FIR—ALATL 120—24
(2000. 1. 25)

R?lt_tf“@ﬁﬁumf’ﬁa‘%{:}&&iﬂi %@Vi Eﬁﬂﬁ
LAFv¥ U—L R EH) B

RE RS AN 7T
E-mail:{mutenda,kitsure}@tkl.iis.u-tokyo.ac.jp

Bz

ZEEREZOOIYE, BLAEELo TITCEAICE> T, ZBEARLV Y s v OBERLEEL
Tl E L, BEART Y a VOFPORIBEWOECOREALETH L, AR T, #
RENTHEBENLEFI R A% R AL THEFIFESLIEIIME S, Digital Chart of the World & v+ #h38
T=Fy bEDEILTC, YT FFL vy vic, W 1T, WEETIX, BE.. CPU.

BB LTiThbis, %%%*%b_l n. ﬁﬁé}’*ﬂid‘:ki VBB L TR AR D LB
AERT v 7B LERT, !

Parallel R-tree Spatial Join: A Performance Analysis

Lawrence Mutenda and Masaru Kitsuregawa
Institute of Industrial Science, The University of Tokyo
E-mail: {mutenda,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract

The growing importance of spatial data has made it imperative that spatial operations be executed
efficiently. - The most expensive operation is the join for spatial databases. This paper' uses a
proposed Replicated Parallel Packed R-tree in performing the parallel R-tree join. We examine
performance using the Digital Chart of the World Data on a shared nothing machine. Our analysis
focuses on the performance in regards to communication, cpu and load balancing heuristics. Results
demonstrate the effectiveness of dynamic load-balancing heuristics in reducing communication and
execution time. Near linear speedup is obtained as the number of processors is increased

—-177—

1 Introduction

The past two decades have seen an explosive
growth in the use of spatial data in various fields like
Earth Sciences, cartography, remote sensing, car
navigation systems and land information systems.
Data sets in such areas are characterized by large
size (sometimes of the order of terabytes). Spatial
databases also support data structures like points,
lines and polygons. Storing, managing and manip-
ulating such data is more expensive in comparison
to ordinary business applications, since spatial ob-
jects are typically large, with polygons commonly
consisting of thousand of points apiece. The vol-
ume of such GIS data sets will continue to grow.
A good example of such growth is the expected
geo-spatial petabyte data set for NASA’s EOSDIS
project which will hold raster images arriving at
the rate of 3-5Mbytes per second for 10 years from
satellites orbiting the earth.

The spatial join is the most important and is
also the most expensive[l5] operation in spatial
databases. The main reasons are that unlike the
join operation in a one-dimensional data-set, the
spatial join involves computationally demanding ge-
ometric algorithms like plane sweep. Secondly, can-
didate objects are large, sometimes of the order of
thousands of coordinate points and therefore I/0
expensive. In this paper we focus on the spatial
join operation using the ubiquitous R-tree and pro-
pose a novel parallel R-tree structure, the Repli-
cated Parallel Packed-R-tree for a shared nothing
architecture. We apply this structure in a parallel
R-tree spatial join operation and propose dynamic
load-balancing algorithms for the parallel join. Our
analysis of this operation focuses on the effective-
ness of the R-tree static load balancing method, the
effect of our data declustering algorithm, I/O per-
formance, communication overhead, and the per-
formance of load balancing heuristics. Experimen-
tal results, on real-world spatial data, The Digital
Chart of the World (DCW) data (3], on the IBM
SP2 multicomputer, demonstrate that our parallel
R-tree spatial join is effective in speeding up ‘the
spatial join and load balancing. heuristics achieve
near-linear speedup, as the number of nodes is in-
creased.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief overview of related work. The
Replicated Parallel Packed-R-tree is described in
section 3. The parallel R-tree join algorithm and
dynamic load balancing heuristics are described in
section 4. Performance evaluation is described in
section 5. Section 6 concludes the paper.

2 Related Work

One of the first attempts to apply parallel pro-
cessing to the spatial join operation was the work
Hoel and Samet[6] which describes the use of a
PMR Quadtree for join processing. It also de-
scribe the use of the R for parallel join process-
ing. This work focuses on a main memory database
for a Thinking Machines architecture. The data
set that was use was small and I/O costs are ig-
nored. Brinkhoff et. al.[2] then proposed the use

" of the R*-tree in parallel spatial join on a virtual

shared memory machine. This work discusses issues
of load balancing and minimization of communica-
tion. This work is similar to ours but the difference
lies in the fact that we propose the the use of a
packed R-tree, instead of the dynamic R-tree they
use. Our data sets are also much larger compared
to the ones they use.

The R-tree, was proposed by Guttman [5]. An R-
tree variant, the packed R-tree, that can be bulk-
loaded statically was proposed and has space us-
age of 100%. Kamel et. al. [7] and Leuteneger
et. al. [11] improved on this sorting rectangles us-
ing the Hilbert curve and the Sort-Tile-Recursive
(STR) algorithm respectively. These researches on
the packed R-tree show that packing improves per-
formance for an R-tree compared to ordinary R-
trees. Our work uses the STR packing algorithm
for the Replicated Parallel Packed R-tree.

Koudas et. al.[10] proposed a parallel R-tree to
support range queries in a multi-computer. In the
proposal, a master machine contains all the inter-
nal nodes of the parallel R-tree. The leaf nodes and
the actual objects are stored in the slave machines.
The portion of the R-tree at the master machine
contains pointers to the machines holding the leaf
nodes. This idea was extended in [14], which pro-
poses a Master-Client R-trees where the slave ma-
chine also store inner tree nodes. However both R-
tree structures are not optimized for join operations
which is what we focus on in this paper. Our pro-
posed Replicated Parallel Packed-R-tree efficiently
supports join operations. Zhou et al [15] proposed
a parallel spatial join algorithm that assumes that
no spatial index exists. Our work basically assumes
that most spatial data will have a spatial. Closely
related to Zhou'’s work, Patel [12]examines the join-
ing of large spatial data (DCW) but again without
indices.

—178—

3 Replicated Packed Parallel
R-tree

REPLICATED
PACKED
PARALLEL RTREE

(RPP-RTree)

INNER NODES

Cin
Objects - referenced from

Spatial
Objects
(Declustered)

Ci1

Replicated
. Portion
1 tree leaf node
(Partioning Unit)

Spatial Object Data Distribution in Parailel Nodes

Node 1

VAN

ooon

Node2

VAN

gooo

Purtitien

Figure 1: A Replicated Parallel Packed-R-tree

We have proposed a Replicated Parallel Packed-
R-tree (RPP-R-Tree) structure is shown in fig.1.
Koudas et. al [10] propose the master R-tree as
mentioned before. This kind of tree is not suitable
for performing joins. Our proposed RPP-R-Tree
is geared towards spatial joins. The RPP-R-Tree
is built using The STR packing algorithm. R-tree
spatial join requires that both trees be easily ac-
cessible. This is not the case for the Master-Client
R-tree. The location of corresponding client R-tree
is not necessarily the same for 2 different trees. The
Master R-tree might in some cases fulfill the acces-
sibility requirement but again this becomes a bottle
neck as each slave has to wait for the Master to fin-
ish traversing both trees. To reduce this bottleneck,
we have propose, for a shared-nothing architecture,
to replicate the whole R-tree structure, i.e.. the in-
ner nodes and the leaf nodes, across all the slave
nodes. Fach entry in a leaf node maintains loca-
tion of the node storing the particular object, in
the form of a node id and disk page pair.

The main drawback of this scheme might be stor-
age costs but we believe that the benefit of im-
proving the join operation outweigh the costs. Its
should also be noted that storage itself is becoming
cheaper all the time. In the RPP-R-Tree structure
the leaf nodes are stored together with the inner
nodes. However the actual data objects themselves

are stored separately and are declustered across the
system. One of the attractions of packed R-trees is
the possibility of utilizing space maximally. The
other advantage is the loading time which is re-
duced significantly. In general it has been shown
that packed R-trees perform better than other R-
tree variants.

4 Parallel R-tree Join

4.1 Spatial Data Declustering

Partitioned parallelism is the main source of par-
allelism in a parallel shared-nothing system[4], and
is achieved by declustering data across multiple
nodes in the system and running operators at each
of these nodes. One method for declustering R-tree
indexed spatial data is the R-tree Leaf-Node cluster
method. This is illustrated in fig.1. In this method
all the objects referenced from a leaf node are con-
sidered a cluster and are used as the unit of declus-
tering. The node of the R-tree guarantees a degree
of spatial locality for all the objects and STR pack-
ing further enhances this locality. OQur experiments
with DCW data show that the sizes of these clus-
ters range from 13kbytes - 26kbytes for a packed
RPP-R-Tree. In fig.1 the clusters are labeled Cl-i.
Since the cluster size is small, in our experiments
we use the cluster as the buffer-disk transfer unit
as well, since only one seek operation is required
and the probability that the objects in the cluster
will be used closely in time is high. The assign-
ment of the clusters to nodes can the done in the
using Round-Robin assignment, where cluster j in
the sorting order is assigned to node i = j mod N.
Size-balancing can also be used where the size of
each node in terms of the number of co-ordinates
or total area covered is balanced. Hashing can also
be used. In this paper we evaluated the R-tree Leaf-
Node cluster method with round-robin partitioning.

4.2 Join Algorithm Description

To describe the join algorithm, we assume a
shared-nothing parallel machine with NV join nodes
and a Master node. A spatial join operation has
two main phases: the filter phase followed by the
refinement phase[13]. In the filter phase approx-
imations of the spatial objects, eg the MBR, are
used to filter out those objects that have no possi-
bility of satisfying the topological relation (e.g. in-
tersect). If we define the set {MBR;,id;} for spa-
tial object i as key-pointer data for the object, The
output of this phase is a set of pairs of key-pointer

=179~

data {(MBR,;.id-,;); (MBR],%d])} such that M BR;
intersects M BR; for the intersect topological .re-
lation. Each such pair is called a candidate pair.
In the refinement phase, for each such pair, the
corresponding objects are retrieved from disk and
tested for actual intersection. Those that intersect
are returned as part of the final result. A good
filtering scheme will filter out the majority of non-
intersecting objects, before they are retrieved from
disk. In the algorithm described here filter phase is
done in parallel using the RPP-R-Tree. The candi-
dates so produced are used in the refinement phase
which is also done in parallel.

At The MASTER:
. TaskCreate(Rtree R, Rtree S)
ReadNode(Ryroot) Sroot)
" FOR(all Er € Rroot)
FOR(all Es € Sroot)
IF (Egr € Es)
add (Eg, Es) as (T-R,T_S) to TaskList
FOR all (T-R,T-S)k € TaskList .)
calculate Teost
assign (T_R, T-S)i using best-fit decreasing strategy
all nodes have approximately equal total cost
SEND task sets to all JOINNODE; 1. <1< N
‘RECEIVE query results from JOINNODE;

Figure 2: Filter Task Creation

The élgorithm we describe here is a synchronous
R-tree traversal algorithm described in [1]. The in-
put to our version of the algorithm is 2 RPP-R-
trees as shown in fig.3. The Master creates a num-
ber of sub-tasks and allocates these sub-tasks to
the join nodes. Each subtask is pair of intersecting
MBR:s from the two R-tree roots and a node receiv-
ing such a task will independently synchronously
traverse the 2 subtrees represented by these two
MBRs. When the leaf is reached, for any inter-
secting leaf MBRs, the corresponding rectangles are
retrieved. It is possible that a required object is
stored in different node. In such a case the node
requiring that object will send an object request to
the home node and once it receives the object, it
then performs the actual join.

Without loss of generality, we focus on the inter-
section join. An example which we use in our ex-
periments is answering the query: Find which rivers
intersect with which roads, for a rivers data set and
a roads dataset. To simplify the description we as-
sume that the RPP-R-trees for the 2 data sets are
of equal height. The algorithm can be easily mod-
ified to handle situations where the heights of the
tree are different.

At each JOINNODE; 1 <i< N
ReceiveFrom MASTER {(T-R,T.S)x: 1<k <P
is a pair of intersecting Rtree nodes}
Begin: JoinSpatial(RtreeNode T, RtreeNode S)
FOREACH ((T-R,T.S)x
SynchronousTraverse(T-R.ptr, Ts.ptr)
perform space restriction
produce candidates
IF (DYNAMIC LOAD BALANCE == FALSE)
RefineCand locally
' Request Remote object over network
FOR EACH candidate pair
NestedJoin((M BR;, id:), (MBR;,d;))
Send Joined Object to Master
END
IF (DYNAMIC LOAD BALANCE == TRUE)
Sendcandidates to slaves and master
depending on Heuristic .
Receive candidates from slaves and master
depending on Heuristic
FOR EACH candidate pair
NestedJoin((M BR;,idi), (M BR;,id;))
Send Joined Object to Master
END

AT MASTER . .
Receive join pairs from all JOINNODE; 1 <i< N
Assign join pairs depending on
assignment plan JOINNODE;
Increase Cost at each Node by Refinem"y(ij);

Send candidates to slave nodes
END

Figure 3: Parallel Spatial Join

4.3 Filter Task Creation

Filter task creation is performed at the Master
node. The master examines the root nodes of the
two RPP-R-Trees R and S. All the intersecting
pairs of tree node elements are produced. Each of
these, constitutes a filter task (I'_R, T_S), as in fig
2.

4.3.1 Static Load Balancing

To ensure that the load for executing tasks
(TR,T.S); is shared evenly among the nodes a
static load balancing scheme is employed. The
RPP-R-tree stores the number of coordinate points
contained in the subtree under a tree node entry.
Each entry in the root node will store the num-
ber of coordinates under it. This is an indicator
of the cost associated with traversing that subtree.
The following cost function is used in determining
the cost of traversing two intersecting subtrees Rsup
and Sgyp :

o TravCost = NumPnt x
Ssub)/(Area(Rsub) + Area(ssub))

In the case that the root node gives an insufficient
number of tasks, the task allocation algorithm de-
scends the two RPP-R-trees to the next level. Only
one task, the one with the highest cost is chosen

area(Rgup N

—180—

for further decomposition. The allocated tasks are
then sent the JOINNODESs for execution. The
MASTER then waits for results.

Each join node will then proceed, independently,
to traverse the RPP-R-tree, since each node has
its own copy of the R-Trees, and will produce key-
pointer data pairs, {(MBR;,id;}; (MBR;,id;)} as
candidate . The commutation cost incurred in send-
ing the filter task to JOINNODEs is very small
and the overhead of waiting for the Master to cre-
ate filter tasks is small since only it examines only
few nodes. In addition the root nodes of the RPP-
R-tree are pinned in memory. In our experiments
enough filter tasks are created only by examining
the root nodes.

4.4 Refinement Operation

There are two options when implementing refine-
ment in the parallel join algorithm:

L. Refine candidates where they are produced.

2. Execute a load balancing phase‘ to equalize the refine-
ment workload.

In the first option, each node will refine the can-
didates as it produces them. Since some objects
may be remotely located, nodes may need to send
object requests to the objects’ home nodes. It is
unlikely that the number of candidates produced at
each node is equal. This coupled with the signif-
icant cost of refinement, can and, in experiments,
did result in severe load imbalance. Therefore dy-
namic load balancing is essential in the refinement
phase. First we define a cost function for estimating
the cost of refining a candidate pair. If the number
of coordinate points in ob ject R; is m, the number
of points in object S; is n and the cost of trans-
mitting a point across the network is t., the 7/0
cost per point is t;,, the actual join cost per point
is ¢; , then Refine.os:,(s5) for candidate is given as
follows:

Refinecoss (i) = (1)
Mo (i + g +1-80) + 1 (tio + b5 + K - £0)
h 1=0,k=0 ifR; and S; is local resp.
WHCTE\ I=1,k=1 otherwise

Note that the actual join operation is done as a
nested loop operation. In dynamic load balancing
the master node and the slaves cooperate in produc-
ing a new redistribution of the produced candidates.
For each candidate {(MBR;,id;);(MBR;,id;)},
that it receives, the master uses one the following
two heuristics.

Assignment 1 Assign a candidate (R, S) to the node k if
both objects in {(MBR;,id;); (MBR;,id;)} point to
that . node.
If not then assign {(MBR;,id;); (MBR;,id;)} to the
node with the smallest load so far. Increment the load
of the node to joincost((MBR;,id;); (MBR;,id;)). if
at the end of assignment any nodes are outside +10%
of average load, move candidates to lightly load nodes
from heavily loaded nodes, to bring the load cost at
each node within that range.

Assignment 2 Always send a pair to the home node of the
the entry from the biggest data set. If at the end of
assignment any nodes are outside the +10% of aver-
age move candidates to lightly load nodes from heavily
loaded nodes, to bring the load cost at each node within
that range. ’

In generating the whole candidate distribution plan

we identify the following 6 heuristics. We assume

that the data set R is the larger of the two data sets

participating in the join.

Heuristic 1 Each slave send 100% of the candidates it pro-
duces to the master node. The master node uses heuris-

tic assignment 1, to determine where to allocate each
received candidate.

Heuristic 2 Each slave send 100% of the candidates it pro-
duces to the master node. The master node uses heuris-
tic assignment 2, to determine where to allocate each
received candidate. In this case R is the larger data
set.

Heuristic 8 Each slave sends 50% of the candidates it pro-
duces to node k where if the home node of the object
from set R is node k. The rest are.sent to the master.
In addition each node calculate the refinement cost of
those 50% sent to slave nodes and send this to the mas-
ter. The master uses assignment I to determine plan.

Heuristic 4 Same as Heuristic 3 but uses assignment 2 to
“determine plan.

Heuristic 5 Same as Heuristic 3 but send 75% to slave and
25% to master. The master uses assignment 1 to de-
termine plan.

Heuristic 6 Same as Heuristic 5 but the master uses as-
signment 2 to determine plan.

After calculating the load balancing plan, the Mas-
ter then transmits the candidate pairs to their re-
spective nodes where refinement is performed. Si-
multaneously the slaves begin refining candidates
that they receive from other slave. One of the dis-
advantages of the Heuristics 1 and 2 is the cen-
tralization of the balancing plan generation. This
can limit the scalability of the algorithm in a mas-
sively parallel machine with for example 100 nodes
[9]. Heuristics 3-6 decentralize the load balancing
plan generation by ensuring a certain percentage are
sent directly from slave node to another slave node,
whilst the rest are sent to the master to allow the
master to perform global load balancing The ratio-
nal behind keeping the larger data set stationary is
that this helps to reduce communication overhead.

—181—

5 Experimental Evaluation;

5.1 Experiment Data Sets

Table 1: DCW Data Characteristics

[Data Set [Size (MB) [Object Cnt. | No. of Points |

Rivers 94.3MB 964,533 11,405,491
Roads 41.7MB 557,007 4,908,784
Railroads 7.1MB 111,674 815,939

Table 2: Replicated Parallel Rtree Characteristics
(8kbyte page - 255 entries)
[[Rivers | Roads [Railroads |

Number of 3783 2185 438
Leaf Nodes

Number of 31 19 4
Inner Nodes

Avg Cluster | 26159.1 | 20012.0 16942.7
Size (bytes)
No of Levels 3 3 3

[BStt WHarats 2 @Hourste 4 BHeuis 6

Figure 4: Execution Time versus the Number of
processors: Rivers/Roads

We conducted experiments using our RPP-R-
tree. We used the IBM SP2 machine with each
machine accessing its own disk and memory and
connecting via a high speed switch. One of the char-
acteristics of spatial data is large size. We felt it is
important for us to use the largest data set we could
found. Large data sets has received little attention
in the literature so far. This turned out to to be
the Digital Chart of the World, provide by the US
Defense Mapping Agency. This data was available
in ARC/INFO format but we ungenerated it using
the ungenerate function, into text data and then

Nodes

[E3Statlc 3 Fiwuristc 2 MHauristie 4 EHouristc §

Figure 5: Execution Time versus the Number of
processors: Rivers/Rails

loaded into our system. We selected the rivers, rail-
roads and roads data and the sizes are shown in
tables 1. The rivers data is the largest at 94.3MB,
with nearly 1M lines. The sizes of the R-trees are
shown in table 2.

7
i3
H
t
3
E
i
3
E

Nodes

[E51a8: §Heuisti 2 BHiouiste 4 Bifeuisic §

Figure 6: Execution Time versus the Number of
processors: Roads/Rails

5.2 Join Performance Evaluation

5.3 Performance Overview

We conducted experiments for static load balanc-
ing and dynamic load balancing using the heuristics
described in section 4.1.2. We performed the join

—182—

operation for the rivers/roads, rivers/rails and the
roads/rails combinations. Figures 4, 5 and 6 show
the execution times for some of the heuristics. For
all data sets, static load balancing results in reason-
able execution time but the application of dynamic
load balancing heuristics improves performance by
“about 10 - 25%. In all the data sets the heuristics
which used assignment I in generating the plan re-
sulted in worse performance that their counterpart
using assignment 2. This can be explained by the
fact assignment 1 moves the large data set and this
results in large communication overhead. In addi-
tion we proved that heuristic 6 performs the best
for all the data sets except for the Roads/Rails set.

Table 3: Detailed Time Analysis for Static Load
Balancing :Rivers/Roads ‘

45 [4F | 85 | 8F | 125 | 12F
CPU 316 | 112 | 190 | 55
Rtree | 59 | 46 | 36 | 18 | 27 | 16

Diski/O | 18 | 17 | 8 | 9 | 5 5

Comm | 20 | 182 | 16 | 167 | 10 | 110
Td/Bal | 0] 0 | 0] 0 1 0 1 0

Table 4: Detailed Time Analysis Load Balancing
with Heuristic 6:Rivers/Roads

4S 4F 8S 8F [128 | 12F
CPU 359 | 350 | 190 122 | 112
Rtree 62 43 35 18 22 6
Disk I/0 | 23 24 12 12 8 8
Comm 7 31 2 29 6 26
Ld/Bal 5 2 5 1 2 1

Tables 3 and 4 give a comparison of the different
time components for the static case and the case
for heuristic 6 for rivers/roads join. The static case
gives wide difference in time between the slowest
node (S) and the fastest node (F). The slowest node
also has a lot of communication overhead. With
heuristic 6 the time difference between (S) and (S)
is drastically reduced and communication time is re-
duced equalized between the nodes (F) and (S). We
also plotted the speedup for static, heuristic 2, 4 and
6 load balancing in fig. 7. There is progressive in-
crease in speedup characteristics from the static to
heuristic 6. The can be explained from the fact that
parallelism is facilitated if the slave nodes can be-
gin to process refine operations immediately rather
that waiting for the Master.

5.3.1 Synchronous R-tree Traversal Load

One of the reasons behind proposing the RPP-R-
tree is to partition the R-tree synchronous traversal

Figure 7: Speed Up versus the Number of proces-
sors:Rivers/Rivers

load. Section 4.3.1 gives the load estimate function
used in determining the traversal static load balanc-
ing plan. For 4 nodes the traversal load varies from
about 43 seconds to 62 seconds for the rivers/roads
join; for 22 seconds to 32 seconds for roads/rails
join; and 17 seconds to 32 seconds. This is fairly
balanced across all the nodes. However the load
function produces an unbalanced distribution as the
number of nodes increases. At 14 nodes the traver-
sal time varies from 7.6 seconds to 1 seconds for
roads/rails. Similar results are obtained for the
other data sets. The reason for this that we used
only the tasks produced at the root level for all the
nodes. This means that as the number of nodes in-
creases the load balancing leeway becomes smaller
and smaller. A solution for this situation is to in-
crease the threshold for the number of tasks the
master uses for filter task creation.

5.3.2 Communication Overhead

Communication overhead is dominant for the case
that refines objects where they are produced. The
communication load between the master and the
slaves in filter task creation and distribution is
very minor. The greatest communication overhead
comes from the requests for objects from home
nodes and also the answers to those requests. An-
other communication component comes from the
candidates sent to other nodes for refining during
dynamic load balancing but this is a much smaller
component. Referring to tables 3 and 4, we no-
tice that when only static load balancing is used,
the fast nodes have a huge communication com-
ponent. This is due to the fact that once a node
has finished processing its candidates, its sits idly

waiting for home node object requests. When we
use dynamic load balancing, this time is drastically
reduced. Even though dynamic load balancing in-
creases communication overhead from exchange of
candidates, this is offset by the reduction in the
amount of actual objects exchanged between nodes
which results in an effective decrease in communi-
cation overhead.

5.3.3 Dynamic Load Balancing Perfor-

mance

Our experimental results show that the spatial
join algorithm is a CPU bound operation. We use
the nested join for finding the intersection points
between spatial objects and this operation is CPU
intensive. Whilst dynamic load balancing also leads
to the reduction of communication overhead, its
main aim is to reduce the CPU load imbalance
across the slave nodes. Static load balancing alone
produces a CPU time difference of the order of the
ratiol to 2. Therefore even, heuristic 1 which sends
all candidates to the master, will still result in a
decrease in join execution time because it evenly
distributes CPU load. Heuristics 3 to 6 which send
only a part of the candidates to the master man-
age to gain by the reducing the communication
time and also by allowing the slave nodes to begin
processing as soon as the candidates begin to be
produced without waiting for the master. Heuris-
tics 3 and 5 do a random allocation of the candi-
dates paying attention only to the load estimation
function. This results in extra communication as
shown in equation 2, which shows that when the
number of objects moved is high the communiéa—
tion overhead is also high. Heuristics 4 and 6 keep
the largest data set stationary thereby reducing
communication overhead, thus generally perform-
ing better than 3 and 5.

6 Conclusion

We have shown how a proposed parallel packed
R-tree can be applied in the implementation of a
parallel R-tree join, and conducted experiments on
a real machine using real world large data sets. Ex-
perimental analysis shows that the parallel R-tree
join is viable and that the proposed dynamic load
balancing heuristics are effective in reducing execu-
tion time. We are planning to compare the perfor-
mance of the various data declustering methods, for
example tiling the universe space and also plan to
move our implementation to a large PC cluster to
further evaluate performance[9].

References

[1] Brinkhoff T., Kriegel H.P., Seeger B., Efficient Pro-
cessing of Spatial Joins using R-trees. Proc. ACM
SIGMOD 95.(1993), 237-246.

Brinkhoff T., Kriegel H.P., Seeger B., Parallel Pro-
cessing of Spatial Joins Using R-trees. Proc IEEE
18th International Conference on Data Engineer-
ing. (1996), 258-265.

[3] Digital Chart of the World for use with ARC/INFO
software, Enviromental Systems Research Insti-
tute, Inc., (1993).

[4] DeWitt D.J., Gray J., Parallel Database Systems:
The Future of Database Processing or a Passing
Fad?. ACM SIGMOD RECORD, Vol. 19, No. 4
(1990}, 104-112.

Guttman A., R-trees: A Dynamic Index Structure
for Spatial Searching, Proc. ACM SIGMOD (1984),
47-57.

(6] Hoel E.G., Data-Parallel Spatial Join Algorithms.
Proc of the 23rd Intl. Conf. on Parallel Processing
(1994), 227-234.

[7] Kamel 1., Faloustsos C., On Packing R-trees, Proc.
2nd International Conference on Informations and
Knowledge Management (CKIM-93), (1993), 47-
499.

[8] Kamel I., Faloustsos C., Parallel R-trees, Proc.
ACM SIGMOD 92, (1992) 195-204.

Kitsuregawa M., Tamura T. and Oguchi M.: Par-
allel Database Processing/Data Mining on Large
Scale Connected PC Clusters, Proc. of Parallel
and Distributed Systems Euro-PDS’ 97, pp313-320,
(1997). .

Koudas N., Faloutsos C., Kamel I., Declustering
Spatial Databases on a Multi-computer Architec-
ture, EDBT 96, (1996) 592-614.

Leuteneger S.T., Lopez M., Edgington J., STR: A
Simple and Efficient Algorithm for R-tree Packing,
Proc. 14th International Conf of Data Engineering
(ICDE 97), (1997) 497-506.

Patel J.M., Efficient Database Support for Spa-
tial Applications, PhD Thesis, University of
Wisconsin-Madison, (1998). ‘

Patel J.M., DeWitt D.J., Partition Based Spatial-
MergeJoin. Proc. ACM SIGMOD Int. Conf. on
Management of Data 96, (1996).

Schnitzer B., Leutenegger S.T., Master-Client R-
trees: - A New Parallel R-tree Architecture, 1Ith
Intl. Conf. Scientific and Statistical Databases,
(1999).
Zhou X., Abel D.J., Truffet D., Data Partitioning
for Parallel Spatial Join Processing. Proc. 5th Intl.
. Symposium on Spatial Databases (SSD’97), LNCS
1262, Springer-Verlag (1997), 178-196.

[2

—

—
it

9

(10]

11

[13

(4]

[15

—184—

