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Abstract: Since authorization rules (authorizations, for short) use path 
expressions of XPath for locating data in documents, authorization definition is 
related to the document format. However, the format of XML documents tends to 
change by various reasons such as application extension and information 
exchange between organizations. Therefore, authorizations must be revised 
whenever they become incompatible with a new format of the document. We 
define sufficient conditions for schema and document transformations that allow 
transforming authorizations without access to individual source and target XML 
documents. We propose an algorithm that computes authorizations for a target 
DTD instance from given RBAC authorizations of a source DTD instance and 
schema mapping information under certain schema and document 
transformations while preserving the authorization requirement of the source 
DTD instance.

1. Introduction 
As XML [14] is a popular format for presenting 

and exchanging data on the web, it plays a crucial 
role in the new Internet applications ranging from 
e-commerce to digital government. Whenever 
XML data is read and modified by multiple users, 
access control of the clients’ access to XML data is 
an important topic. Most contributions [1, 9, 2, 6, 
4] use path expressions of XPath [12] for locating 
nodes in XML documents, access authorizations of 
users can be defined based on the content of the 
document itself or on the structure of the XML 
document. Content-based authorizations for XML 
documents are defined as regulating accesses by 
not only the structure of documents, but also the 
contents of the documents. An essential feature of 
content-based authorizations is value-dependent 
meaning that an authorization locates data in an 
XML document by a path expression, which 
contains predicates comparing values of elements 
or attributes. However, the structures of XML 
documents tend to change over time by various 

reasons, such as application expansion, and data 
exchange among organizations using different 
formats. Whenever authorizations become 
incompatible with a new structure of XML 
documents, the security manager needs to 
transform authorizations for source documents 
into those for target documents. 

To the best of our knowledge, our previous work 
[3] is the first that has discussed the problem of 
transforming authorizations. In [3] we have 
proposed two authorization transformation 
algorithms. The first is an algorithm that 
transforms authorizations of a source XML 
document into those for a target XML document 
by using document tree mapping. The second is an 
algorithm that transforms value-independent 
authorizations for a set of documents conforming 
to a source DTD to those for a set of documents 
conforming to a target DTD by using schema-tree 
mapping information. Schema-tree mapping is a 
mapping that describes unambiguously which 
nodes of source DTD tree correspond to which 
nodes in target DTD tree. Schema-tree mapping 
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can be obtained from schema matching tools such 
as Cupid [10], COMA[5] and Xtra [11]. Note that 
the second algorithm focuses on the case when a 
path expression locates all instances of an element 
or attribute. However, our previous works have 
not discussed the problem of transforming 
content-based authorizations by schema-tree 
mapping.  

The objective of this paper is to propose a novel 
algorithm that computes content-based 
authorizations for target DTD instances from 
given content-based authorizations for source DTD 
instances by using schema-tree mapping while 
preserving access constraints of source DTD 
instances. In this paper, we introduce a new 
paradigm of technical challenge in applying 
unordered tree inclusion in authorization 
transformation. The key idea of authorization 
transformation is that we represent path 
expressions of authorizations by tree patterns. We 
transform a tree pattern of a source XML 
document into the corresponding tree pattern for a 
target XML document by using schema-tree 
mapping. One important problem is to identify the 
conditions of schema and data transformation that 
allows tree pattern transformation such that 
transformed tree pattern locates target document 
nodes derived from source document nodes located 
by the source tree pattern. Our work employs the 
RBAC model for XML documents proposed by 
Hitchens et al [6] because the RBAC model 
provides a very flexible set of mechanisms for 
managing the access control of a complex system 
with many users, objects and applications.  

The rest of the paper is organized as follows. 
Section 2 gives basic concepts of XML documents 
and DTDs. Section 3 describes the RBAC for XML 
documents.  Section 4 discusses sufficient 
conditions for schema and document 
transformations. Section 5 presents content-based 
authorization transformation. Finally, Section 6 
presents our conclusions and future work. 
 

2. XML Documents and DTDs 
An XML document consists of three parts: an 

XML declaration, a Document Type Definition 
(DTD), and an XML document instance. An 
XML document instance is a tagged document 
that is composed of a sequence of nested 

elements, each delimited by a pair of start and 
end tags or by an empty tag. An element can 
have attributes attached to it. XML document 
instances can be classified into two categories: 
well-formed and valid. An XML document 
instance is well-formed if it obeys the syntax of 
XML. A well-formed document is valid if it 
conforms to a proper DTD. A DTD contains a 
formal definition of a particular type of XML 
documents. In this paper, we assume that a DTD 
is an external file. Our algorithm can be easily 
adapted for XML schema [14]. We abstract 
DTDs as labelled trees that are defined as 
follows. 
Definition 2.1 (Schema Trees): A schema tree is 
a finite node labelled and edge labelled tree S = 
(V, E, Nm, r, lbl, C, fC), where V is a set of 
vertices (nodes) representing elements and 
attributes of the DTD, E ⊆ V × V is a set of edges, 
Nm is a set of element and attribute names, r is 
the root of the DTD, lbl is a labelling function 
assigning a name from Nm to a node in V, C is 
the set {+, *, ?} called cardinality, and fC is a 

labelling function assigning a label from C ∪ {ε} 

to an edge in E.  □ 

+

(a)

?

*

(b)

?

carList

car

cid

status

series
currency price cost comment

AutoList

AutoMobile

Code Flag Model

Currency Price Cost

SalesInfo

Remark

Element
Attribute

name

Fig.1 (a) A source schema tree and (b) a target schema 
tree 

 
Figure 1 depicts an example of schema trees 

for source and target DTDs. It should be clear 
that edge labels indicate the occurrence of 
sub-element to be expected: +, *, ? meaning “one 
or more”, “zero or more”, and “zero or one”, 
respectively. An edge with no label indicates that 
the occurrence of sub-element is “exactly one”. 
We call schema tree of a source DTD a source 
schema tree and call schema tree of a target 
DTD a target schema tree. We define 
relationship between nodes of source and target 
schema trees by a mapping that unambiguously 
describes which nodes in the source schema tree 
correspond to which nodes in the target schema 
tree. 

Let S and T be source and target schema trees, 
respectively. Let V be the set of schema nodes of 
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S, V' be the set of schema nodes of T, VD be the 
set of schema nodes of S that are not transferred 
to T, and VA be the set of schema nodes that are 
newly added to T. We call V – VD the set of 
source schema nodes. We also call V' – VA the set 
of target schema nodes. For VA, the security 
manager is requested to define authorization for 
each schema node in VA. Otherwise, 
authorizations of all schema nodes of VA are 
defined by the default authorization. For VD, the 
security manager is requested to revise 
definition of the authorizations that are based on 
values of schema nodes in VD. 
Definition 2.2 (Schema-Tree Mapping): Let S and 
T be source and target schema trees, respectively. 
Let VS be the set of source schema nodes of S, 
and VT be the set of target schema nodes of T. 
smap: VS →VT is a total and one-to-one mapping 
from the nodes in VS to the nodes in VT.  □ 

Suppose that v is a source schema node of S, v' 
is a target schema node of T, s is an instance of S, 
and t is an instance of T. Remember that if 
smap(v) = v', then we assume that each instance 
of v in s is transferred to be an instance of v' in t.  
Namely, there is no information loss from 
transferring instances of a source schema node 
to the corresponding target schema node. We 
abstract XML document instances as labelled 
trees (called instance trees) that are defined as 
follows. 
Definition 2.3 (Instance Trees): An instance tree 
t is a finite node labelled tree represented by a 
tuple of (V, E, Nm, Txt, r, lbl, val), where V is a 
set of nodes of t, E ⊆ V × V is a set of edges, Nm 
is a set of element and attribute names, Txt is a 
set of values, r is the root of the XML document 
instance, lbl is a labelling function assigning a 
name from Nm to a node, and val is a labeling 
function assigning a value from Txt ∪ {ε} to a 
node.   □ 

We call an instance tree for a source document 
instance a source instance tree and call an 
instance tree for a target document instance a 
target instance tree. We call a node of instance 
tree an instance node. 
 

3. RBAC for XML Documents 
An authorization indicates the right to perform a 

specific operation on a particular data object. 
Authorization in the model can be fine-grained (e.g. 
at the element level) or coarse-grained (e.g. at level 

of entire document). Authorizations are then 
grouped together within the roles themselves. 
Definition 3.1 (Authorizations): An authorization 
is a 7-tuple of the following form: <pname, target, 
path, action, sign, prop, priority>, where pname is 
a permission name, target is a list of XML 
documents or a DTD or a schema, path is an 
optional path expression of XPath identifying 
elements to which the authorization apply, action 
∈ {read, write, create, delete, all}, sign ∈ {‘+’, ‘-’} 
specifies whether the authorization grants (‘+’) or 
disallows (‘-’) access, prop ∈ {local, recursive}, and 
priority is an optional value specifying the priority 
of the authorization. The default value of priority 
is 0. The highest value of priority is 99. □ 

If target is a DTD (or a schema) then the 
authorization applies to all instances of the DTD 
(or the schema, respectively). Otherwise, the 
authorization applies to a specific XML document. 
If the prop is local then the authorization only 
applies to the attributes, links and data of the 
specified elements (as defined by path). Otherwise, 
the authorization applies to the specified elements, 
their direct and indirect sub-elements and 
attributes. Conflict resolution of the model is based 
on priority of authorizations. If there is a conflict 
between a set of authorizations on an element 
then the authorizations with the highest priority 
are selected. If authorizations have the same 
priority, negative authorizations override positive 
authorizations.  
Definition 3.2 (Roles): A role is a 3-tuple of the 
form: (role_name, child_roles, pnames), where 
role_name is a role name, child_role is an optional 
list of child roles, and pnames is an optional list of 
permission names. Note that the parent role 
inherits access privileges from its child roles.  □ 
Example 1: Consider the following 
authorizations and roles defined for all instances 
of carList.dtd depicted in Fig. 1(a). Role 
roleClient is permitted to read car information 
except cost of all cars and price of the cars that 
are classified as secret. 
Authorizations:  

<pn1, carList.dtd, carList, read, +, local, 0> 
<pn2, carList.dtd, car/cost, read, -, recursive, 1> 
<pn3, carList.dtd, car[series/status="Secret"]  

/price, read, -, recursive, 1> 
Roles: (roleClient, , {pn1, pn2, pn3})  
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4. Sufficient Conditions for Schema and 

Document Transformations 
We first give the definition of instance-tree 

mapping which identifies the relationship 
between nodes of two instance trees.  

Let s and t be source and instance trees, 
respectively. Let V be the set of instance nodes of 
s, V' be the set of instance nodes of t, Vd be the 
set of instance nodes of s that are not transferred 
to t, and Va be the set of schema nodes that are 
newly added to t. We call V – Vs the set of source 
instance nodes. We also call V' – Va a the set of 
target instance nodes. 

 
Definition 4.1 (Instance-Tree Mapping): Let s 
and t be source and target instance-trees, 
respectively. Let Vs be the set of source instance 
nodes of s, and Vt be the set of target instance 
nodes of t. imap: Vs →Vt is a total and one-to-one 
mapping from Vs to Vt.  □ 

We represent path expressions of 
authorizations by tree patterns that are defined 
as follows. 
Definition 4.2 (Tree Patterns): A tree pattern p is 
an unordered tree represented by a tuple of (V, E, 
Nm, Txt, r, lbl, val, opr), where V is a finite set of 

nodes, E ⊆ V × V is a finite set of edges, Nm is a 

set of element and attribute names, Txt is a set 
of values, r is a node that forms the root of p, lbl 
is a labelling function assigning a name from 
Nm to a node, val is a labelling function 

assigning a value from Txt ∪ {ε} to a node, and 

opr is a labelling function assigning a symbol 

from {‘=’, ‘≠’, ‘≥’, ‘>’, ‘≤’, ‘<’} to a node. We represent 

the return node with a double-line circle. We 
present a child edge with a single line and 
present a descendant edge with a double line. 
Due to space constraints and the complexity of 
XPath, we assume that each terminal node of 
tree pattern is an element or attribute with a 
unique name.  □ 
 
Example 2: Figure 2(a) depicts a tree pattern of 
path expression car[price>“10000”]/series and 
Fig. 2(b) depicts a tree pattern of path expression 
car[//status=“Secret”]/price. 

car

series price

"10000"
'>'

(a) (b)

car

status
price

"Secret"
'='

 
Fig. 2. Sample tree patterns 

 
If an XML instance tree has nodes that are 

satisfied by a tree pattern, all nodes of the tree 
pattern must have a corresponding matching 
node in the XML instance tree, and each 
predecessor-successor relationship of nodes in 
the tree pattern should be guaranteed by those 
in the XML instance tree. This is also known as 
the tree embedding [8]. Our definition of tree 
embedding is inspired by the unordered path 
inclusion problem defined by Kilpelainen. 

 
Definition 4.3 (Tree Embedding): Let t = (Vt, Et, 
Nmt, Txtt, rt, lblt, valt) be an instance tree, and p 
= (Vp, Ep, Nmp, Txtp, rp, lblp, valp, oprp) be a tree 
pattern.  emb: Vp→Vt is an embedding from p 
into t if and only if  the following conditions 
hold: 

(1) emb is a function: x∈Vp ⇒ emb(x)∈Vt, 
(2) emb is name preserving: for each x∈Vp, 

lblp(x) = lblt(emb(x)), 
(3) emb is ancestor-descendant preserving:   

• (x, y) ∈ Ep is a child edge and y is a child 

of x ⇒ (emb(x), emb(y))∈Et and emb(y) is 
a child of emb(x), and 

• (x, y) ∈Ep is a descendant edge and y is a 

descendant of x ⇒ emb(y) is a descendant 
of emb(x), 

(4) emb is content filtering: for each x∈Vp 
where emb(x)∈Vt is a terminal node and 
oprp(x) is not {ε}, the Boolean expression: 
valp(x) oprp(x) valt(emb(x)) is true.  □ 

 
Let u be a node of p. We call the instance node 

emb(u) a matched node of u. 
Definition 4.4 (Images of Tree Patterns): An 
image of p in instance tree t by an embedding 
emb is an unordered tree w where (1) the root 
node of w is a matched root node of p, (2) w 
contains matched nodes of p, and (3) all matched 
terminal nodes of p are terminal nodes of w.  □ 

Note that for a fixed tree pattern p and a fixed 
instance tree t, several embedding trees may 
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exist, and several embeddings may lead to the 
same embedding tree. 
Example 3: Figure 3 depicts embedding of tree 
pattern of car[//status=“Secret”]/price to an 
instance tree. Figure 4 shows an image of this 
tree pattern in the instance tree of Fig. 3. 

When a source document instance is 
transformed to a target document, we need to 
transform path expression of an authorization 
for the source into a path expression for the 
target, where tree patterns are preserved by the 
tree-instance mapping. The correspondence of 
tree patterns of a target instance tree with tree 
patterns of a source instance tree is defined as 
follows. 
 

"A1234"

"Public"

"A9182"

"Secret"

"EU" "15800" "13000"

"Spectrum (Saloon
with hybrid engine)"

"To be sold  in
next summer."

"Jupiter (Sedan,
two doors)"

cid

status

series
currency price cost comment

carList

car

cid

status

car

series
..

status
price

"Secret"

name name

'='

car

Fig. 3. Embedding of tree patterns 

"Secret"
status

"15800"
price

series

car

 
Fig. 4. An image of the tree pattern in instance tree of 

Fig 3 
 
Definition 4.5 (Corresponding Tree Patterns): 
Let s and t be source and target instance trees, 
respectively. Let imap be the instance-tree 
mapping from source nodes of s to target nodes 
of t. Let p be a tree pattern in s, p′ be a tree 
pattern in t, nodeset(s, p) denote the set of source 
instance nodes of s satisfied by p, and nodeset(t, 
p′) denote the set of target instance nodes of t 
satisfied by p′. Tree pattern p′ corresponds to p if 
and only if for each v ∈ nodeset(s, p), there exists 

imap(v) ∈ nodeset(t, p′).  □ 

In many occasions, a target schema is evolved 
from a source schema by (1) removing / adding 
elements and attributes, (2) changing names and 
types of elements and attributes, and (3) folding / 

unfolding elements. We observe that it is 
possible to find a tree pattern of a target 
document instance corresponding to given tree 
pattern of a source document instance by 
schema-tree mapping under the following 
schema and document transformations. 
 
Definition 4.6 (Ancestor-Descendant 
Relationship Preserving Schema 
Transformation): Let S be a source schema tree, 
and T be the target schema tree transformed 
from S by a schema transformation F.  Let VS 
be the set of source schema nodes of S, VD be the 
set of non-transfer nodes of S, VT be the set of 
target schema nodes of T, and smap be 
schema-tree mapping from VS to VT. F is an 
ancestor-descendant relationship preserving 
schema transformation (APST) if and only if the 
following conditions hold:  

• For each x, y ∈VS and for each smap(x), 

smap(y)∈VT if y is a descendant of x then 

smap(y) is a descendant of smap(x); and  

• For each x∈VD if x is a non-terminal node 

then the occurrence of x under its parent is 
one.  □ 

The first condition allows computing the 
corresponding tree pattern straightforwardly. 
The second condition restricts unfolding child 
nodes of the same type. This kind of unfolding 
may make it impossible to distinguish the 
corresponding target instance nodes by using 
only knowledge of schema-tree mapping. From 
now on, we denote APST(S) as a target schema 
tree transformed from a source schema tree S by 
APST. 
 
Definition 4.7 (Values and Ancestor-Descendant 
Relationship Preserving Document Instance 
Transformation): Let s = (V, E, Nm, Txt, r, lbl, 
val) be a source instance tree, t = (V′, E′, Nm′, 
Txt′, r′, lbl′, val′) be an instance tree transformed 
from s by document instance transformation D.  
Let Vs be the set of source instance nodes of s, 
and Vt be the set of target instance nodes of t, 
and imap be the instance-tree mapping from Vs 
to Vt. D is value and ancestor-descendant 
relationship preserving document instance 
transformation (VAPDT) if and only if the 
following conditions hold: 
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• Value preserving: for each x∈Vs, val(x) = 

val′(imap(x)), and  

• Ancestor-descendant relation preserving: for 

each x, y∈ Vs and y is a descendant of x ⇒ 
imap(y) is a descendant of imap(x).  □ 

From now on, we denote VAPDT(s) as a target 
instance tree transformed from a source instance 
tree s by VAPDT. 
Example 4: Figure 5 depicts a sample of VAPDT. 
Nodes a, b, c, d, and f of source instance tree s are 
mapped by imap to nodes a′, b′, c′, d′, and f′ of 
target instance tree t, respectively. Node e of s is 
not transferred to t while nodes x, y and z are 
newly added nodes for t. Notice that 
ancestor-descendant relationships among nodes a, 
b, c, d, and f of source instance tree s are 
preserved in t. 

 

a

b
c

d
e

a'

z'
d'f'

x' c'

y'

Source instance tree s Target instance tree t

VAPDT
b'f

imap

The node
located by p

The node
located by p'

 
Fig. 5. A sample of VAPDT 

 
It is important to note that the first condition of 

Definition 4.6 is not sufficient to forbid swapping 
of child nodes of the same type under different 
parent nodes of an instance tree. For example, 
suppose that nodes b1, c1 are child nodes of node a1 
and nodes b2, c2 are child nodes of node a2. 

Conditions of Definition 4.6 cannot forbid 
swapping between child nodes b1 and b2. This 
swapping makes it impossible to compute the 
corresponding tree patterns of target instance tree 
by using only schema-tree mapping. Therefore, we 
need Definition 4.7 to forbid this kind of swapping. 
 
Definition 4.8 (Matching Subtrees): Let s be a 
source instance tree, t be a target instance tree, 
and imap be the instance-tree mapping from 
source nodes of s to target nodes of t.  Let x be a 
subtree rooted by node v of s, and y be a subtree 
rooted by v′ of t. Subtree y is a matching subtree 
of x if and only if (1) v′ = imap(v) and (2) each 
source instance node in subtree x is mapped by 

imap to a target instance node of subtree y.  □ 
 
Lemma 1 (Matching Subtrees Located by 
Corresponding Tree Patterns): Let S be a source 
schema tree, T be APST(S), s be an instance tree 
of S, and t be VAPDT(s) that is an instance of T, 
and imap be the instance-tree mapping from the 
set of source nodes of s to the set of target nodes 
of t.  Let p that is a tree pattern locating node v 
of s, and p′ be a tree pattern locating node v′ of t, 
and p′ correspond to p. Then subtree y whose 
root node located by p′ matches with subtree x 
whose root node located by p.   □ 
 

5. Content-Based Authorization 

Transformation 
In this section, we present two algorithms. The 

first is an algorithm that computes a tree 
pattern of a target instance tree that corresponds 
to a given tree pattern of a source tree instance. 
The second is an algorithm that transforms 
content-based authorizations of a source DTD 
instance into authorizations for a target DTD 
instance. From now on, we use the term 
“authorizations” to refer to content-based 
authorizations. We call a path that starts from 
an ancestor node of an instance tree going down 
to a descendant node a linear path. We define a 
linear path of the target instance tree that 
matches with a linear path of the source instance 
tree as follows. 
 
Definition 5.1 (Matching Linear Paths): Let S be a 
source schema tree, T be a target schema tree, VS 
be the set of source schema nodes of S, VT be the 
set of target schema nodes of T, and smap be the 
schema-tree mapping from VS to VT.  Let p = (V, 
E, Nm, Txt, r, lbl, val, opr) be a linear path for 
instances of S, p′ = (V′, E′, Nm′p, Txt′, r′, lbl′, val′, 
opr′) be a linear path for instances of T, and v and 
v′ be terminal nodes of p and p′, respectively. Tree 
pattern p′ for instances of T is a matching linear 
path of p for instances of S if and only if the 
following conditions hold: 

• r′ = smap(r), v′ = smap(v), val′(v′) = 
val(smap(v)) and opr′(v′) = opr(smap(v)); and 

• for each x, y ∈ VS, smap(x), smap(y) ∈ VT, y  
is a descendant of x, smap(y) is a descendant 
of smap(x).  □ 
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Note that a matching linear path p′ should be 
verified by the security manager since sometimes 
the semantics of information located by p′ may be 
different from that located by p.  
 
Lemma 2 (Property of Matching Linear Paths 
under APST and VAPDT): Let S be a source 
schema tree, T be APST(S), s be an instance tree 
of S, and t be VAPDT(s) that is an instance of T. 
For p′ of t that is a matching linear path of p of s, 
p′ corresponds to p.  □ 
Example 5: Linear paths a′/x′/b′, a′/c′/z′/d′ and a′/c′/f′ 
for target instance tree t of Fig.5 match with a/b, 
a/c/d and a/c/e/f for source instance tree s, 
respectively. 

We present the TreePatternTrans algorithm (depicted 
in Fig. 6) that transforms a tree pattern for a source 
instance tree s of source schema S into the corresponding 
tree pattern for VAPDT(s) that is an instance of APST(S). 
We assume that there is no deleted terminal node in a 
given tree patterns since tree pattern transformation of 
this case needs intervention by the security manager. 
 
Theorem 1 (Corresponding Tree Pattern 
Computation): Let S be a source schema tree, T be 
APST(S), and smap be a schema-tree mapping 
from the set of source schema nodes of S to the set 
of target schema nodes of T, and p be a tree 
pattern of a source instance of S. Then, for a target 
instance tree of T that is transformed from a 
source instance tree of S by VAPDT, the output 
tree pattern p′ computed by TreePatternTrans 
corresponds to p.  □ 

 
We now present the AuthTrans algorithm 

depicted in Fig. 7 for transforming authorizations 
for a source instance s of source schema S into 
authorizations for VAPDT(s) which is an instance 
of APST(S). In Fig. 7, the closed-policy [7] is used 
for defining the default authorization. Therefore, 
we define negative authorizations with highest 
priority value for newly added schema elements of 
target DTD. However, our algorithm can be easily 
adapted to the case when the default 
authorization is based on other policies. As 
depicted in Fig.7, AuthTrans can transform 
authorizations for all source instances of a source 
schema into those for all instances of a target 
schema by setting new-target to be identification 
of the target schema. We use the following 

example for explaining how AuthTrans performs 
authorization transformation. 

 

TreePatternTrans (S, T, smap, p, p', result)
Input:
   (1) Source schema tree S,
   (2) target schema tree T transformed from S by APST,
   (3) schema tree mapping smap from the set of source schema nodes of S
         into the set of target schema nodes of T, and
   (4) input tree pattern p for a source instance of S.
Output:
   (1) The output tree pattern p' for T 's instance that is transformed
         from the instance of S by VAPDT, and
   (2) result = NO if we cannot find tree pattern that corresponds to p.
         Otherwise, result = YES.
Process:
    - Change p into p" by expanding all descendant edges into child edges.
    - Suppose that r is the root node of p", and v1, v2, .. , vm are terminal
       nodes of p".
    - result = NO.
    - Decompose p" into simple paths x1, x2, .. , xm where xi (             ) is a
      simple path from r to vi.
   - If there is a matching simple path of T for each xi then
        -- Let yi (              ) be the matching simple path of T for xi.
         -- Set value and operator symbol of terminal node of yi (            )
             by value and symbol of terminal node of xi, respectively.
         -- Combine y1, y2, .. , ym into tree pattern p'.
         -- Mark the return node of p' that is the matched return node of p.
         -- result = YES.
   return result, p'

mi ≤≤1

mi ≤≤1

mi ≤≤1

Fig. 6. The TreePatternTrans algorithm 
 

AuthTrans(S, T, VA, smap, new-target, AUTH, AUTH')
Input:
   (1) Source schema tree S,
   (2) target schema tree T transformed from S  by APST,
   (3) a set VA of newly added schema element of T,
   (4) schema-tree mapping smap from the set source schema nodes of S to
         the set of target nodes of T,
   (5) new-target that is the new target id for transformed authorizations, and
   (6) a set AUTH of authorization for an instance of S.
Output: The set AUTH' of authorizations for target instance of T that is
              transformed from the source instance of S by VAPDT.
Process:
   - Set AUTH' to the empty set.
   -  Do the following steps until AUTH become empty
        -- Get authorization ai from AUTH.
        -- result = NO.
        -- Let pi be a tree pattern of path expression of ai, and
                  vi be the return node of pi.
        -- If there exists no smap(vi) in T then
             --- Create new authorizations with the same operation, sign, priority
                   and type as those of ai while path expressions of the new
                   authorizations locate child nodes of vi.
             ---- Set type of the new authorization to local if its path expression
                    locates a terminal node.
             ---- Add the new authorizations to AUTH.
         -- else
              --- Call TreePatternTrans (pi, S, T, smap, result, pi').
                --- If result = YES then
                    ---- Create a new authorization a'i with the same operation, sign,
                           priority and type as those of ai.  Set path expression of a'i to
                          be the path expression represented by pi'.
                    ---- Set target of a'i to new-target. Add a'i to AUTH'.
          -- Remove ai from R.
    - End Do
    - For each vk in VA do the followings:
       -- Generate a permission rule a'k that has new-target id, all operations,
           negative sign, local type, the highest priority and path expression
           locating vk.
       -- Add a'k to AUTH'.
    - End For
    return AUTH'

Fig. 7. The AuthTrans algorithm 
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Theorem 2 (Authorization Preservation): Let S 
be a source schema tree, T be APST(S), VA be the 
set of newly added nodes of T, smap be a 
schema-tree mapping from the set of source 
schema nodes of S to the set of target schema 
nodes of T. Let new-target be a target 
identification for transformed authorizations, 
and AUTH be a set of authorizations for an 
instance of S. Given S, T, VA, smap and AUTH, 
the set AUTH′ of authorizations (computed by 
AuthTrans for an instance of T derived from the 
source instance by VAPDT) preserves AUTH.  □ 

 

6. Conclusions and Future Work 
Content-based authorization is crucial for 

various applications since it can provide data 
access control that matches with requirements of 
applications. In order to perform content-based 
authorization transformation, we have proposed 
an algorithm that transforms tree pattern 
representing path expression of a source 
authorization into the corresponding tree pattern 
of the target DTD instance by using schema-tree 
mapping under certain schema and data 
transformations. This algorithm is based on the 
paradigm of unordered tree inclusion. Based on 
tree pattern transformation algorithm, we have 
proposed an algorithm that automatically 
computes authorizations for a target DTD 
instance from given authorizations of a source 
DTD instance. The goal of authorization 
transformation is that authorizations for the 
target DTD instance preserve the same access 
restriction of authorizations for the source DTD 
instance. Our algorithm can be easily adapted to 
existing XML access control models. 
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