

Translating Authorizations of XML Documents based on
Content and Structure of Documents

内容および構造に基づく XML 文書のアクセス権の変換について

Somchai Chatvichienchai, Mizuho Iwaihara, Yahiko Kambayashi

Department of Social Informatics, Kyoto University
Yoshida Sakyo Kyoto 606-8501 Japan

somchai@db.soc.i.kyoto-u.ac.jp, iwaihara@i.kyoto-u.ac.jp, yahiko@i.kyoto-u.ac.jp

Abstract: Since authorization rules (authorizations, for short) use path
expressions of XPath for locating data in documents, authorization definition is
related to the document format. However, the format of XML documents tends to
change by various reasons such as application extension and information
exchange between organizations. Therefore, authorizations must be revised
whenever they become incompatible with a new format of the document. We
define sufficient conditions for schema and document transformations that allow
transforming authorizations without access to individual source and target XML
documents. We propose an algorithm that computes authorizations for a target
DTD instance from given RBAC authorizations of a source DTD instance and
schema mapping information under certain schema and document
transformations while preserving the authorization requirement of the source
DTD instance.

1. Introduction
As XML [14] is a popular format for presenting

and exchanging data on the web, it plays a crucial
role in the new Internet applications ranging from
e-commerce to digital government. Whenever
XML data is read and modified by multiple users,
access control of the clients’ access to XML data is
an important topic. Most contributions [1, 9, 2, 6,
4] use path expressions of XPath [12] for locating
nodes in XML documents, access authorizations of
users can be defined based on the content of the
document itself or on the structure of the XML
document. Content-based authorizations for XML
documents are defined as regulating accesses by
not only the structure of documents, but also the
contents of the documents. An essential feature of
content-based authorizations is value-dependent
meaning that an authorization locates data in an
XML document by a path expression, which
contains predicates comparing values of elements
or attributes. However, the structures of XML
documents tend to change over time by various

reasons, such as application expansion, and data
exchange among organizations using different
formats. Whenever authorizations become
incompatible with a new structure of XML
documents, the security manager needs to
transform authorizations for source documents
into those for target documents.

To the best of our knowledge, our previous work
[3] is the first that has discussed the problem of
transforming authorizations. In [3] we have
proposed two authorization transformation
algorithms. The first is an algorithm that
transforms authorizations of a source XML
document into those for a target XML document
by using document tree mapping. The second is an
algorithm that transforms value-independent
authorizations for a set of documents conforming
to a source DTD to those for a set of documents
conforming to a target DTD by using schema-tree
mapping information. Schema-tree mapping is a
mapping that describes unambiguously which
nodes of source DTD tree correspond to which
nodes in target DTD tree. Schema-tree mapping

研究会Temp
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
2003－DBS－131　　(8)

研究会Temp
2003／7／16

研究会Temp
－57－

can be obtained from schema matching tools such
as Cupid [10], COMA[5] and Xtra [11]. Note that
the second algorithm focuses on the case when a
path expression locates all instances of an element
or attribute. However, our previous works have
not discussed the problem of transforming
content-based authorizations by schema-tree
mapping.

The objective of this paper is to propose a novel
algorithm that computes content-based
authorizations for target DTD instances from
given content-based authorizations for source DTD
instances by using schema-tree mapping while
preserving access constraints of source DTD
instances. In this paper, we introduce a new
paradigm of technical challenge in applying
unordered tree inclusion in authorization
transformation. The key idea of authorization
transformation is that we represent path
expressions of authorizations by tree patterns. We
transform a tree pattern of a source XML
document into the corresponding tree pattern for a
target XML document by using schema-tree
mapping. One important problem is to identify the
conditions of schema and data transformation that
allows tree pattern transformation such that
transformed tree pattern locates target document
nodes derived from source document nodes located
by the source tree pattern. Our work employs the
RBAC model for XML documents proposed by
Hitchens et al [6] because the RBAC model
provides a very flexible set of mechanisms for
managing the access control of a complex system
with many users, objects and applications.

The rest of the paper is organized as follows.
Section 2 gives basic concepts of XML documents
and DTDs. Section 3 describes the RBAC for XML
documents. Section 4 discusses sufficient
conditions for schema and document
transformations. Section 5 presents content-based
authorization transformation. Finally, Section 6
presents our conclusions and future work.

2. XML Documents and DTDs
An XML document consists of three parts: an

XML declaration, a Document Type Definition
(DTD), and an XML document instance. An
XML document instance is a tagged document
that is composed of a sequence of nested

elements, each delimited by a pair of start and
end tags or by an empty tag. An element can
have attributes attached to it. XML document
instances can be classified into two categories:
well-formed and valid. An XML document
instance is well-formed if it obeys the syntax of
XML. A well-formed document is valid if it
conforms to a proper DTD. A DTD contains a
formal definition of a particular type of XML
documents. In this paper, we assume that a DTD
is an external file. Our algorithm can be easily
adapted for XML schema [14]. We abstract
DTDs as labelled trees that are defined as
follows.
Definition 2.1 (Schema Trees): A schema tree is
a finite node labelled and edge labelled tree S =
(V, E, Nm, r, lbl, C, fC), where V is a set of
vertices (nodes) representing elements and
attributes of the DTD, E ⊆ V × V is a set of edges,
Nm is a set of element and attribute names, r is
the root of the DTD, lbl is a labelling function
assigning a name from Nm to a node in V, C is
the set {+, *, ?} called cardinality, and fC is a

labelling function assigning a label from C ∪ {ε}

to an edge in E. □

+

(a)

?

*

(b)

?

carList

car

cid

status

series
currency price cost comment

AutoList

AutoMobile

Code Flag Model

Currency Price Cost

SalesInfo

Remark

Element
Attribute

name

Fig.1 (a) A source schema tree and (b) a target schema
tree

Figure 1 depicts an example of schema trees

for source and target DTDs. It should be clear
that edge labels indicate the occurrence of
sub-element to be expected: +, *, ? meaning “one
or more”, “zero or more”, and “zero or one”,
respectively. An edge with no label indicates that
the occurrence of sub-element is “exactly one”.
We call schema tree of a source DTD a source
schema tree and call schema tree of a target
DTD a target schema tree. We define
relationship between nodes of source and target
schema trees by a mapping that unambiguously
describes which nodes in the source schema tree
correspond to which nodes in the target schema
tree.

Let S and T be source and target schema trees,
respectively. Let V be the set of schema nodes of

研究会Temp
－58－

S, V' be the set of schema nodes of T, VD be the
set of schema nodes of S that are not transferred
to T, and VA be the set of schema nodes that are
newly added to T. We call V – VD the set of
source schema nodes. We also call V' – VA the set
of target schema nodes. For VA, the security
manager is requested to define authorization for
each schema node in VA. Otherwise,
authorizations of all schema nodes of VA are
defined by the default authorization. For VD, the
security manager is requested to revise
definition of the authorizations that are based on
values of schema nodes in VD.
Definition 2.2 (Schema-Tree Mapping): Let S and
T be source and target schema trees, respectively.
Let VS be the set of source schema nodes of S,
and VT be the set of target schema nodes of T.
smap: VS →VT is a total and one-to-one mapping
from the nodes in VS to the nodes in VT. □

Suppose that v is a source schema node of S, v'
is a target schema node of T, s is an instance of S,
and t is an instance of T. Remember that if
smap(v) = v', then we assume that each instance
of v in s is transferred to be an instance of v' in t.
Namely, there is no information loss from
transferring instances of a source schema node
to the corresponding target schema node. We
abstract XML document instances as labelled
trees (called instance trees) that are defined as
follows.
Definition 2.3 (Instance Trees): An instance tree
t is a finite node labelled tree represented by a
tuple of (V, E, Nm, Txt, r, lbl, val), where V is a
set of nodes of t, E ⊆ V × V is a set of edges, Nm
is a set of element and attribute names, Txt is a
set of values, r is the root of the XML document
instance, lbl is a labelling function assigning a
name from Nm to a node, and val is a labeling
function assigning a value from Txt ∪ {ε} to a
node. □

We call an instance tree for a source document
instance a source instance tree and call an
instance tree for a target document instance a
target instance tree. We call a node of instance
tree an instance node.

3. RBAC for XML Documents
An authorization indicates the right to perform a

specific operation on a particular data object.
Authorization in the model can be fine-grained (e.g.
at the element level) or coarse-grained (e.g. at level

of entire document). Authorizations are then
grouped together within the roles themselves.
Definition 3.1 (Authorizations): An authorization
is a 7-tuple of the following form: <pname, target,
path, action, sign, prop, priority>, where pname is
a permission name, target is a list of XML
documents or a DTD or a schema, path is an
optional path expression of XPath identifying
elements to which the authorization apply, action
∈ {read, write, create, delete, all}, sign ∈ {‘+’, ‘-’}
specifies whether the authorization grants (‘+’) or
disallows (‘-’) access, prop ∈ {local, recursive}, and
priority is an optional value specifying the priority
of the authorization. The default value of priority
is 0. The highest value of priority is 99. □

If target is a DTD (or a schema) then the
authorization applies to all instances of the DTD
(or the schema, respectively). Otherwise, the
authorization applies to a specific XML document.
If the prop is local then the authorization only
applies to the attributes, links and data of the
specified elements (as defined by path). Otherwise,
the authorization applies to the specified elements,
their direct and indirect sub-elements and
attributes. Conflict resolution of the model is based
on priority of authorizations. If there is a conflict
between a set of authorizations on an element
then the authorizations with the highest priority
are selected. If authorizations have the same
priority, negative authorizations override positive
authorizations.
Definition 3.2 (Roles): A role is a 3-tuple of the
form: (role_name, child_roles, pnames), where
role_name is a role name, child_role is an optional
list of child roles, and pnames is an optional list of
permission names. Note that the parent role
inherits access privileges from its child roles. □
Example 1: Consider the following
authorizations and roles defined for all instances
of carList.dtd depicted in Fig. 1(a). Role
roleClient is permitted to read car information
except cost of all cars and price of the cars that
are classified as secret.
Authorizations:

<pn1, carList.dtd, carList, read, +, local, 0>
<pn2, carList.dtd, car/cost, read, -, recursive, 1>
<pn3, carList.dtd, car[series/status="Secret"]

/price, read, -, recursive, 1>
Roles: (roleClient, , {pn1, pn2, pn3})

研究会Temp
－59－

4. Sufficient Conditions for Schema and

Document Transformations
We first give the definition of instance-tree

mapping which identifies the relationship
between nodes of two instance trees.

Let s and t be source and instance trees,
respectively. Let V be the set of instance nodes of
s, V' be the set of instance nodes of t, Vd be the
set of instance nodes of s that are not transferred
to t, and Va be the set of schema nodes that are
newly added to t. We call V – Vs the set of source
instance nodes. We also call V' – Va a the set of
target instance nodes.

Definition 4.1 (Instance-Tree Mapping): Let s
and t be source and target instance-trees,
respectively. Let Vs be the set of source instance
nodes of s, and Vt be the set of target instance
nodes of t. imap: Vs →Vt is a total and one-to-one
mapping from Vs to Vt. □

We represent path expressions of
authorizations by tree patterns that are defined
as follows.
Definition 4.2 (Tree Patterns): A tree pattern p is
an unordered tree represented by a tuple of (V, E,
Nm, Txt, r, lbl, val, opr), where V is a finite set of

nodes, E ⊆ V × V is a finite set of edges, Nm is a

set of element and attribute names, Txt is a set
of values, r is a node that forms the root of p, lbl
is a labelling function assigning a name from
Nm to a node, val is a labelling function

assigning a value from Txt ∪ {ε} to a node, and

opr is a labelling function assigning a symbol

from {‘=’, ‘≠’, ‘≥’, ‘>’, ‘≤’, ‘<’} to a node. We represent

the return node with a double-line circle. We
present a child edge with a single line and
present a descendant edge with a double line.
Due to space constraints and the complexity of
XPath, we assume that each terminal node of
tree pattern is an element or attribute with a
unique name. □

Example 2: Figure 2(a) depicts a tree pattern of
path expression car[price>“10000”]/series and
Fig. 2(b) depicts a tree pattern of path expression
car[//status=“Secret”]/price.

car

series price

"10000"
'>'

(a) (b)

car

status
price

"Secret"
'='

Fig. 2. Sample tree patterns

If an XML instance tree has nodes that are

satisfied by a tree pattern, all nodes of the tree
pattern must have a corresponding matching
node in the XML instance tree, and each
predecessor-successor relationship of nodes in
the tree pattern should be guaranteed by those
in the XML instance tree. This is also known as
the tree embedding [8]. Our definition of tree
embedding is inspired by the unordered path
inclusion problem defined by Kilpelainen.

Definition 4.3 (Tree Embedding): Let t = (Vt, Et,
Nmt, Txtt, rt, lblt, valt) be an instance tree, and p
= (Vp, Ep, Nmp, Txtp, rp, lblp, valp, oprp) be a tree
pattern. emb: Vp→Vt is an embedding from p
into t if and only if the following conditions
hold:

(1) emb is a function: x∈Vp ⇒ emb(x)∈Vt,
(2) emb is name preserving: for each x∈Vp,

lblp(x) = lblt(emb(x)),
(3) emb is ancestor-descendant preserving:

• (x, y) ∈ Ep is a child edge and y is a child

of x ⇒ (emb(x), emb(y))∈Et and emb(y) is
a child of emb(x), and

• (x, y) ∈Ep is a descendant edge and y is a

descendant of x ⇒ emb(y) is a descendant
of emb(x),

(4) emb is content filtering: for each x∈Vp
where emb(x)∈Vt is a terminal node and
oprp(x) is not {ε}, the Boolean expression:
valp(x) oprp(x) valt(emb(x)) is true. □

Let u be a node of p. We call the instance node

emb(u) a matched node of u.
Definition 4.4 (Images of Tree Patterns): An
image of p in instance tree t by an embedding
emb is an unordered tree w where (1) the root
node of w is a matched root node of p, (2) w
contains matched nodes of p, and (3) all matched
terminal nodes of p are terminal nodes of w. □

Note that for a fixed tree pattern p and a fixed
instance tree t, several embedding trees may

研究会Temp
－60－

exist, and several embeddings may lead to the
same embedding tree.
Example 3: Figure 3 depicts embedding of tree
pattern of car[//status=“Secret”]/price to an
instance tree. Figure 4 shows an image of this
tree pattern in the instance tree of Fig. 3.

When a source document instance is
transformed to a target document, we need to
transform path expression of an authorization
for the source into a path expression for the
target, where tree patterns are preserved by the
tree-instance mapping. The correspondence of
tree patterns of a target instance tree with tree
patterns of a source instance tree is defined as
follows.

"A1234"

"Public"

"A9182"

"Secret"

"EU" "15800" "13000"

"Spectrum (Saloon
with hybrid engine)"

"To be sold in
next summer."

"Jupiter (Sedan,
two doors)"

cid

status

series
currency price cost comment

carList

car

cid

status

car

series
..

status
price

"Secret"

name name

'='

car

Fig. 3. Embedding of tree patterns

"Secret"
status

"15800"
price

series

car

Fig. 4. An image of the tree pattern in instance tree of

Fig 3

Definition 4.5 (Corresponding Tree Patterns):
Let s and t be source and target instance trees,
respectively. Let imap be the instance-tree
mapping from source nodes of s to target nodes
of t. Let p be a tree pattern in s, p′ be a tree
pattern in t, nodeset(s, p) denote the set of source
instance nodes of s satisfied by p, and nodeset(t,
p′) denote the set of target instance nodes of t
satisfied by p′. Tree pattern p′ corresponds to p if
and only if for each v ∈ nodeset(s, p), there exists

imap(v) ∈ nodeset(t, p′). □

In many occasions, a target schema is evolved
from a source schema by (1) removing / adding
elements and attributes, (2) changing names and
types of elements and attributes, and (3) folding /

unfolding elements. We observe that it is
possible to find a tree pattern of a target
document instance corresponding to given tree
pattern of a source document instance by
schema-tree mapping under the following
schema and document transformations.

Definition 4.6 (Ancestor-Descendant
Relationship Preserving Schema
Transformation): Let S be a source schema tree,
and T be the target schema tree transformed
from S by a schema transformation F. Let VS
be the set of source schema nodes of S, VD be the
set of non-transfer nodes of S, VT be the set of
target schema nodes of T, and smap be
schema-tree mapping from VS to VT. F is an
ancestor-descendant relationship preserving
schema transformation (APST) if and only if the
following conditions hold:

• For each x, y ∈VS and for each smap(x),

smap(y)∈VT if y is a descendant of x then

smap(y) is a descendant of smap(x); and

• For each x∈VD if x is a non-terminal node

then the occurrence of x under its parent is
one. □

The first condition allows computing the
corresponding tree pattern straightforwardly.
The second condition restricts unfolding child
nodes of the same type. This kind of unfolding
may make it impossible to distinguish the
corresponding target instance nodes by using
only knowledge of schema-tree mapping. From
now on, we denote APST(S) as a target schema
tree transformed from a source schema tree S by
APST.

Definition 4.7 (Values and Ancestor-Descendant
Relationship Preserving Document Instance
Transformation): Let s = (V, E, Nm, Txt, r, lbl,
val) be a source instance tree, t = (V′, E′, Nm′,
Txt′, r′, lbl′, val′) be an instance tree transformed
from s by document instance transformation D.
Let Vs be the set of source instance nodes of s,
and Vt be the set of target instance nodes of t,
and imap be the instance-tree mapping from Vs
to Vt. D is value and ancestor-descendant
relationship preserving document instance
transformation (VAPDT) if and only if the
following conditions hold:

研究会Temp
－61－

• Value preserving: for each x∈Vs, val(x) =

val′(imap(x)), and

• Ancestor-descendant relation preserving: for

each x, y∈ Vs and y is a descendant of x ⇒
imap(y) is a descendant of imap(x). □

From now on, we denote VAPDT(s) as a target
instance tree transformed from a source instance
tree s by VAPDT.
Example 4: Figure 5 depicts a sample of VAPDT.
Nodes a, b, c, d, and f of source instance tree s are
mapped by imap to nodes a′, b′, c′, d′, and f′ of
target instance tree t, respectively. Node e of s is
not transferred to t while nodes x, y and z are
newly added nodes for t. Notice that
ancestor-descendant relationships among nodes a,
b, c, d, and f of source instance tree s are
preserved in t.

a

b
c

d
e

a'

z'
d'f'

x' c'

y'

Source instance tree s Target instance tree t

VAPDT
b'f

imap

The node
located by p

The node
located by p'

Fig. 5. A sample of VAPDT

It is important to note that the first condition of

Definition 4.6 is not sufficient to forbid swapping
of child nodes of the same type under different
parent nodes of an instance tree. For example,
suppose that nodes b1, c1 are child nodes of node a1
and nodes b2, c2 are child nodes of node a2.

Conditions of Definition 4.6 cannot forbid
swapping between child nodes b1 and b2. This
swapping makes it impossible to compute the
corresponding tree patterns of target instance tree
by using only schema-tree mapping. Therefore, we
need Definition 4.7 to forbid this kind of swapping.

Definition 4.8 (Matching Subtrees): Let s be a
source instance tree, t be a target instance tree,
and imap be the instance-tree mapping from
source nodes of s to target nodes of t. Let x be a
subtree rooted by node v of s, and y be a subtree
rooted by v′ of t. Subtree y is a matching subtree
of x if and only if (1) v′ = imap(v) and (2) each
source instance node in subtree x is mapped by

imap to a target instance node of subtree y. □

Lemma 1 (Matching Subtrees Located by
Corresponding Tree Patterns): Let S be a source
schema tree, T be APST(S), s be an instance tree
of S, and t be VAPDT(s) that is an instance of T,
and imap be the instance-tree mapping from the
set of source nodes of s to the set of target nodes
of t. Let p that is a tree pattern locating node v
of s, and p′ be a tree pattern locating node v′ of t,
and p′ correspond to p. Then subtree y whose
root node located by p′ matches with subtree x
whose root node located by p. □

5. Content-Based Authorization

Transformation
In this section, we present two algorithms. The

first is an algorithm that computes a tree
pattern of a target instance tree that corresponds
to a given tree pattern of a source tree instance.
The second is an algorithm that transforms
content-based authorizations of a source DTD
instance into authorizations for a target DTD
instance. From now on, we use the term
“authorizations” to refer to content-based
authorizations. We call a path that starts from
an ancestor node of an instance tree going down
to a descendant node a linear path. We define a
linear path of the target instance tree that
matches with a linear path of the source instance
tree as follows.

Definition 5.1 (Matching Linear Paths): Let S be a
source schema tree, T be a target schema tree, VS
be the set of source schema nodes of S, VT be the
set of target schema nodes of T, and smap be the
schema-tree mapping from VS to VT. Let p = (V,
E, Nm, Txt, r, lbl, val, opr) be a linear path for
instances of S, p′ = (V′, E′, Nm′p, Txt′, r′, lbl′, val′,
opr′) be a linear path for instances of T, and v and
v′ be terminal nodes of p and p′, respectively. Tree
pattern p′ for instances of T is a matching linear
path of p for instances of S if and only if the
following conditions hold:

• r′ = smap(r), v′ = smap(v), val′(v′) =
val(smap(v)) and opr′(v′) = opr(smap(v)); and

• for each x, y ∈ VS, smap(x), smap(y) ∈ VT, y
is a descendant of x, smap(y) is a descendant
of smap(x). □

研究会Temp
－62－

Note that a matching linear path p′ should be
verified by the security manager since sometimes
the semantics of information located by p′ may be
different from that located by p.

Lemma 2 (Property of Matching Linear Paths
under APST and VAPDT): Let S be a source
schema tree, T be APST(S), s be an instance tree
of S, and t be VAPDT(s) that is an instance of T.
For p′ of t that is a matching linear path of p of s,
p′ corresponds to p. □
Example 5: Linear paths a′/x′/b′, a′/c′/z′/d′ and a′/c′/f′
for target instance tree t of Fig.5 match with a/b,
a/c/d and a/c/e/f for source instance tree s,
respectively.

We present the TreePatternTrans algorithm (depicted
in Fig. 6) that transforms a tree pattern for a source
instance tree s of source schema S into the corresponding
tree pattern for VAPDT(s) that is an instance of APST(S).
We assume that there is no deleted terminal node in a
given tree patterns since tree pattern transformation of
this case needs intervention by the security manager.

Theorem 1 (Corresponding Tree Pattern
Computation): Let S be a source schema tree, T be
APST(S), and smap be a schema-tree mapping
from the set of source schema nodes of S to the set
of target schema nodes of T, and p be a tree
pattern of a source instance of S. Then, for a target
instance tree of T that is transformed from a
source instance tree of S by VAPDT, the output
tree pattern p′ computed by TreePatternTrans
corresponds to p. □

We now present the AuthTrans algorithm

depicted in Fig. 7 for transforming authorizations
for a source instance s of source schema S into
authorizations for VAPDT(s) which is an instance
of APST(S). In Fig. 7, the closed-policy [7] is used
for defining the default authorization. Therefore,
we define negative authorizations with highest
priority value for newly added schema elements of
target DTD. However, our algorithm can be easily
adapted to the case when the default
authorization is based on other policies. As
depicted in Fig.7, AuthTrans can transform
authorizations for all source instances of a source
schema into those for all instances of a target
schema by setting new-target to be identification
of the target schema. We use the following

example for explaining how AuthTrans performs
authorization transformation.

TreePatternTrans (S, T, smap, p, p', result)
Input:
 (1) Source schema tree S,
 (2) target schema tree T transformed from S by APST,
 (3) schema tree mapping smap from the set of source schema nodes of S
 into the set of target schema nodes of T, and
 (4) input tree pattern p for a source instance of S.
Output:
 (1) The output tree pattern p' for T 's instance that is transformed
 from the instance of S by VAPDT, and
 (2) result = NO if we cannot find tree pattern that corresponds to p.
 Otherwise, result = YES.
Process:
 - Change p into p" by expanding all descendant edges into child edges.
 - Suppose that r is the root node of p", and v1, v2, .. , vm are terminal
 nodes of p".
 - result = NO.
 - Decompose p" into simple paths x1, x2, .. , xm where xi () is a
 simple path from r to vi.
 - If there is a matching simple path of T for each xi then
 -- Let yi () be the matching simple path of T for xi.
 -- Set value and operator symbol of terminal node of yi ()
 by value and symbol of terminal node of xi, respectively.
 -- Combine y1, y2, .. , ym into tree pattern p'.
 -- Mark the return node of p' that is the matched return node of p.
 -- result = YES.
 return result, p'

mi ≤≤1

mi ≤≤1

mi ≤≤1

Fig. 6. The TreePatternTrans algorithm

AuthTrans(S, T, VA, smap, new-target, AUTH, AUTH')
Input:
 (1) Source schema tree S,
 (2) target schema tree T transformed from S by APST,
 (3) a set VA of newly added schema element of T,
 (4) schema-tree mapping smap from the set source schema nodes of S to
 the set of target nodes of T,
 (5) new-target that is the new target id for transformed authorizations, and
 (6) a set AUTH of authorization for an instance of S.
Output: The set AUTH' of authorizations for target instance of T that is
 transformed from the source instance of S by VAPDT.
Process:
 - Set AUTH' to the empty set.
 - Do the following steps until AUTH become empty
 -- Get authorization ai from AUTH.
 -- result = NO.
 -- Let pi be a tree pattern of path expression of ai, and
 vi be the return node of pi.
 -- If there exists no smap(vi) in T then
 --- Create new authorizations with the same operation, sign, priority
 and type as those of ai while path expressions of the new
 authorizations locate child nodes of vi.
 ---- Set type of the new authorization to local if its path expression
 locates a terminal node.
 ---- Add the new authorizations to AUTH.
 -- else
 --- Call TreePatternTrans (pi, S, T, smap, result, pi').
 --- If result = YES then
 ---- Create a new authorization a'i with the same operation, sign,
 priority and type as those of ai. Set path expression of a'i to
 be the path expression represented by pi'.
 ---- Set target of a'i to new-target. Add a'i to AUTH'.
 -- Remove ai from R.
 - End Do
 - For each vk in VA do the followings:
 -- Generate a permission rule a'k that has new-target id, all operations,
 negative sign, local type, the highest priority and path expression
 locating vk.
 -- Add a'k to AUTH'.
 - End For
 return AUTH'

Fig. 7. The AuthTrans algorithm

研究会Temp
－63－

Theorem 2 (Authorization Preservation): Let S
be a source schema tree, T be APST(S), VA be the
set of newly added nodes of T, smap be a
schema-tree mapping from the set of source
schema nodes of S to the set of target schema
nodes of T. Let new-target be a target
identification for transformed authorizations,
and AUTH be a set of authorizations for an
instance of S. Given S, T, VA, smap and AUTH,
the set AUTH′ of authorizations (computed by
AuthTrans for an instance of T derived from the
source instance by VAPDT) preserves AUTH. □

6. Conclusions and Future Work
Content-based authorization is crucial for

various applications since it can provide data
access control that matches with requirements of
applications. In order to perform content-based
authorization transformation, we have proposed
an algorithm that transforms tree pattern
representing path expression of a source
authorization into the corresponding tree pattern
of the target DTD instance by using schema-tree
mapping under certain schema and data
transformations. This algorithm is based on the
paradigm of unordered tree inclusion. Based on
tree pattern transformation algorithm, we have
proposed an algorithm that automatically
computes authorizations for a target DTD
instance from given authorizations of a source
DTD instance. The goal of authorization
transformation is that authorizations for the
target DTD instance preserve the same access
restriction of authorizations for the source DTD
instance. Our algorithm can be easily adapted to
existing XML access control models.

References
[1] E. Bertino, S. Castano, S. Ferrari and M. Mesiti.

“Specifying and Enforcing Access Control Policies for
XML Document Sources,” World Wide Web, Baltzer
Science Publishers, Netherlands, vol. 3, no. 3, 2000.

[2] E. Bertino, S.Castano, E.Ferrari, “On specifying
security policies for web documents with an
XML-based language”, In Proc. of the Sixth ACM
Symposium on Access control models and
technologies, May 2001

[3] S. Chatvichienchai, M. Iwaihara, Y. Kambayashi,
“Towards Translating Authorizations for
Transformed XML Documents,” in Proc. of the 3rd
Int. Conf. on Web Information Systems Engineering

(WISE 2002), Singapore, pp.291-300, Dec 2002.
[4] E. Damiani, S. Vimercati, S. Paraboschi, and P.

Samarati. “A Fine-Grained Access Control System
for XML Documents”, ACM Transaction on
Information and System Security, Vol. 5, No. 2, pp.
169–202, May 2002.

[5] H.H. Do, E. Rahm: “COMA – A System for Flexible
Combination of Schema Matching Approach,” In
Proc. Of VLDB 2002, Hong Kong, pp. 610-621, Aug
2002.

[6] M. Hitchens and V. Varadharajan, “RBAC for XML
Document Stores” Information and
Communications Security, Third International
Conference, ICICS 2001, Xian, China, November
13-16, 2001.

[7] S. Jajodia, P. Samarati, V. S. Subrahmanian, E.
Bertino . “A unified framework for enforcing
multiple access control policies,” in Proc. of the 1997
ACM SIGMOD Int. Conf. on Management of data,
Arizona, pp.474-485, 1997.

[8] P. Kilpelainen and H. Mannila. “Ordered and
unordered tree inclusion” Siam Journal on
Computing, pp.340-356, 1995.

[9] M. Kudo and S. Hada. “XML Document Security
based on Provisional Authorization”. Proceedings of
the 7th ACM conference on Computer and
Communications Security, pp. 87-96, Athens Greece,
November 2000.

[10] J. Madhavan, P.A. Bernstein and E. Rahm.
“Generic Schema Matching with Cupid,” in Proc. of
the 27th VLDB Conference, Roma, Italy, pp.49-58,
2001.

[11] H. Su, H. Kuno, E.A. Rundensteiner, “Automating
the Transformation of XML Documents” Advances
in Web-Age Information Management, Second
International Conference WIDM 2001: 68-75, July
9-11, 2001.

[12] W3C (1999). XML Path Language (XPath) Version
1.0. Available at http://www.w3c.org/TR/xpath
(November 1999).

[13] W3C (2000). Extensible Markup Language (XML)
1.0 (Second Edition). Available at
http://www.w3c.org/TR/REC-xml (October 2000).

[14] W3C (2001). XML Schema. Available at
http://www.w3c.org/XML/Schema, 2001.

研究会Temp
－64－

