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Abstract: We propose Roadscape-based Route Recommender System (R3), which provides diversified roadscape-
based routes. Given starting and destination points, R3 provides four types of roadscape-based routes: rural-,
mountainous-, waterside-, and urban-prior routes. To reduce the computational cost, we propose a coarse-to-fine
route search approach that consists of a roadscape-based clustering method, roadscape cluster graph, coarse-grained
route search, and fine-grained route search. We evaluated the performance of R3 using network data for real roads.
The experimental results qualitatively show the validity of the generated roadscape clusters by comparing them with
Google satellite maps and Google Street View images. The results also show the validity of the roadscape-based route
recommendations. Furthermore, the results show that using a coarse-grained route search can significantly reduce the
route search time. Finally, we quantitatively evaluate R3 from the perspective of users. The results show that R3 can
appropriately recommend roadscape-based routes for given scenarios.
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1. Introduction

Cars are driven not only for transportation but also for plea-
sure. Some people want to drive along the seaside or on rural
roads while enjoying their favorite landscape. We call such road-
side landscapes “roadscapes.” In such situations, it is not always
the best solution to provide the shortest or fastest route. An alter-
native solution is to provide routes with favored roadscapes even
if they involve a detour.

Given starting and destination points, a route recommender
system provides routes from the starting point to the destination
point. The majority of traditional route recommender systems
provide the shortest routes [15], [28], fastest routes [16], [19],
[32], [37], [38], or popular routes [8], [22], [31], [33]. As men-
tioned above, the shortest and fastest routes do not always satisfy
the user’s demands. Systems that recommend popular routes pro-
vide routes that many people are interested in. Wei et al. [31] ex-
tracted popular routes by mining the road links that many people
are interested in from their trajectories. Such route recommender
systems consider the attractiveness of routes on the basis of the
wisdom of crowds without considering the content features of
routes. Several studies have proposed scenic route recommender
systems [1], [5], [23], [29], [40]. These studies use the subjective
scores of the scenic beauty submitted by people and do not focus
on the detailed roadscape features of road links.

In this paper, we focus on the roadscape as a route feature
and propose Roadscape-based Route Recommender System (R3),
which provides diversified routes on the basis of roadscapes.
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Given starting and destination points, R3 provides four types of
roadscape-based routes: rural-, mountainous-, waterside-, and
urban-prior routes. For example, a user who likes waterside
views can select waterside-prior routes from the four types of
routes provided. To develop such a route recommender sys-
tem, we have proposed a method for estimating the roadscapes of
given road links [25], [26]. In particular, we defined rural, moun-
tainous, waterside, and urban elements as roadscape elements,
which are basic elements that compose a roadscape, through pre-
liminary experiments. We defined a roadscape vector, each of
whose elements corresponds to a roadscape element, and pro-
posed a method for estimating such roadscape vectors for given
road links. Although a detailed discussion is beyond the scope of
this paper, we instead provide road network data with roadscape
vectors on the Web *1. We presuppose that R3 is to be used on
road network data with roadscape vectors.

Traditional route searching algorithms such as the Dijkstra al-
gorithm [14] are given the costs of road links and find a route that
minimizes the sum of their costs. The simplest approach is to ap-
ply the traditional method and reduce the costs of the road links
having the targeted roadscape elements. However, there is a high
computational cost in applying such a method to a very large road
network.

To reduce the computational cost, we propose a coarse-to-fine
route search approach. We focus on the concept that similar road-
scapes do not exist as fragments but in clusters. For example,
Fig. 1 shows that there are some areas composed of similar road-
scape elements, such as area A, which is a rural area, and area B,
which is a mountainous area. On the basis of this characteristic,
we expect that we can reduce the computational cost by clustering

*1 https://zenodo.org/record/1405255#.W4Yyb-j7T-g
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Fig. 1 Satellite image of Awaji Island, Japan. Area A is a rural area, B is a
mountainous area, C is a waterside area, and D is an urban area. This
satellite image was captured from Google Maps *2.

similar roadscape areas in advance.
In this approach, we first extract areas—roadscape clusters—

composed of similar roadscape elements by using a roadscape-
based clustering method. Second, we create a roadscape clus-
ter graph whose nodes correspond to the roadscape clusters and
whose links correspond to the links between roadscape clusters.
In the route searching process, given the roadscape cluster graph
and starting and destination points, we roughly find four types
of roadscape-based routes, which are the roadscape cluster sets
passed through, one for each roadscape element; we call this the
coarse-grained route search. Then, we find specific routes that
connect the roadscape clusters in each type of route; we call this
the fine-grained route search.

The contributions of this paper are as follows:
• We propose R3 , which provides diversified roadscape-based

routes, namely, rural-, mountainous-, waterside-, and urban-
prior routes.

• To reduce the computational cost, we propose a coarse-to-
fine route search approach that consists of a roadscape-based
clustering method, roadscape cluster graph, coarse-grained
route search, and fine-grained route search.

• We evaluate the performance of R3 using network data for
real roads. The results show the validity of the generated
roadscape clusters and roadscape-based route recommenda-
tions. In particular, the results show that using a coarse-
grained route search can significantly reduce the route search
time.

• We quantitatively evaluate R3 from the perspective of users.
The results show that R3 can appropriately recommend
roadscape-based routes for given scenarios.

2. Related Work

2.1 Shortest Routes
There are several well-known algorithms for finding the short-

est routes, such as Dijkstra’s algorithm [14] and the A* algo-
rithm [13]. Given the starting and destination points, these algo-

*2 https://www.google.co.jp/maps/

rithms find routes that minimize the total cost based on the costs
given for the links in the road network.

Many improvements have been proposed for such shortest-
route searches. Goldberg et al. [15] improved the route search
speed by extending the A* algorithm. Vieria et al. [30] and
Potamias et al. [28] proposed a scalable method for large net-
works.

2.2 Fastest Routes
A fastest-route search method finds routes that minimize the

time cost based on the travel times given to road links. Kanoulas
et al. [19] extracted speed patterns that depend on the time period
such as rush hour. They found the fastest routes using a route
search algorithm that extends the A* algorithm on the road net-
work with speed patterns. Gonzalez et al. [16] provided a fastest-
route search method based on speed patterns mined from large
sets of traffic data. Wei et al. [32], given the query time and road
links, inferred the mean speed on the road links. They estimated
the speed based on speed patterns in GPS data that are spatially
and temporally close to the given query time and road links. Yuan
et al. [37], [38], given starting and destination points, searched for
the fastest routes based on a taxi’s GPS trajectory data.

From the perspective of driving pleasure, we consider that it is
not always the shortest or fastest routes that are the most pleasant
routes for drivers. We hold that it is sometimes useful to rec-
ommend routes that go through favored roadscapes even if they
make a detour without regard to whether they are the shortest or
fastest routes.

2.3 Popular Routes
There are many methods for searching for popular routes that

may not be the shortest or fastest routes. Chen et al. [8], given
starting and destination points, searched for the most popular
routes (MPRs) connecting these two points. Here, the MPR is
the route with the largest amount of GPS trajectory data and does
not necessarily coincide with the shortest or fastest routes. Luo
et al. [22] also searched for the MPR using GPS data. They ex-
tracted more useful trajectories by referring to a subset of GPS
data related to the query time and not all GPS data.

Although the MPR method selects one optimal route, top-k
route searching methods output the k routes with the highest route
scores. Wei et al. [31] extracted frequently traveled regions from
a given set of trajectories and calculated the attractiveness score
of each region. They searched for the top k trajectories on the ba-
sis of the score. Chen et al. [9] searched for the top k trajectories
connecting user-provided locations.

There are also many methods for searching for routes connect-
ing points of interest (POIs), which are extracted from GPS data
or geotagged photos. Choudhury et al. [11] extracted the routes
connecting POIs in association with POIs and geotagged pho-
tos. Yoon et al. [35], [36] extracted stay points from GPS data
and extracted the travel sequences between these points. Arase
et al. [3] extracted frequent trip patterns, i.e., typical sequences
of visited spots, from geotagged photos. Kurashima et al. [20]
recommended travel routes connecting key landmarks from geo-
tagged photos posted on Flickr. Lu et al. [21] proposed an auto-

c© 2019 Information Processing Society of Japan
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matic travel route planning method based on geotagged photos.
The travel route is automatically planned for the given location to
be visited, user preferences, travel duration, visit time, and des-
tination type. Yin et al. [34] extracted diversified trajectory pat-
terns from geotagged photos on Flickr. These studies focus on
POIs such as spots and landmarks and extract the routes between
POIs, but they do not use the scores of the routes themselves.

Although the above studies focus on finding popular routes us-
ing collective intelligence, we focus on the roadscape features of
the routes.

2.4 Personalized Routes
Some studies propose route searching methods that recom-

mend personalized routes based on users’ attributes and pref-
erences. MyRoute [27] generates personalized routes based on
routes and landmarks familiar to the user. In MyRoute, users
need to specify the landmarks themselves, whereas Going My
Way [12] automatically identifies landmarks from users’ personal
GPS log data. Cheng et al. [10] and Chen et al. [7] proposed a
personalized recommendation framework including route plan-
ning based on the profiles of users who are contributors of geo-
tagged photos. Chang et al. [6] proposed a personalized route
planning framework. Their method extracts familiar road links
from a driver’s historical trajectory dataset. Then, given start-
ing and destination points, it generates the top k familiar routes.
Herzog et al. [17] proposed a mobile personalized route recom-
mender system, RouteMe. Given starting and destination points,
RouteMe determines route recommendations by combining col-
laborative filtering and knowledge-based recommendations.

In R3, users can choose their favorite routes from recom-
mended routes that include four types of diversified roadscape-
based routes in route planning. By offering this choice, our sys-
tem can recommend routes that reflect users’ roadscape prefer-
ences.

2.5 Scenic Routes
2.5.1 Scenic Routes using Subjective Scores

The following studies [1], [5], [23], [29], [40] use subjective
scores of the scenic beauty submitted by people and do not fo-
cus on the detailed roadscape features of the road links. On the
other hand, we focus on objective roadscape features, i.e., rural,
mountainous, waterside, and urban elements. We represent road
links by roadscape vectors and propose R3, which is based on
road network data with roadscape vectors.

Alivand et al. [1] proposed a method for extracting scenic
routes from geotagged photos and Volunteered Geographic Infor-
mation (VGI) routes. They associate geotagged photos, which are
uploaded to Panoramio and Flickr, with a road network and ex-
tract routes where photos are densely distributed as scenic routes.
VGI routes are traveled routes that are uploaded to websites such
as RouteYou *3, EveryTrail *4, and MyScenicDrive *5. They ex-
tract scenic routes from these VGI routes. Their approach is based
on the assumption of “travelers typically share photos or their trip

*3 http://www.routeyou.com/
*4 http://www.everytrail.com
*5 http://www.myscenicdrives.com/

trajectory with the Web community when they consider a place or
trip scenic [18].”

Zheng et al. [40] define a scenic roadway as “a thoroughfare
that passes by a series of landscapes and sights and affords vistas
of notable aesthetic, geological, historical, cultural, and touristic
qualities along its roadside.” They propose an attention-based ap-
proach to discover scenic roadways from geotagged photos. They
explain that “if a large number of photos are densely distributed
along a roadway, this roadway is a scenic one.” They calculate
the visibility on the basis of the distribution of photos related to
the roadway and the popularity on the basis of the number of
photos. Then, they calculate the sightseeing score by combining
the visibility and popularity. They update a road link’s cost by de-
creasing the sightseeing scores from its length. Given the updated
road network, existing shortest path algorithms such as Dijkstra’s
algorithm [14] and the Bellman–Ford algorithm [4] are used.

Byon et al. [5] define a scenic route as “a route with visually
pleasing sights.” They built a scenic view layer (SVL) that con-
sists of a visibility layer (VL) and zonal scenic worth raster layer
(ZSWRL). They divided Tronto into thirteen zones, and each
zone was rated by travel agents from the viewpoint of whether
the zone is scenic in a preliminary survey. The ZSWRL was built
on the basis of the results of the survey. The VL as built on the
basis of the visibility of each zone from each road link. On the
basis of the SVL, the costs on a road network are updated. Given
the updated road network, existing shortest path algorithms such
as Dijkstra’s algorithm [14] are used.

Quercia et al. [29] recommend routes that are not only short
but also emotionally pleasant. They assign the labels “beautiful,”
“quiet,” and “happy” to locations by crowdsourcing. They then
calculate the scores for the locations on the basis of their labels.
Finally, they recommend the shortest, most beautiful, most quiet,
and happiest routes on the basis of the respective scores.

Manzaki et al. [23] proposed a Country Road Finder. They fo-
cus on the scenic beauty from driver’s viewpoint. Their system
generates three routes from a location—a farm—that a user se-
lected to the nearest three lodges. On the basis of Google Street
View images along each route, the scenic beauty scores of each
route are predicted using deep learning. In training phase, the
scenic beauty of each Street View image is manually given.
2.5.2 Scenic Routes using Objective Scores

Niaraki et al. [24] focused on roadscape factors as road at-
tributes. They define road attributes by ontology. Because their
ontology includes roadscape attributes, their system can provide
roadscape-based routes by using such attributes. However, al-
though the ontology framework is described in detail, they do not
mention how to construct the ontology.

Alivand et al. [2] analyzed the influence of the existence of
water bodies, mountains, parks, and urban areas in addition to
geotagged photos and VGI routes [1] on a route choice model.
However, their study focuses on analyzing people’s route choice
model, and their method for extracting scenic routes includes
manual processes. On the other hand, we focus on a route recom-
mender system that automates whole processes from vectorizing
the roadscape features of road links to recommending roadscape-
based routes.

c© 2019 Information Processing Society of Japan
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Zhang et al. [39] proposed scenic sights as “landscapes that
can be enjoyed as a distant view,” such as Mt. Fuji, the Eiffel
Tower, and the Gate of Heavenly Peace. They collect scenic
sights from the Web. Then they calculate the visibility of each
road node toward the sights using the notion of a Z-Buffer on
a virtual 3D space built on the basis of a digital elevation map
(DEM). Recommended routes between starting and destination
points are ranked in descending order of the visibility scores. Al-
though their method uses scenic sights, the landscape features of
the road links are not used.

Hochmair et al. [18] define a scenic route as “a route that max-
imizes the exposure to parks and water bodies and minimizes de-
tours.” Their basic idea is to reduce the costs of the road links
that are close to attractive locations. They take parks and water
bodies as attractive locations. Using the notion of buffering, they
reduce the costs of the road links within a certain buffer distance
around attractive locations. Given the updated road network, ex-
isting shortest path algorithms such as Dijkstra’s algorithm [14]
are used. Although their method uses a single cost by aggre-
gating multiple elements such as parks and water bodies, our
method uses multiple costs as a cost vector, which enables the
generation of diversified roadscape-based routes, namely, rural-,
mountainous-, waterside-, and urban prior routes.

3. Preliminaries

Definition 1: Road network. A road network is a directed
weighted graph G = (V, E), where V is a set of road nodes
and E ⊆ V × V is a set of road links. A road node vi ∈ V

represents an intersection or an endpoint of a road. A road
link ek = (vi, v j) ∈ E is a directed link from the starting node
vi to the ending node v j. A road link ek is assigned a cost wk

according to the length of the link.
Definition 2: Roadscape element. Roadscape elements are

basic elements that compose a roadscape. We define four
roadscape elements: rural, mountainous, waterside, and ur-
ban elements. These elements were selected by preliminary
experimentation *6.

Definition 3: Roadscape vector. A roadscape vector is defined
as a four-dimensional probability vector each of whose el-
ements corresponds to one of the respective roadscape el-
ements. We define a roadscape vector of a road link ei as
s(ei) = (sr

i , s
m
i , s

w
i , s

u
i ). Each element of the vector denotes

the probability of how strongly ei includes the correspond-
ing roadscape element. Therefore, the sum of the values over
all elements is 1.

Definition 4: Roadscape cluster. A roadscape cluster C j ∈ C
is represented by a set of road links having similar roadscape
vectors. A roadscape vector s(C j) of roadscape cluster C j is
represented by the mean vector of the roadscape vectors of
the road links included in cluster C j. Therefore, we define
s(C j) as follows:

*6 The preliminary experimentation to select the roadscape elements was
done via crowdsourcing. These four elements are specific to Japanese
road network data. The details are beyond the scope of this paper.

s(C j) =
1
|C j|
∑

i∈C j

s(ei). (1)

Here, |C j| denotes the number of road links included in the
roadscape cluster C j.

Definition 5: Roadscape cluster graph. A roadscape cluster
graph is a directed weighted graph G = (V,E), where V
is a set of roadscape clusters Ci and E ⊆ V × V is a set of
links between roadscape clusters. A link lk = (Ci,C j) ∈ E
is a directed link from the starting node Ci to the end-
ing node C j. The road link lk is assigned a cost vector
ωk = (ωr

k, ω
m
k , ω

w
k , ω

u
k) based on the roadscape vector C j of

ending roadscape cluster C j. Each element of ωk denotes
a cost for the corresponding roadscape; these are used for
roadscape-based route searching. For example, ωr

k is the cost
referenced when searching for rural-prior routes.

Definition 6: Intracluster similarity of a roadscape vector.
The intracluster similarity is the mean similarity between all
pairs of road links included in the cluster. We denote the in-
tracluster similarity of roadscape cluster C j as intra sim(C j).
The value of intra sim(C j) is calculated as follows:

intra sim(C j) =
1

n|C j|
∑

i∈C j

∑

k∈C j

cos(s(ei), s(ek)). (2)

Here, ei and ek are road links included in cluster C j, and n

denotes the total number of links in the road network. The
value of cos(s(ei), s(ek)) is calculated as follows:

cos(s(ei), s(ek)) =
s(ei) · s(ek)
|s(ei)||s(ek)| . (3)

4. Roadscape-based Route Recommender Sys-
tem

4.1 System Overview
R3 provides four types of roadscape-based routes: rural-,

mountainous-, waterside-, and urban-prior routes. Figure 2

Fig. 2 An R3 interface and its system configuration. (1) Generate a road-
scape cluster graph based on the road network with roadscape vec-
tors. (2) Roughly find four types of roadscape-based routes in the
roadscape cluster graph based on the starting and destination points
that are input. (3) Find a detailed route that connects roadscape clus-
ters of each type. (4) Recommend four types of routes in different
colors on the map view. The map view is shown by using Google
Maps API *7.

*7 https://cloud.google.com/maps-platform/maps/?apis=maps
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shows an R3 interface and its system configuration. The interface
has a map view. When a user inputs the starting and destination
points on the map, the four types of roadscape-based routes are
provided in different colors.

It is assumed that R3 will be used with a road network with
roadscape vectors. In the evaluation (see Section 5), we used a
road network with roadscape vectors, which is available on the
web *1. Note that an explanation of how such road network data
can be generated is beyond the scope of this paper. The steps of
R3 are as follows (the step numbers correspond to the numbers in
Fig. 2):
(1) Generate a roadscape cluster graph based on the road net-

work with roadscape vectors.
(2) Roughly find four types of roadscape-based routes in the

roadscape cluster graph based on the starting and destination
points that are input (coarse-grained route search).

(3) Find a detailed route that connects roadscape clusters of each
type (fine-grained route search).

(4) Recommend four types of routes in different colors on the
map view.

Here, step (1) can be performed offline because this process does
not depend on the inputs. In the next sections, we describe steps
(1)–(3) in detail.

4.2 Generating a Roadscape Cluster Graph
4.2.1 Roadscape-based Clustering

Given a road network, we form roadscape clusters on the basis
of proximities of pairs of road links and the similarities between
their roadscape vectors. Adjacent road links belong to the same
cluster if their similarity is greater than or equal to a given thresh-
old value. Figure 3 shows the result of applying roadscape-based
clustering to the road network of Awaji Island, Japan. As we can
see in Fig. 1, area A corresponds to a rural area, and area B cor-
responds to a mountainous area.

Algorithm 1 shows the pseudocode for roadscape-based clus-
tering. We explain the clustering process performed by Algo-
rithm 1 as follows:

First, let k = 1 be the initial value (line 1). This k corresponds
to the index k of cluster Ck that is the current focus. Each road

Fig. 3 Result of applying roadscape-based clustering to the road network
of Awaji Island, Japan. Each color corresponds to a given cluster.
Labels A–D correspond to the same labels in Fig. 1.

link ei ∈ E will be added to the relevant cluster Ck (lines 2–8).
However, if ei has already been a member of any cluster, skip the
following processes (lines 3–5). Roadscape-based clustering is
executed by calling the function roadscapeCluster(s(ei), ei, k)
(line 6). Here, s(ei) is a roadscape vector of link ei. We consider
this roadscape vector s(ei) as a reference vector for calculating
the similarity of roadscape vectors in clustering for the current
cluster Ck.

The function roadscapeCluster() has three arguments, a
roadscape vector s, a target road link e, and the index of clus-
ter Ck (lines 9–20). First, add the target road link e to cluster Ck

(line 10). Call the function getAdjLinks(e) that obtains the links
adjacent to link e and add the obtained links to adjLinkList
(line 11). Here, if two links are connected to a common node, the
links are considered adjacent. Figure 4 shows an example of a
road network. In this case, for example, the links adjacent to e3

are {e1, e2, e4, e5, e6}.
Consider each link e j in adjLinkList (lines 12–19). How-

ever, if e j has already been a member of any cluster, skip the
following processes (lines 13–15). Calculate the cosine sim-

Algorithm 1 Roadscape-based clustering.
1: k ⇐ 1

2: for each link ei ∈ E

3: if ei is a member of any cluster then

4: continue next link

5: end if

6: roadscapeCluster(s(ei), ei, k)

7: k ⇐ k + 1

8: end for

9: function roadscapeCluster(s, e, k)

10: add e to cluster Ck

11: adjLinkList⇐ getAdjLinks(e): Get links adjacent to e.

12: for each link e j in adjLinkList

13: if e j is a member of any cluster then

14: continue next link

15: end if

16: if cos(s, s(e j)) >= α then

17: roadscapeCluster(s, e j, k)

18: end if

19: end for

20: end function

Fig. 4 A toy example of roadscape-based clustering on a small road net-
work. ei denotes the ith road link. The color intensity of a link
denotes the roadscape vector. If the color intensity of two links are
equivalent, these links have similar roadscapes. Ck denotes the kth
cluster.

c© 2019 Information Processing Society of Japan
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Fig. 5 Example of a roadscape cluster graph created for Awaji Island’s road
network. A node in the roadscape cluster graph corresponds to a
roadscape cluster, and a link corresponds to the adjacency relation-
ship between clusters.

ilarity cos(s, s(e j)) (Eq. (3)) between roadscape vectors s and
s(e j). If cos(s, s(e j)) is greater than or equal to the threshold
α, roadscapeCluster(s, s(e j), k) is recursively called (lines 16–
18).

After finishing this clustering process for the current cluster Ck,
increment k by one and repeat the same process for the remaining
road links (line 7). The above process is repeated until all of the
links in the road network have been added to any cluster. Finally,
roadscape vector s(Ck) of cluster Ck is calculated by Eq. (1).

Figure 4 shows a toy example of roadscape-based clustering
on a small road network. Here, ei denotes the ith road link. The
color intensity of a link denotes the roadscape vector. If the color
intensity of two links are equivalent, these links have similar road-
scapes. Ck denotes the kth cluster. In this case, links {e1, e2, e3, e4}
are added to cluster C1, link {e5} is added to cluster C2, and links
{e6, e7, e8} are added to cluster C3.
4.2.2 Generating a Roadscape Cluster Graph

After extracting the roadscape clusters, we create the adja-
cency matrix for all roadscape clusters. The adjacency matrix
for the roadscape clusters is represented as the |C| × |C| matrix
A = [ai j]|C|×|C|. If ai j = 1, clusters Ci and C j have at least one
common node; otherwise, they do not have a common node.

We then create the roadscape cluster graph on the basis of the
adjacency matrix. Figure 5 gives an example of the roadscape
cluster graph created for Awaji Island’s road network. Here, a
node in the roadscape cluster graph corresponds to a roadscape
cluster, and a link corresponds to the adjacency relationship be-
tween clusters.
4.2.3 Assigning Costs to a Roadscape Cluster Graph

In order to execute the coarse-grained route search described
in the next section, we assign costs to the links of the roadscape
cluster graph in advance. A link cost is calculated on the basis
of the roadscape vector of the roadscape cluster corresponding to
the link’s destination. If the targeted roadscape element of the
next roadscape cluster destination is emphasized, let its link cost
be lower; on the other hand, if it is not emphasized, let its link
cost be higher. For example, for the case in which a rural element
is targeted, if the rural element of the next roadscape cluster des-
tination is emphasized, let its link cost be lower; otherwise, let its

link cost be higher. By assigning costs in such a way, the route
to the roadscape cluster where the rural element is emphasized is
more likely to be chosen in the route search.

A cost vector ωk of link lk = (Ci,C j) is calculated as follows:

ωk = dk(1 − s(C j)
2). (4)

Here, dk is the length of link lk.

4.3 Coarse-grained Route Search
As the first search, we execute the coarse-grained route search

method. This method roughly finds four types of roadscape-based
routes in the roadscape cluster graph. The process is as follows:
(1) Given starting and destination points, obtain the roadscape

clusters and the starting and destination clusters, which in-
clude the starting and destination points, respectively.

(2) For the targeted roadscape element, find a route that min-
imizes the sum of the link costs related to the targeted
elements using existing shortest path algorithms such as
Dijkstra’s algorithm [14] on the roadscape cluster graph.

(3) Repeat step (2) for each roadscape element.
Thus, we obtain four types of coarse-grained routes as the road-
scape cluster sets that are passed through for each roadscape ele-
ment.

4.4 Fine-grained Route Search
As the second search, we execute the fine-grained route search

method for each coarse-grained route. This method finds detailed
routes that connect roadscape clusters. The process for each tar-
geted element is as follows:
(1) Find the common road nodes of each adjacent cluster in the

roadscape cluster sets captured by the coarse-grained route
search.

(2) Find the shortest route from the starting point to the first
common road node that is adjacent to the next cluster.

(3) Until there are common road nodes, find the shortest route
from the common road node to the next common node.

(4) Find the shortest route from the last common node to the
destination point.

(5) Generate a route that connects all of the routes obtained.
Here, we again use existing shortest path algorithms such as
Dijkstra’s algorithm to find the shortest routes. Finally, we obtain
four types of fine-grained routes: rural, mountainous, waterside,
and urban routes.

5. Results

In this section, we evaluate the performance of R3 using net-
work data for real roads in Awaji Island, Japan. The road net-
work data are derived from OpenStreetMap *8, and they include
102,506 road nodes and 212,050 road links for the area of Awaji
Island. For this area, roadscape vectors for all road links are
available on the web *1. We evaluate the validity of the gener-
ated roadscape clusters and the validity of the roadscape-based
route recommendations, and we compare the route search times
of R3 with and without the use of the coarse-grained route search.

*8 https://www.openstreetmap.org/
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Table 1 Results of roadscape-based clustering according to the value of α.
For each value of α, this table lists the number of generated clus-
ters, the mean number of links included in each cluster, and the
mean value of the intracluster similarities of the roadscape vectors.

α # clusters
mean # links

included in cluster
intra-cluster
similarity

0.95 4896 43.3 0.989
0.90 2912 72.8 0.980
0.85 2111 100.5 0.972
0.80 1538 137.9 0.962
0.75 1158 183.1 0.939
0.70 1094 193.8 0.948
0.65 718 295.3 0.833

Fig. 6 Distribution of the number of links belonging to the clusters when
α = 0.95. The horizontal axis denotes the clusters in descending or-
der of the number of links, and the vertical axis denotes the number
of links included in the cluster. Only the top 100 clusters are listed.

5.1 Study of the Parameter α
We determine the threshold α for the similarity between road-

scape vectors, which is needed for the roadscape-based clus-
tering described in Section 4.2.1. Roadscape-based cluster-
ing was performed while varying α among the values α =
{0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65} for Awaji Island’s road
network.

Table 1 summarizes the results of clustering for each value
of α. The table lists the number of clusters generated for each
value of α, the mean number of links included in each cluster,
and the mean value of the intracluster similarities of the road-
scape vectors. More clusters were generated when the α value
was higher. In addition, when α = 0.95, the intracluster similar-
ity between roadscape vectors was the highest. We can see that
with α = 0.95, each cluster is formed by road links having similar
roadscapes; therefore, clusters are well-generated. As a result, in
the subsequent evaluation, we employ α = 0.95.

We focus on the distribution of the number of links included in
the generated roadscape clusters. Table 1 summarizes the mean
number of links included in each cluster. In fact, some clusters
have a great many links, and others have few links—zero in most
clusters. The variance of the number of links in each cluster is
large. Figure 6 shows the distribution of the number of links in-
cluded in the clusters when α = 0.95. The horizontal axis repre-
sents the clusters in descending order of the number of links, and
the vertical axis represents the number of links included in the
cluster. Only the top 100 clusters are shown because the number
of clusters is very large. We can see from Fig. 6 that the majority
of clusters have very few links.

Fig. 7 Results of roadscape-based clustering on the Awaji Island road net-
work data. The light green area (A) corresponds to a roadscape clus-
ter with a high number of rural elements, the dark green area (B)
corresponds to one with a high number of mountainous elements,
the blue area (C) corresponds to one with a high number of water-
side elements, and the red area (D) corresponds to one with a high
number of urban elements. This figure shows the roadscape vector
and the number of links for each cluster. Labels A–D correspond to
the same labels in Fig. 1.

Fig. 8 Google Street View images of representative road links in each road-
scape cluster. Areas A–D correspond to Areas A–D in Fig. 7. These
images were captured from Google Street View.

5.2 Validity of the Generated Roadscape Clusters
In this section, we evaluate the validity of the generated road-

scape clusters when α = 0.95.
Figure 7 shows the results of roadscape-based clustering on

the road network of Awaji Island, showing only the four repre-
sentative clusters. In Fig. 7, the light green area (A) corresponds
to a roadscape cluster with a high number of rural elements, the
dark green area (B) corresponds to a cluster with a high number of
mountainous elements, the blue area (C) corresponds to a cluster
with a high number of waterside elements, and the red area (D)
corresponds to a cluster with a high number of urban elements.
The figure shows the roadscape vector and the number of links
for each cluster. For comparison, Fig. 1 shows a satellite image
of Awaji Island. Furthermore, Fig. 8 shows Google Street View
images of representative road links arbitrarily extracted from each
cluster.

We discuss the results of roadscape-based clustering in Fig. 7
with reference to Fig. 1 and Fig. 8.
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Fig. 9 Recommended routes when setting the starting point as
34.257575◦N, 134.722549◦E and the destination point as
34.574902◦N, 134.959632◦E. The light green line corresponds
to a rural-prior route, the dark green line corresponds to a
mountainous-prior route, the blue line corresponds to a waterside-
prior route, and the red line corresponds to an urban-prior route. The
threshold of similarity for roadscape-based clustering was α = 0.95.

(a) Area A.
Area A corresponds to a roadscape cluster having a high num-

ber of rural elements. We can see from Fig. 1 that the rural region
is spread throughout area A. We can also see fields in Fig. 8 (a).

(b) Area B.
Area B corresponds to a roadscape cluster having a high num-

ber of mountainous elements. We can see from Fig. 1 that the
mountainous region is spread throughout area B. We can also see
tree-covered views in Fig. 8 (b).

(c) Area C.
Area C corresponds to a roadscape cluster having a high num-

ber of waterside elements. We can see from Fig. 1 that the road
links run along the coast. We can also see the coast in Fig. 8 (c).

(d) Area D.
Area D corresponds to a roadscape cluster having a high num-

ber of urban elements. Area D in Fig. 7 corresponds to a city
region. We can also see buildings in Fig. 8 (d).

Because the appropriate results were observed in each area, we
can say that the roadscape-based clustering method works well.

5.3 Validity of Roadscape-based Route Recommendations
Given starting and destination points, R3 provides roadscape-

based routes connecting these two points. The system provides
four patterns of routes having high numbers of rural, mountain-
ous, waterside, and urban elements as roadscape-based routes. In
this section, we qualitatively and quantitatively evaluate the va-
lidity of the routes provided.

First, we qualitatively evaluate the validity of the recom-
mended roadscape-based routes. Figure 9 shows the recom-
mended routes when the starting point was set as 34.257575◦N,
134.722549◦E and the destination point as 34.574902◦N,
134.959632◦E. The light green line corresponds to a rural-prior
route, the dark green line corresponds to a mountainous-prior
route, the blue line corresponds to a waterside-prior route, and
the red line corresponds to an urban-prior route. The threshold of

Fig. 10 Percentages of roadscape elements included in each recommended
route. The percentage denotes the proportion of the length of road
links having high numbers of roadscape elements when letting the
total length of each route be 100%. Road links having a high num-
ber of roadscape elements are defined to be those with a roadscape
element value of not less than 0.8 in the associated roadscape vec-
tor.

similarity for the roadscape-based clustering was α = 0.95.
We can see from Fig. 9 that various routes were recommended,

each one emphasizing a different roadscape element. The rural-
prior route passes through the rural area in the inland part of
Awaji Island. The mountainous-prior route passes through the
mountainous area in the south. The waterside-prior route is a
route along the coastline. The urban-prior route is a route passing
through Sumoto city, which is the city of Awaji Island.

Furthermore, we quantitatively analyze the tendency for road-
scape elements to be included in each recommended route. Fig-
ure 10 shows the percentages of roadscape elements included in
each route. The percentage denotes the proportion of the length
of road links having high numbers of roadscape elements when
letting the total length of each route be 100%. Road links having
a high number of roadscape elements are defined to be those with
a roadscape element value of not less than 0.8 in the associated
roadscape vector. We can see from Fig. 10 that the rural-prior
route is occupied by rural elements, the mountainous-prior route
by mountainous elements, the waterside-prior route by waterside
elements, and the urban-prior route by urban elements.

Thus, we have qualitatively and quantitatively confirmed that
R3 can provide routes reflecting each roadscape element.

5.4 Comparison of Route Search Times: With vs. Without
the Coarse-grained Route Search

R3 introduces a coarse-grained route search as preprocessing to
reduce the route search time instead of performing a route search
on all road links. In this section, we compare the route search
times using the coarse-grained route search with those not using
it.

First, we prepare the following five pairs of starting and desti-
nation points.
(a) (34.257575, 134.722549)→ (34.257575, 134.722549),
(b) (34.317774, 134.676412)→ (34.348304, 134.896255),
(c) (34.499798, 134.938260)→ (34.293801, 134.788816),
(d) (34.545838, 134.923368)→ (34.440009, 134.912038),
(e) (34.208185, 134.814500)→ (34.430861, 134.830634).
For each pair, we execute the route search algorithm that empha-
sizes each roadscape element and measure the route search time.
We regard this execution as one trial. We execute this trial 10
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times for each pair and calculate the mean of the route search
times across trials.

We implemented the route search algorithm using Python 3.6.6
and NetworkX 2.1 and managed the road network data using
PostgreSQL 9.5. We conducted experiments on a computer
equipped with an Intel Core i5-6200U CPU (2.8 GHz), 8 GB of
memory, a 256 GB SSD, and Linux Mint 18.2.

As we described in Section 4.3 and Section 4.4, our algorithm
uses an existing shortest path algorithm on an updated road net-
work. Such an approach is employed in most exiting methods
for scenic route search [5], [18], [40], as shown in Section 2.5.
Therefore, we consider that comparing our algorithm with exist-
ing shortest path algorithms is sufficient for a comparison of route
search times. We take Dijkstra’s algorithm [14] and the A* algo-
rithm [13], which are well-known algorithms, and the Bellman–
Ford algorithm [4], which is used in Ref. [40], as baselines.

Fig. 11 Comparison of route search times. This figure shows the mean route
search times of methods with and without the coarse-grained route
search for each algorithm. For the method with the coarse-grained
route search, the figure shows the route search time in the case of
α = 0.95. ∗∗ indicates that a significant difference (p < 0.01) could
be confirmed when comparing with the method without the coarse-
grained route search by a paired t-test (one-sided test).

Fig. 12 Comparison of route search times for each value of α. The method
with the coarse-grained route search based on Dijkstra’s algorithm
is used for comparison.

Fig. 13 Five different routes provided to the participants between starting and destination points. These
map images were captured from Google Maps.

In this experiment, we compare the route search times using
coarse-grained route search with those not using it based on these
three existing algorithms. Figure 11 shows the mean route search
times for methods with and without the coarse-grained route
search for each algorithm. Here, the methods without the coarse-
grained route search based on Dijkstra’s, A*, and Bellman–ford
algorithms are regarded as baselines. For the methods with the
coarse-grained route search, the figure shows the route search
time in the case of α = 0.95. ∗∗ indicates that a significant dif-
ference (p < 0.01) could be confirmed when comparing with the
method without the coarse-grained route search by a paired t-test
(one-sided test). We can see from these results that the route
search time can be shortened by using the coarse-grained route
search through these three algorithms. Consequently, we can say
that the use of the coarse-grained route search can significantly
reduce the route search time.

In the case of the method with the coarse-grained route search
based on Dijkstra’s algorithm, we also compare the route search
times for each value of α. Figure 12 shows the route search time
for each value of α. The figure shows that a higher value of α
results in a shorter route search time.

6. User Evaluation

We quantitatively evaluated R3 from a user perspective. Given
the same starting and destination points, we tested five routes:
the shortest (baseline) route and rural-, mountainous-, waterside-,
and urban-prior routes. For the process of this user evaluation,
refer to the user assessment given in Ref. [29].

6.1 Experimental Setup
Our participants saw the five different routes between the same

starting and destination points on a web page, as shown in Fig. 13.
They did not know which route was which. The routes pro-
vided were shown as routes highlighted on a map and satellite
images, and Street View images were shown for five waypoints
(see Fig. 14). For these, we selected waypoints that were 1/6,
2/6, 3/6, 4/6, and 5/6 of the way along the route.

We provided the following four scenarios to the participants:
(s1) I want to enjoy driving through rural landscapes, (s2) I

want to enjoy driving through mountainous landscapes, (s3) I

want to enjoy driving through waterside landscapes, and (s4) I

want to enjoy driving through urban landscapes. The participants
imagined each scenario and evaluated the suitableness of the five
routes for the given scenarios. To measure the suitableness, we
used the Likert scale (strongly suitable, suitable, neither suitable
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Fig. 14 Google Street View images for five waypoints on rural-prior routes. These street view images
were captured from Google Street View.

Fig. 15 Results of the user evaluation. This figure shows the mean ratings of
each route type for each scenario. The error bars show the standard
deviation of each rating. A line with ∗∗ indicates that a significant
difference (p < 0.01/5) could be confirmed between the first- and
second-highest rated routes by a z-test (two-sided test). A line with
no mark indicates that no significant difference could be confirmed.

nor unsuitable, unsuitable, strongly unsuitable).
In this evaluation, we used the same five pairs of starting and

destination points as given in Section 5.4. For each pair, 30 par-
ticipants evaluated routes on four scenarios. Consequently, 5
(pairs) × 30 (participants) = 150 ratings were obtained. Here,
we allowed individual participants to evaluate multiple pairs.

After the evaluation, the participants voluntarily answered
questions about their age, sex, and driving experiences for leisure
purposes. For the driving experiences, the participants chose the
best match among “I often drive while enjoying landscapes,” “I

often drive while enjoying talking with passengers,” “I often drive

while enjoying driving itself,” “I often drive while enjoying listen-

ing to music,” “I rarely drive for leisure purposes,” “I rarely drive

at all.”

6.2 Participants
We recruited our participants through crowdsourcing. The

number of participants was 58. The percentages of males and
females were 70% and 30%, respectively. Participants who were
30–49 years old were 77% of the whole. Those under 30 years
old represented 8%, and those over 49 years old represented 15%.
For driving experiences, 47% chose “I often drive while enjoying

landscapes.” On the other hand, 19% chose either “I rarely drive

for leisure purposes” or “I rarely drive at all.”

6.3 Results
We treated the obtained Likert ratings as interval ratings and

plotted them on a bar chart, as shown in Fig. 15.
For s1, s2, s3, and s4, the highest ratings were obtained

for rural-, mountainous-, waterside-, and urban-prior routes, re-

Fig. 16 Limitations of the routes recommended by R3.

spectively. These results show that R3 can appropriately rec-
ommend roadscape-based routes without indicating which routes
are which. For s1, s2, and s3, the results show significant dif-
ferences (p < 0.01/5, with the Bonferroni correction applied);
p = 5.85 × 10−6, 0.00, and 2.40 × 10−7, respectively, by a paired
z-test (two-sided). For s4, on the other hand, the results do not
show significant differences; p = 0.225. As urban areas on Awaji
Island (targeted in our experiment) are not very large, it was diffi-
cult for participants to recognize the urban-prior routes as routes
that are truly urban. In the future, we would like to expand the
scope of the areas.

7. Limitations

In this paper, our focus with R3 is only on the roadscape fea-
tures of road links. Therefore, considerations of the ease of driv-
ing, safety, and beauty of roadscapes is beyond the scope of this
paper.

As two examples, Fig. 16 shows parts of the routes recom-
mended by R3. In the fine-grained route search, R3 focuses on
the roadscape of a monolithic road link and does not consider
the connections of adjacent links. Therefore, the recommended
route shown in Fig. 16 (a) includes many turning points, which
reduce the ease of driving. Figure 16 (b) shows a Street View im-
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age of a particular point on the recommended mountainous-prior
route. As shown in this figure, the road is very narrow, which re-
duces safety. In addition, our roadscape features do not necessar-
ily reflect what people value. For example, although the view in
Fig. 16 (b) is from the recommended mountainous-prior route, it
is not always beautiful for people. One way of solving the above
problems is to exploit external data such as social data, which
include people’s values.

8. Conclusions

In this paper, we have proposed R3, which provides diver-
sified roadscape-based routes. Given starting and destination
points, R3 provides four types of roadscape-based routes: rural-,
mountainous-, waterside-, and urban-prior routes. To reduce
computational costs, we proposed a coarse-to-fine route search
approach that consists of a roadscape-based clustering method,
roadscape cluster graph, coarse-grained route search, and fine-
grained route search.

We evaluated the performance of R3 using real road network
data with roadscape vectors, consisting of 102,506 road nodes
and 212,050 road links in the area of Awaji Island. A compar-
ison of the experimental results with Google satellite maps and
Google Street View images qualitatively shows the validity of the
generated roadscape clusters. The results also show the validity
of the roadscape-based route recommendations. We qualitatively
and quantitatively confirmed that R3 can provide routes reflect-
ing each roadscape element. Furthermore, the results show that
using a coarse-grained route search can significantly reduce the
route search time. Finally, we quantitatively evaluated R3 from
a user perspective. The results show that R3 can appropriately
recommend roadscape-based routes for given scenarios.

Although we evaluated R3 using the road network data of
Awaji Island, we will expand the scope of the areas, such as Kan-
sai area in Japan. We would also like to consider the beauty of
roadscapes by introducing some external data such as social data.
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