

From here, we assume that n > 1 and ` > n, where ` is

a length of bits of the message. A message bit is hashing

through each H(i) cyclically. Thus, for a brief notation of a

uppercase indices of H,SJSY and π, we denote ‘i (mod n)’

as τn(i).

We re-arrange the elements of the set M as M ′ in order,

satisfying with the condition:

S
(τn(i))
JSY ∩ S(τn(i+1))

JSY = φ for all i ∈ {1, . . . , n}. (2)

We construct a Cayley hash function-map H as

{H(1), H(2), . . . , H(n)} with an ordered set M ′ and

corresponding individual consecutive choice function

π(1), π(2), . . . , π(n) in the same order of indices as shown

below:

We consider that a message m is given as a string

m1 · · ·m`, where mi ∈ {0, . . . , p}. Because of the condition

in (2), a message is (p + 1)-base number, which is different

from one of an original Cayley hash function.

Then the resulting hashing value h of m will be obtained

Fig. 0 Cayley hash function-map.

as a group product

h := H(m)

= H(τn(`))(H(τn(`−1))(. . . (H(1), gST ), . . . ),m`−1),m`)

= gST sm1sm2 · · · sm` ,

where gST is a fixed starting element as 1G in G.

To dispose a proper sequence of hashing bits inductively

as depicted in Fig. 4.3, we define a choice function π(τn(i))

which assigns a next hashing bit with the bit of the mes-

sage m from S
(τn(i+1))
JSY and the previous hashing bit from

S
(τn(i))
JSY . We choose a function

π(τn(i)) : {0, . . . , p} × S(τn(i))
JSY → S

(τn(i+1))
JSY (3)

such that for any s ∈ S(τn(i))
JSY the set π(τn(i))({0, . . . , p} ×

{s}) is equal to S
(τn(i+1))
JSY . In this procedule, the condi-

tion (2) guarantees a Cayley hash function-map to avoid a

back-tracking (i.e. s(τn(i))s(τn(i+1)) 6= 1G).

5. Possible attacks

5.1 Generic attack

In general, brute-force attacks and birthday attacks

against a Cayley hash function-map are expected

to find a preimage in time (p + 1)p2 logp q−1 and√
π
2 (p+ 1)( q±1

2 p2 logp q−2), respectively.
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Table 1 Norm equations and N to Euclidean algorithm for
Cryptanalysis on Cayley hashes

Ramanujan graphs Norm equation and N for Euclidean
algorithm

LPS’s [26] x2 + y2 + z2 + w2 = p`

N := p` − z2 − w2

Chiu’s (p = 2) [7] x2 + 2y2 + 13z2 + 26w2 = 2`

N := 2` − 13z2 − 26w2

LPS-type [23] x2 + Py2 +Qz2 + PQw2 = p`

N := p` −Qz2 − PQw2

5.2 Lifting attack

It is the most powerful cryptanalysis tool (at most, quasi-

polynomial time algorithm) against a Cayley hash func-

tion so far. Essentially, if the norm equations of based

quaternion algebra is revealed, it is vulnerable to use those

Cayley hash functions by solving the specific solutions of

its norm (diophantine) equations. It is well explained in

[36], [38], [46], [47], [49].

We can summarize the core of the procedure of a lifting

attack with Table 1, very briefly. Each norm equation can be

deformed in Table 1, and we choose some random variables

for z and w under the individual restricted conditions. We

solve these equations for x and y with the continued fraction

method (or with the advanced Euclidean algorithm, Cornac-

chia’s algorithm, Pell’s equation). However, as we can see

in the case of LPS-type Ramanujan graphs in Table 1, it is

unpredictable to know the exact form of a norm equation

which is used for constructing a Cayley hash function-map.

As a definition of a Cayley hash function-map, the norm

equation is mixed up with n numbers of generators involved

in each graph X
(p,q)

13,Q(i) .

6. Conclusion

In this article, we suggest a Cayley hash function-map

based on LPS-type Ramanujan graphs in the case of “P =

13”. Even if we choose n for the smallest number (n = 2),

it seems hard enough to find a collision or a preimage of

a Cayley hash function-map. It is unclear if there exists a

small cycle (i.e. a collision) over a sequence of hashing bits,

since a hashing bit walks along each of the different Cay-

ley graphs with respect to its individual generating set. It

is necessary to implement the suggested hashing scheme by

restricted parameters.

As a part of these approaches, it is also important to inves-

tigate much more general versions of explicit constructions

of Ramanujan graphs. For example, when P = 2, 3, 5 or 7,

we can also construct explicit Ramanujan graphs along the

recipe in subsection 3.1. However, it is not fully proved, yet

and is still in the process. Moreover, we construct the fam-

ily of (2p + 1)-regular graphs, where p is an Eichler prime

based on the quaternion algebra with an explicit construc-

tion of Eichler order having class number 1 in [23]. It is in

the progress to study the Ramanujan-ness of these graphs

by similar arguments in LPS-type graphs. These theoretical

appoaches enlarge the class of Ramanujan graphs for a cryp-

tographic applications, mainly, this Cayley hash function-

map.
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