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Abstract: In this paper, we make a case for the problem of interpolating music when only parts of it
are given. Solving this problem allows to design music composition assistant systems in which a user
can insert his musical ideas and let an algorithm fill in the rest. We present such an algorithm, which
interpolates four-part chorales including the explicit harmony progression. The user of the composition
assistant system can input parts of the harmony progression as well as parts of the four voices’ melodies.
The algorithm interpolates the missing parts based on probability maximization with respect to smoothed
n-gram statistics of a music corpus. In this paper, we discuss the problem that nonharmonic tones pose
when explicitly modeling the underlying harmony progression as well as possible approaches to include
them in the interpolation model. We present experimental outputs of the algorithm and also evaluate the
results according to principles derived from music theory.
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1. Introduction
Automatic music generation has been a topic of research

since the automatic composition of the Illiac suite [1] in
the 1950s. A lot of different approaches have been applied
in this field of research since then. For an overview over
research on automatic music generation, we refer to the
survey paper of Fernández and Vico [2].

A significant amount of the papers published in the field
of automatic music generation present algorithms that au-
tonomously compose music. This means that while a user
might choose training data in statistical models or define
rules in rule-based approaches, the user has little influence
on the actual generation process. Some of these approaches
have gained popularity, for instance, David Cope’s Exper-
iments in Music Intelligence [3] and the Melomics music
database [4]. Nevertheless, these systems are often met
with criticism, since many people do not like the idea of
replacing human composers with computers.

On the other hand, algorithms that provide composi-
tion assistance in some form have also been published.
A popular task for computer to tackle is the problem of
automatically harmonizing a melody, either adding a har-
monically fitting instrument patterns to said melody or
generating polyphonic accompaniment melodies based on
principles of classical music theory [5, 6, 7]. This means
that the user can compose a melody and let the computer
generate an harmonic accompaniment.
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The opposite has also been a topic of research, i.e. the
generation of melodies based on conditions that include
harmony progressions to which the melodies have to fit
[8, 9, 10]. These algorithms provide user interactivity as
well, letting a user create or choose harmony patterns,
while the computer completes the music by composing the
melody.

Both generation of melodies from harmonies as well as
the opposite have been extensively researched. However,
we aim to go further by developing a combined model that
can be used in both directions, and additionally handle
input of both types at the same time. This allows a user to
insert a wide variety of music elements. For instance, the
user might come up with parts of melodies of potentially
multiple voices, interesting or important parts of the har-
mony progression, motifs that he wants to use in different
places or variations, or any combination of these ideas. The
algorithm then completes the piece using the input ideas
as constraints.

Such a system could be very useful for both hobby com-
posers and even professionals. Coming up with musical
ideas is both an interesting process for hobby composers as
well as a core discipline of professionals. However, filling
in the rest of the music can be very difficult for amateurs,
especially if attempting to fulfil criteria of strict music the-
ory, or tedious for professional composers. An algorithm
that can do that work automatically could therefore be an
helpful assistant in both cases, while supporting the cre-
ativity of the human user. This allows him to focus on the
musical ideas that define a piece. The user can reiterate the
generation process multiple times, iteratively shaping the
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Figure 1: An exemplary result of music interpolation in the key of C major. The algorithm is constrained by partial
melodies and harmony conditions, both shown in red. Minor chords are indicated with non-capital letters. The algorithm
automatically connects notes within the same bar.

piece to his liking by reactively changing input conditions.
Since the algorithm does the solution-oriented part of the
work, which computers are suited for, the human composer
can invest more time into the creative process.

The presented algorithm computes both the harmony
progression as well as suitable melodies for four voices based
on classical voicing principles. The approaches that to our
knowledge come closest to our model are the interactive
music generation systems FlowComposer [11] and Deep-
Bach [5]. The former system is similar to ours in that it
lets the user influence both harmony and melody. However,
it generates lead sheets and no polyphonic melodies. The
latter is a flexible harmonization model that also allows a
user to input partial melodies of multiple voices, but does
not explicitly account for harmony progressions.

The paper is structured as follows. In section 2, we
present the basic idea of our algorithm, which interpolates
four-part chorales including their harmony progression. In
section 3, we discuss the problem that nonharmonic tones
pose in the context of music interpolation as well as ap-
proaches to account for them by including modulation and
ornamentation in our algorithm. The results of the algo-
rithm are presented in section 4 and we conclude the paper
in section 5 with a discussion on how to further expand the
concept of music interpolation.

2. Music Interpolation
2.1 Chorale Completion

The algorithm presented in the following assists its user
in the composition of four-part chorales. Classical chorales
are music pieces for multiple voices, which are composed to
have melodies that could stand on their own, while harmo-
nizing well with each other in polyphony. A lot of music
theory has been developed for this type of music, allowing
to evaluate pieces objectively to a certain degree.

The presented algorithm completes four-voice pieces of
which parts of melodies and the harmony progression can
be input as conditions (displayed red in figure 1). The basic
principle of the music generation algorithm is probability
maximization, which in contrast to approaches involving
random sampling outputs unique solutions for each set of
constraints a user inputs. Therefore, it might be easier for

the user to identify himself with the result, since less luck
is involved and the output is determined by the user input.
Repeating the interpolation while changing input condi-
tions in reaction to the output of the previous iteration
allows the user to intentionally shape the final result to his
liking.

The interpolation process is split into the two steps of
harmony progression generation and automatic voicing (as-
signing notes to voices) based on the resulting progression.
This separation is based on the idea that harmony progres-
sions have a certain degree of self-sufficiency as the basic
structure of the music piece. A similar problem separation
approach as been applied in previous research [6] and as-
sumes a somewhat hierarchical structure of music. Aside
from reduction of computational cost, the benefit of the
two step approach is the possibility to use two different
data sets for harmony and voicing. As data containing
both four-part voicing and harmony annotation is rare, this
advantage is significant and also allows to combine different
genres.

2.2 Harmony Progression
In the first step, we interpolate the harmony progres-

sion of a piece by maximizing its probability with respect
to statistics obtained from a music corpus. However, the
optimization problem is constrained by conditions set by
the user. Allowed or forbidden harmonies can be directly
selected, and notes input by the user can further constrain
the set of available harmonies at each beat.

To compute the probability of a harmony progression
H = h1, . . . , hn ≡ hn

1 , n-gram statistics are extracted from
a music corpus. Using trigram probabilities, the optimiza-
tion problem can be formulated as follows.

Hopt = arg max
H

P (H)

= arg max
H

n∏
i=1

P (hi|hi−1
1 )

≈ arg max
H

n∏
i=1

P (hi|hi−1
i−2)

∀hi : hi ∈ Constraints at position of hi

(1)
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In order to be able to handle unseen n-grams, which
is required for certain user inputs, modified Kneser-Ney
smoothing[12] is applied to the n-gram probabilities.

The harmonies hi are defined by their functional degree
(I - VII), chord quality (major, minor, etc.), length in beats
and onset beat, i.e. where in a bar the harmony begins.
This definition allows to account for both harmonic func-
tionality as well as harmonic rhythm, which is explained in
more detail in [13]. This harmony definition is expanded to
include the possibility of modulation, discussed in section
3.2.

A harmony progression can be viewed as a path through
a directed graph, in which nodes are associated with har-
monies and edges with multiplicative weights that corre-
spond to the n-gram probability of the respective end nodes
given the n-gram context. By multiplying the weights of
all edges in a path, on can obtain the probability of the
associated harmony progression. Since probabilities are
by definition positive and not greater than 1, one can use
Dijkstra’s algorithm to compute the path with the high-
est probability, dynamically expanding the graph using
a Fibonacci heap [14]. User input is accounted for by
terminating paths at nodes that violate constraints.

2.3 Voicing
In the second step, we interpolate the melodies of all four

voices based on statistics obtained from a music corpus
as well as constraints induced by the underlying harmony
progression and partial melodies inserted by the user.

The problem is formulated as probability maximization
of a voicing sequence V = v1, . . . , vn ≡ vn

1 , in which each
harmony voicing vi = {nS

i , n
A
i , n

T
i , n

B
i } comprises notes of

the four voices soprano(S), alto(A), tenor(T) and bass(B).
In the case of voicing sequences, bigram probabilities are
used to compute the sequence probability, because of the
large number of combinatorial possibilities.

Vopt = arg max
V

P (V )

= arg max
V

n∏
i=1

P (vi|vi−1
1 )

≈ arg max
V

n∏
i=1

P (vi|vi−1)

∀vi : vi ∈ Constraints at position of vi

(2)

Furthermore, in order to utilize the power of modified
Kneser-Ney smoothing [12] more effectively, a voicing prob-
ability is computed as the product of the n-gram probabili-
ties of the notes of its four voices.

P (vi) = P (nS
i , n

A
i , n

T
i , n

B
i )

= P (nS
i )P (nA

i |nS
i )P (nT

i |nA
i , n

S
i )P (nB

i |nT
i , n

A
i , n

S
i )
(3)

Additionally, we approximate the probabilities to be inde-
pendent from absolute pitch, for which we introduce the

following formulation of intervals between notes.

IA→S
i ≡ nS

i − nA
i IS

i−1→i ≡ nS
i − nS

i−1 (4)

P (vi) = P (nS
i , I

A→S
i , IT→A

i , IB→T
i )

≈ P (IA→S
i , IT→A

i , IB→T
i )

(5)

Notes outside of the voices’ ranges are identified during the
optimization process and their probabilities set to 0. Lastly,
we approximate the bigram probability of a voicing by con-
sidering the harmonies internal structure independently
from the transition intervals between harmonies.

P (vi|vi−1) ≈ 1
A
P (vi)P (Iv

i−1→i) (6)

where A is a normalization factor that is computed such
that the probabilities sum to 1. While this approxima-
tion significantly reduces the problem of n-gram sparsity,
it does not allow the algorithm to identify parallel fifths
and octaves. These voice movements are to be avoided
according to music theory, and their identification requires
information about both internal structure (fifth interval)
as well as transition properties (parallel movement). How-
ever, parallel motion is supposed to be completely avoided
and a corresponding tangible rule can be easily formulated.
Therefore, one can suppress parallel fifths and octaves using
a penalty factor αp.

P (vi|vi−1)∗ = α
Np(vi−1,vi)
p P (vi|vi−1) (7)

where Np(vi−1, vi) denotes the number of parallel octaves
and fifths occurring between vi and vi−1. Another penalty
factor αhp is used to suppress hidden parallel movement,
which describes the situation where two voices move into
the same direction and end up with a fifth or octave between
them.

Similar to the harmony progression, Dijkstra’s algorithm
is used to find the optimal voicing sequence. However,
the large search space is heuristically restricted by not
considering voicings with the following properties.
• Voice crossings, i.e. a note in a lower voice being higher

than that of a higher voice.
• Intervals between neighbouring voices that exceed the

largest corresponding interval observed in the data.
• Incomplete harmonies, i.e. voicings that do not contain

all pitch classes of the respective harmony.

3. Nonharmonic Tones
3.1 Problem Discussion

Music that contains notes not belonging to the current
harmony pose two problems for the presented algorithm.
The possibility of nonharmonic tones changes the influence
of input melody notes as harmony constraints. Since an
input note could be a nonharmonic tone, the number of
possible harmonies significantly increases. Furthermore,
during automatic voicing, the possible existence of non-
harmonic tones similarly increases the size of the search
space.
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Figure 2: An example of an interpolation solution to constraints which were randomly generated from Bach excerpts
(displayed in red). Both the inclusion of modulation and nonharmonic tones can be seen. As in this example, the algorithm
often outputs harmony progressions containing very long and common harmonies (e.g. I and V), which can result in less
interesting music due to little variation.

There are two possible reasons why notes can appear
that do not belong to the expected harmony. The first is
modulation, which changes the underlying key of a piece
and consequently the set of available harmonies as well as
available notes in the key’s scale. The second is ornamen-
tation, which utilizes notes outside of the current harmony
to embellish melodies, examples being passing tones or
suspension notes. The following sections detail how these
concepts are incorporated in our model.

3.2 Modulation
To include the possibility of modulation in the model,

we expand the definition of a harmony hi to include infor-
mation about the current key (relative degree to basis key
as well as key quality). Only relative key information is
accounted for, such that for instance the following equality
holds:

P (I |V, IV ) = P (I/V |V/V, IV/V ) (8)

Due to the large number of possible harmonies, every chord
quality in the data is reduced to its most similar triad, e.g.
major seventh chords are reduced to major triads.

Since only relative pitch relations between notes and
modulation key’s are extracted as statistical data, the al-
gorithm is effectively able to compute the most likely key
of the partial melodies input by the user, by yielding a
harmony progression modulated with respect to a random
base key.

3.3 Ornamentation
The algorithm ensures complete harmonies by treating

four-voice harmonies as the collection of the three notes
of the triad and an additional fourth note. The genera-
tion of the three triad notes is enforced during the voicing
process. The fourth note can be a duplicate of a harmony
note, but also a nonharmonic tone. Both during induction
of harmony constraints from notes as well as automatic
voicing, the probability of harmonies containing a nonhar-
monic tone is reduced using a penalty factor which differs
depending on whether the note is contained in the current
key’s scale (αs) or not (αns).

P (vi)∗ = αs P (vi) if ∃n ∈ vi : n /∈ hi and n ∈ si (9)

where si is the scale at the current index i. In case the
note is not even contained in the scale, the smaller penalty
factor αns is applied.

4. Experimental Results
4.1 Training Data

For the harmony interpolation, the KSN annotation data
set [15] was used as training data, which contains informa-
tion about harmonic rhythm and functionality. The data
contains about 9100 bars of harmony progressions.

For the voicing interpolation, Bach’s chorales were ob-
tained as training data from the Classical Archives website
[16] in MIDI format. After excluding chorales with more or
less than four voices, 380 pieces remain, containing about
27000 beats. The voices are read by the program in eighth
note resolution, i.e. shorter note ornaments are ignored.

4.2 Music Theory
In music theory, there are several rules a chorale com-

poser should generally follow. We implemented evaluation
functions for the following principles.
( 1 ) Parallel motion: Parallel fifths and octaves are to be

avoided. Hidden parallels as well (but not as strictly).
( 2 ) Inter-voice distance: The intervals between neighbor-

ing voices should have sizes within a 8th interval for
higher voices, and within a 10th interval between tenor
and bass.

( 3 ) Smooth voice leading: Melody intervals should not be
too large and be contained in the set of melodic inter-
vals: Major/minor second, major/minor third, perfect
fourth, perfect fifth, ascending minor sixth and perfect
octave intervals). We refer to intervals outside of this
set as unmelodic.

Classic composers sometimes ignore these rules, since they
are rather guidelines than absolute laws. Therefore, we
compared the results of our algorithms with statistics
of Bach’s chorales. For the evaluation, 90% of Bach’s
chorales were used as training data for the voicing algo-
rithm, and from the remaining 10% of the chorales 100
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Figure 3: Music theoretic properties of the experimental results, comparing Bach’s chorales’ statistics with the results
of algorithm outputs when not considering nonharmonic tones (Only harmonic), considering modulation (Modulation),
additionally allowing nonharmonic tones withing the key’s scale (Scale nonharmonic), and additionally allowing nonharmonic
tones outside the scale (Nonscale nonharmonic). Data about hidden parallel motion is displayed, because parallel motion is
almost completely suppressed by the algorithm.

excerpts spanning 4 bars were randomly extracted. 80% of
the notes were removed from the excerpts and the resulting
20% of the notes were used as input constraints for the
interpolation experiment. During preliminary test runs,
the following parameter values were heuristically chosen:
αp = 0.002, αhp = 0.02, αs = 0.5, αns = 0.1.

The first benefit of including nonharmonic tones in the
model is its increasing flexibility, allowing the algorithm to
find solutions to more difficult input constraints. When sup-
pressing parallel motion and ignoring nonharmonic tones,
the algorithm did not yield solutions for 16 of the 100
excerpts. The inclusion of modulation in the harmony
model reduced the number of unsolvable constraints to 12,
including nonharmonic scale tones reduced it to 3, and
additionally allowing nonharmonic tones outside the scale
made the algorithm yield results for every excerpt.

Secondly, as can be seen in figure 3, incorporating non-
harmonic tones in the music model allows the algorithm
to more easily adhere to music theory concerning parallel
motion suppression and inter-voice intervals. However, the
same does not seem to be the case with melody intervals,
where inclusion of nonharmonic tones increases the num-
ber of resulting unmelodic intervals. A more sophisticated
model of nonharmonic tones might improve the results, if
it considers the development of melodies additionally to
voicing constraints.

4.3 Subjective Evaluation
While most results do not sound bad, they sometimes

sound not really interesting. With the current algorithm,
interesting user input is required to produce interesting
results. The algorithm maximizes probability, which is
good for adhering to music theoretical rules, but interest-
ing musical twists often are not the most likely ones.

When including nonharmonic tones, the algorithm some-
times generates voicings that sound dissonant in the musical

context. This is difficult to evaluate objectively, but shows
that a model of consonance might be needed. Lastly, the
harmonic rhythms of the two used data sets (harmony and
voicing) are quite different, which results in frequent long
harmonies in common progressions with few interesting
developments. A method to intentionally deviate from
maximum probability might improve this aspect.

5. Conclusions
We made a case for the problem of music interpola-

tion and presented an algorithm that completes four-part
chorales, where parts of melody and harmony can be de-
fined by the user. This is achieved by finding the optimal
sequence of harmonies and voicings according to smoothed
n-gram statistics. We further discussed the problem of
nonharmonic tones, and how to incorporate them into the
music model, increasing the flexibility of the model, which
allows the algorithm to solve more interpolation problems
and adhere stronger to music theoretical rules.

The algorithm could be further improved by introducing
a more powerful model of harmonic rhythm and larger
harmonic structure, which would further increase flexibil-
ity and make interpolation of longer pieces more feasible.
Finally, one could implement a melody model that not
only makes melodies adhere to music theory, but also gen-
erate them to be more interesting, possibly using neural
networks.

A major problem remains the weakness of probability
maximization in the context of music resulting in correct
but uninteresting results. Random sampling might occa-
sionally yield more interesting outputs, but an even more
favorable approach would be a method to intentionally
deviate from maximum probability solutions.
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