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Constructing the Bijective BWT

Hideo Bannai1,a) Juha Kärkkäinen3,b) Dominik Köppl1,2,c)

Marcin Pia̧tkowski4,d)

Abstract: The Burrows-Wheeler transform (BWT) is a permutation whose applications are prevalent in
data compression and text indexing. The bijective BWT (BBWT) is a bijective variant of it. Although it
is known that the BWT can be constructed in linear time for integer alphabets by using a linear time suffix
array construction algorithm, it was up to now only conjectured that the BBWT can also be constructed
in linear time. We confirm this conjecture by proposing a construction algorithm that is based on SAIS,
improving the best known result of O(n lgn/ lg lg n) time to linear.

1. Introduction

The Burrows-Wheeler transform (BWT) [4] is a transfor-

mation permuting all symbols of a given string T$, where $

is a symbol that is strictly smaller than all symbols occur-

ring it T . The i-th entry of the BWT of T$ is the character

preceding the i-th lexicographically smallest suffix of T$, or

$ if this suffix is T$ itself. Strictly speaking, the BWT is

not a bijection since its output contains $ at an arbitrary

position while it requests the input T to have $ as a de-

limiter symbol at its end in order to restore T . A variant,

called the bijective BWT [15], is a bijective transformation,

which does not require the artificial delimiter $. It is based

on the Lyndon factorization [5] of T . In this variant, the

output consists of the last symbols of the lexicographically

sorted cyclic rotations of all factors composing the Lyndon

factorization of T .

In the following, we call the BWT traditional to ease the

distinguishability of both transformations. It is well known

that the traditional BWT has many applications in data

compression [1] and text indexing [8–10]. Recently, such a

text index was adapted to work with the bijective BWT [2].

Related Work. In what follows, we focus on a text T

of length n whose characters are drawn from an integer al-

phabet. Thanks to linear time suffix array construction al-

gorithms [14, 18], we can construct the traditional BWT

based on the relation BWT[i] = T [SA[i]− 1] in linear time.

Considering the bijective BWT, Gil and Scott [11] postu-

lated that it can be built in linear time, but did not give
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a construction algorithm. It is clear that the time is upper

bounded by the total length of all conjugates [17, after Ex-

ample 9], which is O(n2). Mantaci et al. [17] also introduced

the extended BWT, a generalization of the BBWT in that it

is a BWT based on a set S of primitive strings, i.e., strings

that are not periodic. Hon et al. [12] provided an algorithm

building the extended BWT in O(n lg n) time. Their idea

is to construct the circular suffix array SA◦ such that the

i-th position of the extended BWT is given by T [SA◦[i]−1],

where T is the concatenation of all strings in S. Bonomo

et al. [3] presented the most recent algorithm building the bi-

jective BWT online in O(n lg n/ lg lg n) time. In [3, Sect. 6],

they also gave a linear time reduction from computing the

extended BWT to computing the BBWT. Knowing that an

irreducible word has exactly one conjugate being a Lyndon

word, the reduction is done by exchanging each element of

the set of irreducible strings S by the conjugate being a Lyn-

don word, and concatenating these Lyndon words after sort-

ing them in descending order. Consequently, a linear-time

BBWT construction algorithm can be used to compute the

extended BWT in linear time.

Our Result. In this article, we present a linear time

algorithm computing the BBWT. The main idea is to adapt

the suffix array construction algorithm SAIS [18] to compute

the circular suffix array of the Lyndon factors. We obtain

linear running time by exploiting some facts based on the

nature of the Lyndon factorization.

2. Preliminaries

Our computational model is the word RAM model with

word size Ω(lg n). Accessing a word costs O(1) time. In this

article, we study strings on an integer alphabet Σ with size

σ = nO(1):
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2.1 Strings

We call an element T ∈ Σ∗ a string. Its length is denoted

by |T |. Given an integer j with 1 ≤ j ≤ |T |, we access the j-

th character of T with T [j]. Concatenating a string T ∈ Σ∗

k times is abbreviated by T k. When T is represented by the

concatenation of X,Y, Z ∈ Σ∗, i.e., T = XYZ, then X, Y ,

and Z are called a prefix, substring, and suffix of T , respec-

tively. A prefix X, substring Y , or suffix Z is called proper if

X 6= T , Y 6= T , or Z 6= T , respectively. For two integers i, j

with 1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of T

that begins at position i and ends at position j in T . In

particular, the suffix starting at position j of T is denoted

with T [j..n].

Orders on Strings. We denote the lexicographic or-

der with ≺lex. Given two string S and T , then S ≺lex T if

S is a proper prefix of T or there exists an integer ℓ with

1 ≤ ℓ ≤ min(|S|, |T |) such that S[1..ℓ − 1] = T [1..ℓ − 1]

and S[ℓ] < T [ℓ]. We write S ≺ω T if the infinite con-

catenation Sω := SSS · · · is lexicographically smaller than

Tω := TTT · · · . For instance, ab ≺lex aba but aba ≺ω ab.

2.2 Lyndon Words

Given a string T = T [1..n], its i-th conjugate conj
i
(T )

is defined as T [i + 1..n]T [1..i] for an integer i ∈ [0..n − 1].

We say that T and every of its conjugates belongs to the

conjugate class conj(T ) := {conj0(T ), . . . , conj
n−1(T )}. If a

conjugate class contains exactly one conjugate that is lexico-

graphically smaller than all other conjugates, then this con-

jugate is called a Lyndon word [16]. Equivalently, a string

T is said to be a Lyndon word if and only if T ≺ S for every

proper suffix S of T . A consequence is that a Lyndon word

is border-free, i.e., there is no Lyndon word T = SUS with

S ∈ Σ+ and U ∈ Σ∗.

The Lyndon factorization [5] of T ∈ Σ+ is the factoriza-

tion of T into a sequence of lexicographically non-increasing

Lyndon words T1 · · ·Tt, where (a) each Tx ∈ Σ+ is a Lyndon

word, and (b) Tx ≻lex Tx+1 for each 1 ≤ x < t.

Lemma 2.1 ([7, Algo. 2.1]). The Lyndon-factorization of

a string can be computed in linear time.

Each Lyndon word Tx is called a Lyndon fac-

tor. We denote the multiset of T ’s Lyndon factors

by LynF(T ) := {T1, . . . , Tt}. For what follows, we

fix a string T [1..n] over an alphabet Σ of size σ.

We use the string T := cbbcacbbcadacbadacba as

our running example. Its Lyndon factorization is

LynF(T ) = {c, bbc, acbbcad, acbad, acb, a}.

2.3 Bijective Burrows-Wheeler transform

We denote the bijective BWT of T by BBWT, where

BBWT[i] is the last character of the i-th string in the list

storing the conjugates of all Lyndon factors T1, . . . , Tt of T

sorted with respect to ≺ω. Figure 1 shows the BBWT of

our running example.

3. Linear-Time Construction of BBWT

In a pre-computation step, we want to facilitate the com-
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Fig. 1 Constructing BBWT of T = cbbcacbbcadacbadacba. The
Lyndon factors are colored in dark yellow. Reading the
characters of the penultimate column top-down yields
BBWT. The last column shows in its i-th row the starting
position of the i-th smallest conjugate of a Lyndon factor
in the text. It is the circular suffix array studied later in
Sect. 3. Note that cbb ≺lex cbbcada, but cbbcada ≺ω cbb.

putation by removing all identical Lyndon factors from T

yielding a reduced string R. We want to remove them since

a naive character-wise comparison of the same string in the

≺ω-order does not terminate. Consequently, the first step

is to show that we can obtain the BBWT of T from the

circular suffix array of R:

The composed Lyndon factorization of T is given by

T τ1
1 · · ·T τt

t
= T with T1 ≻lex . . . ≻lex Tt and τx ≥ 1 for

x ∈ [1..t]. Let R := T1 · · ·Tt denote the text, in which

all duplicate Lyndon factors are removed. Obviously, the

Lyndon factorization of R is LynF(R) = {T1, . . . , Tt}. Let

b(Tx) and e(Tx) denote the starting and ending position of

the x-th Lyndon factor in R, i.e., T [b(Tx)..e(Tx)] is the x-th

Lyndon factor Tx of R.

Our aim is to compute the ≺ω-order of all conjugates

of all Lyndon factors of R, which are given by the set

S :=
⋃

x∈[1..t] conj(Tx). Like Hon et al. [13], we present

this order in the so-called circular suffix array SA◦ of

{T1, . . . , Tt}, i.e., an array of length |R| with SA◦[k] = i

if R[i..e(Tx)]R[b(Tx)..i − 1] is the k-th smallest string in S

with respect to ≺ω, where i ∈ [b(Tx)..e(Tx)]. The length of

SA◦ is |R| since we can associate each text position SA◦[k]

in R with a conjugate starting with T [SA◦[k]].

Having the circular suffix array SA◦ of {T1, . . . , Tt}, we

can compute the BBWT of T by reading SA◦[k] for k ∈

[1..|R|] from left to right: Given SA◦[k] = i ∈ [b(Tx)..e(Tx)],

we append Tx[j] τx-times to BBWT, where j := (|Tx|+ i−

b(Tx)− 1) mod |Tx|+ b(Tx) is i− 1 or e(Tx) if i = b(Tx).

3.1 Reviewing SAIS

Our idea is to adapt SAIS to compute SA◦ instead of the

suffix array. To explain this adaptation, we briefly review

SAIS. First, SAIS assigns each suffix a type, which is ei-

ther L or S:

• R[i..|R|] is type L if R[i..|R|] ≻lex R[i+ 1..|R|], or
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• R[i..|R|] is type S otherwise, i.e., R[i..|R|] ≺lex R[i +

1..|R|].

Since it is not possible that R[i..|R|] = R[i + 1..|R|], SAIS

assigns each suffix a type. An S suffix R[i..|R|] is addition-

ally type S∗ if i = 1 or R[i− 1..|R|] is type L. The substring

between two succeeding S
∗ suffixes is called an LMS sub-

string. In other words, R[i..j] is an LMS substring if and

only if R[i..|R|] and R[j..|R|] are type S
∗ and there is no

k ∈ (i..j) such that R[k..|R|] is type S
∗. The types for the

suffixes of our running example are given in Fig. 2.

Next, SAIS gives the LMS substrings a rank based on the

substring order [18, Def. 3.3]: Given two LMS substrings S

and U with S 6= U , we write S ≺LMS U if and only if (a)

S[i] < U [i] or (b) S[i] is type L and U [i] is type S or S∗, for

the smallest position i where (a) S[i] 6= U [i] or (b) the types

of S[i] and U [i] differ. This order is on the left side of Fig. 3

for the LMS suffixes of the left side of Fig. 2.

Having the ≺LMS-order of all LMS substrings, we can as-

sign each LMS substring its ≺LMS-rank, and replace the

LMS substrings in R by the respective ranks, keeping the

last character during a replacement remaining if this char-

acter is the first character of the subsequent LMS substring.

See the right side of Fig. 2 for our running example. We

recursively call SAIS on this text of ranks until all LMS

substrings have a different rank, since then these ranks de-

termine the order of the S
∗ suffixes of R. The order of the

S
∗ suffixes of our running example are given in Fig. 3 on the

right side. Having the order of the S
∗ suffixes, we allocate

space for the suffix array, and divide the suffix array into

buckets, grouping each suffix with the same starting charac-

ter and same type (either L or S) into one bucket. Putting S∗

suffixes in their respective buckets according to their order

(smallest elements are the leftmost elements in the buck-

ets), we can induce the L suffixes, as these precede either L

or S
∗ suffixes. Since an L suffix immediately preceding an

S
∗ suffix is smaller than an L suffix immediately preceding

two or more L suffixes, we can induce all L suffixes by a

scan of the suffix array from left to right: When accessing

the entry SA◦[k] = i, write i − 1 to the L type bucket with

the character R[i − 1] if R[i − 1..|R|] is type L. Finally, we

can induce those S suffixes that are not type S∗ by scanning

the suffix array from right to left: When accessing the entry

SA◦[k] = i, write i−1 to the S type bucket with the charac-

ter R[i− 1] if R[i− 1..|R|] is type S. We conduct these steps

for our running example in Fig. 4.

In total, the induction takes O(|R|) time. The recursion

step takes also O(|R|) time since there are at most |R|/2

LMS substrings (there are no two text position R[i] and

R[i+ 1] with type S∗ for i ∈ [1..n− 1]).

However, with SAIS we cannot obtain SA◦ ad-hoc, since

we need to exchange ≺lex with ≺ω. Although these orders

are the same for Lyndon words, they differ for LMS sub-

strings as can be seen in Fig. 5. Hence, we need to come up

with an idea to modify SAIS in such way to compute SA◦.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c b b c a c b b c a d a c b a d a c b a

L S* S L S* L S* S L S* L S* L L S* L S* L L S*

T =

1 2 3 4 5 6 7

D B D C A C A

L S* L L S* L S*

T (1) =

Fig. 2 Splitting T and T (1) into LMS substrings. The rectangu-
lar brackets below the types represent the LMS substrings.
T (1) is T after the replacement of its LMS substrings with
their corresponding ranks defined in Sect. 3.3 and on the
left of Fig. 3.

LMS Substring Contents Non-Terminal

T [2..5] bbca D

T [5..7] acb B

T [7..10] bbca D

T [10..12] ada C

T [12..15] acba A

T [15..17] ada C

T [17..20] acba A

S∗ Suffix Contents

T [20] a

T [17..20] acba

T [12..20] acbadacba

T [5..20] acbbcadacbadacba

T [15..20] adacba

T [10..20] adacbadacba

T [2..20] bbcacbbcadacbadacba

T [7..20] bbcadacbadacba

Fig. 3 Ranking of the LMS substrings and the S∗ suffixes of the
text T given in Sect. 3.3 and Fig. 2. Top: LMS sub-
strings assigned with non-terminals reflecting their corre-
sponding rank in ≺LMS-order. Bottom: S∗ suffixes of T
sorted in ≺lex-order. Note that T [5..7] = acb ≺lex acba =
T [12..15] = T [17..20], but acba ≺LMS acb.

3.2 Our Adaptation

We want SAIS to sort Lyndon conjugates in ≺ω-order

instead of suffixes in ≺lex-order. For that, we introduce

the notion of inf-suffixes, replacing the suffixes as the el-

ements to sort in SAIS: Let R[i..] denote the infinite

string R[i..e(Tx)]TxTx · · · = conj
i−1(Tx)conj

i−1(Tx) · · ·

with x such that i ∈ [b(Tx)..e(Tx)]. We say that R[i..]

is an inf-suffix. The factorization borders are between

R[e(Fx)]R[b(Fx+1)] for x ∈ [1..t − 1]. Like in SAIS, we

distinguish between L and S inf-suffixes:

• R[i..] is type L if R[i..] ≻lex R[j..], and

• R[i..] is type S if R[i..] ≺lex R[j..],

where j := (i − b(Tx) + 1) mod |Tx| + b(Tx) is either

i + 1 or b(Tx) if i = e(Tx), and x is given such that

i ∈ [b(Tx)..e(Tx)]. When speaking about types, we do not

distinguish between an inf-suffix and its starting position in

R. This definition assigns all positions of R a type except

those belonging to a Lyndon factor of length one. In all

other cases, thanks to the Lyndon factorization, this defini-

tion matches the definitions of L and S suffixes of the SAIS

algorithm. That is because of two facts:

• A Lyndon factor Tx of length at least two starts with

the smallest character among all other characters of Tx.

Since a Lyndon word is border-free, R[b(Tx)] is type S.

• Due to the Lyndon factorization, R[b(Tx)..|R|] ≻lex

R[b(Tx+1)..|R|] for x ∈ [1..t − 1]. Hence, the suffix
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L suffixes

S suffixes

BWT =

SA− 1 =

SA =

S L S L L

a b c d

2

1

Types

starting

character

Fig. 4 Inducing L and S suffixes from the ≺lex-order of the S∗ suffixes given in Fig. 2.
Rows 1 and 2 show the partitioning of SA into buckets, first divided by the starting
characters of the respective suffixes, and second by the types L and S. Row 4 is SA

after inserting the S∗ suffixes according to their ≺lex-order rank obtained from the
right of Fig. 3. The S∗ (resp. L) suffixes induce the L (resp. S) suffixes in Row 5
(resp. Row 6). Putting all together yields SA in Row 7. In the penultimate row
SA− 1, each text position stored in SA is decremented by one. The last row shows
T [(SA− 1)[i]] = BWT[i] in its i-th column, which is the BWT of T . This BWT is
not reversible since the input is not terminated with a unique character like $. To
obtain the BWT of T$, we first write T [SA[1]] = T [20] = a, and then BWT, but
exchanging BWT[SA−1[1]] = BWT[17] = a with $, i.e., abddcbcccccbbbbaa$aaa.

U V ≺lex ≺ω ≺LMS

aba aca < < <

adc adcb < > >

acb acba < < >

Fig. 5 Comparison of the three orders studied in this paper ap-
plied to LMS substrings. Assume that U and V are sub-
strings of the text, neighbored by a character d such that
the first and the last character of both U and V start with
an S∗ suffix. We mark with the signs < and > whether U
is smaller or respectively larger than V according to the
corresponding order. The orders can differ only when one
string is the prefix of another string, as this is the case in
the last two rows.

R[e(Tx)..|R|] starting at R[e(Tx)] has to be lexicograph-

ically larger than the suffix R[e(Tx) + 1..|R|], otherwise

we could extend the Lyndon factor Tx.

To give all positions a type, we introduce the type S∗, which

is handled like a special case of type S:

• If R[i..] is type S, it is further type S∗ if R[j..] is type L

with j := (|Tx|+ i−b(Tx)−1) mod |Tx|+b(Tx) being

either i− 1 or e(Tx) if i = b(Tx).

• R[b(Tx)] is type S
∗ for every x ∈ [1..t].

If Tx and Tx+1 are longer than one, then the types of

all positions of R[b(Tx) + 1..e(Tx+1)] match the original

SAIS types.*1 That is because the second condition comes

into play only in the case that |Tx| = 1, since otherwise

the last character R[e(Tx)] with R[e(Tx)] > R[b(Tx)] is

type L, Further, since R[e(Tx)..|R|] ≻lex R[b(Tx)..|R|] ≻lex

R[b(Tx+1)..|R|], the suffix R[e(Tx)..|R|] is an L suffix.

Next, we define the equivalent to the LMS substrings for

the inf-suffixes, which we call LMS inf-suffixes. We want

the LMS inf-suffixes to be contained inside the Lyndon fac-

tors since the ≺ω-order of a conjugate depends only on the

order of its characters, and not, unlike suffixes, on all suc-

*1 If T [b(Tx−1)] = T [b(Tx)] and |Tx−1| = 1, then T [b(Tx)..|R|]
is not an S∗ suffix by the original definition.

ceeding characters in the text. To obtain this property, we

only have to change the original definition of the LMS sub-

strings slightly: Stipulating that Tx[|Tx| + 1] = Tx[1], for

1 ≤ i < j ≤ |Tx| + 1, the substring Tx[i..j] is an LMS

inf-substring if Tx[i] and Tx[j] are type S
∗ and there is

no k ∈ (i..j) such that Tx[k] is type S
∗. This definition

differs from the original LMS substrings only for the last

LMS inf-substring of each Lyndon factor. Here, we ap-

pend Tx[1] instead of Tx+1[1] to the suffix starting with

the last type S
∗ position of Tx. If Tx has length one,

it is possible that R[b(Tx)..|R|] is not an S
∗ suffix, while

R[b(Tx)..] is always an S
∗ inf-suffix with the associated LMS

inf-substring R[b(Tx)]R[b(Tx)].

Exactly as in the SAIS recursion step, we map the LMS

inf-substrings to meta-characters having its ≺LMS-rank as-

signed. Since the Lyndon factorization of the string based

on the meta-characters has the same factorization borders

as the original string, we can continue with our deviation

of SAIS by building LMS inf-substrings of the text based

on the meta-characters while keeping the same factorization

borders.

By doing so, we compute the ≺ω -order of all conjugates

of the Lyndon factors of R (instead of the lexicographic or-

der of all suffixes of R). The correctness follows by con-

struction: Instead of partitioning the suffixes into LMS sub-

strings, we partition the Lyndon factors whose factorization

borders happens to coincide with some borders of the LMS

substrings. We use the same trick of the LMS substring par-

titioning, since we can obtain the ≺lex of the S∗ inf-suffixes

from the ≺lex-order of the LMS inf-substrings in the same

way as obtaining the ≺lex of the S
∗ suffixes from the ≺lex-

order of the LMS substrings. Finally, the induction steps

can be conducted in the same way as in SAIS when taking

care of the Lyndon boundaries, i.e., moving to the end of a
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c b b c a c b b c a d a c b a d a c b a

S* S* S L S* L S* S L S* L S* L L S* L S* L L S*

T1 T2 T3 T4 T5 T6

T =

1 2 3 4 5 6 7

E B D C A C A

S* S* L L S* L S*

T
(1)
1 T

(1)
2 T

(1)
3 T

(1)
4

T (1) =

Fig. 6 Splitting T and T (1) into LMS inf-substrings. The rect-
angular brackets below the types represent the LMS inf-
substrings. Broken brackets denote that the correspond-
ing LMS inf-substring ends with the first character of the
Lyndon factor in which it is contained. T (1) is T after
the replacement of its LMS inf-substrings with their cor-
responding ranks defined in Sect. 3.3 and on the left of
Fig. 7.

Lyndon factor instead of moving from its first position one

position backwards.

However, there is a problem with the time bounds: Since

two positions R[i] and R[i+1] are type S∗ if R[i] belongs to

a Lyndon factor of length one, we cannot bound the max-

imum number of all S∗ inf-suffixes by n/2. In fact, the

situation is worse, since we keep the Lyndon factorization

in all levels of the recursive call, such that we can have

Θ(n) LMS inf-suffixes on all levels. In the following, we

omit the Lyndon factors of length one to restore the up-

per bound on the number of all S∗ inf-suffixes. To omit

them, we need to think about their order such that we can

reinsert them after the recursive call at the right position:

Suppose that there is a Lyndon factor consisting of a single

character b (the following holds if b ∈ Σ or if b is a rank

of an LMS substring considered in the recursive call). All

LMS inf-substrings larger than one starting with b are larger

than bb in the ≺ω-order because such an LMS inf-substring

starting with R[i] having type S∗ is lexicographically smaller

than R[i+1..]. Consequently, bb · · · ≺lex R[i..] = bR[i+1..]

since b · · · ≺lex R[i + 1..]. Thus, the Lyndon factor con-

sisting of the single character b does not have to be tracked

further in the recursive call since we know that its rank pre-

cedes the ranks of all other LMS inf-substrings starting with

b. After the recursion, we can simply insert all omitted LMS

inf-substrings into the order returned by the recursive call

by a linear scan. Overall, by omitting the single character

LMS inf-substrings, we retain the O(n) time of SAIS.

3.3 Elaborated Example

The LMS inf-substrings of our running example T :=

cbbcacbbcadacbadacba with R = T are given in Fig. 6.

Their ≺LMS-ranking is given on the left side of Fig. 7, where

we associate each LMS inf-substring, except those consist-

ing of a single letter, with a non-terminal reflecting its rank.

By replacing the LMS inf-substrings by their ≺LMS-ranks

in the text while discarding the single letter Lyndon fac-

tors, we obtain the string T (1) := DCFBFABA, whose LMS

inf-substrings are given on the right side of Fig. 6. Among

these LMS inf-substrings, only CFC, BFB, and ABA are inter-

esting. Finding their ≺LMS-ranks gives us the ≺ω-order of

LMS Inf-Substring Contents Non-Terminal

T [1]T [1] cc -
T [2..4]T [2] bbcb E

T [5..7] acb B

T [7..10] bbca D

T [10..11]T [10] ada C

T [12..15] acba A

T [15..16]T [12] ada C

T [17..19]T [17] acba A

T [20]T [20] aa -

S∗ Inf-Suffix Contents

T [20..] a . . .

T [17..] acb . . .

T [12..] acbad . . .

T [5..] acbbcad . . .

T [15..] adacb . . .

T [10..] adacbbc . . .

T [7..] bbcadac . . .

T [2..] bbc . . .

T [1..] c . . .

Fig. 7 Ranking of the LMS inf-substrings and the S∗ suffixes
of the text T given in Sect. 3.3 and Fig. 6. Top: LMS
inf-substrings assigned with non-terminals reflecting their
corresponding rank in ≺LMS-order. The first and the last
LMS substring do not receive a non-terminal since their
lengths are one. Bottom: S∗ inf-suffixes of T sorted in
≺lex-order, which corresponds to the ≺ω of the conju-
gate starting with this inf-suffix. Compared with Fig. 3,
the suffixes T [2..20] and T [7..20] in the ≺lex-order are or-
der differently than their respective inf-suffixes T [2..] and
T [7..] in the ≺lex-order.

the S
∗ inf-suffixes as shown on the right side of Fig. 7. It

is left to induce the L and S suffixes, which is done exactly

as in the SAIS algorithm. We conduct these steps in Fig. 8,

which finally lead us to SA◦.

Open Problems

The BBWT is bijective in the sense that it trans-

forms a string of Σn into another string of Σn while

preserving distinctness. Consequently, given a string of

length n, there is an integer k ≥ 1 with BBWT
k(T ) =

BBWT
k−1(BBWT(T )) = T . With our presented algorithm

we can compute the smallest such number k in O(nk) time.

However, we wonder whether we can compute this number

faster, possible by scanning only the text in O(n) time in-

dependent of k.

We also wonder whether we can define the BBWT for

the generalized Lyndon factorization [6]. Contrary to the

Lyndon factorization, the generalized Lyndon factorization

uses a different order, called the generalized lexicographic

order ≺gen. In this order, two strings S, T ∈ Σ∗ are com-

pared character-wise like in the lexicographic order. How-

ever, the generalized lexicographic order ≺gen can use differ-

ent orders <1, <2, . . . for each text position, i.e., S ≺gen T

if and only if S is a proper prefix of T or there is an integer ℓ

with 1 ≤ ℓ ≤ min(|S|, |T |) such that S[1..ℓ−1] = T [1..ℓ−1]

and S[ℓ] <ℓ T [ℓ].
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20 17 12 5 15 10 7 2 1 4

19 14 9 18 13 6 4 16 11 5

8 3 6

20 17 12 5 15 10 19 14 7 2 8 3 9 18 13 6 4 1 16 11 7

20 19 16 11 14 9 18 13 6 4 7 2 8 17 12 5 3 1 15 10 8

a b d d b c c c c c b b b a a a b c a a 9

S∗ suffixes

L suffixes

S suffixes

BBWT =

SA◦ − 1 =

SA◦ =

S L S L S L

a b c d

2

1

Types

starting

character

Fig. 8 Inducing L and S inf-suffixes from the ≺lex-order of the S∗ inf-suffixes given in
Fig. 6. Rows 1 and 2 show the partitioning of SA◦ into buckets, first divided by
the starting characters of the respective inf-suffixes, and second by the types L and
S. Row 4 is SA◦ after inserting the S∗ inf-suffixes according to their ≺lex-order
rank obtained from the right of Fig. 7.. The S∗ (resp. L) inf-suffixes induce the
L (resp. S) inf-suffixes in Row 5 (resp. Row 6). Putting all together yields SA◦

in Row 7. In the penultimate row SA◦ − 1, each text position stored in SA◦is
decremented by one, wrapping around a Lyndon factor if necessary (for instance,
(SA◦ − 1)[2] = 19 = e(T5) since SA◦[2] = 17 = b(T5)). The last row shows
T [(SA◦ − 1)[i]] in its i-th column, which is the BBWT of T as given in Fig. 1.
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