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A Protein-Protein Interaction network, what we call a PPI network is considered as an

important source of information for prediction of protein functions.

However, it is quite

difficult to analyze such networks for their complexity. We expected that if we could develop
a good visualizing method for PPI networks, we could predict protein functions visually
because of the close relation between protein functions and protein interactions. Previously,
we proposed one, which is based on clustering concepts, by extracting clusters defined as
relatively densely connected group of nodes. But the results of visualization of a network
differ very much depending on the clustering algorithm. Therefore, in this paper, we compare
the outcome of two different clustering algorithms, namely DPClus and Newman algorithms,
by applying them to a PPI network, and point out some advantages and limitations of both.

1. Introduction

Research on complicated networks has be-
come very popular and wide spread with re-
cent advancement of computers. There are
various types of networks, for example, world
wide web, Protein-Protein Interaction (PPI)
networks, gene networks, food webs, citation
networks, social networks and so on')~%. These
networks are usually studied as a graph consist-
ing of a node set and an edge set. In a PPI
network, which is one of the subjects of our re-
search, a node corresponds to a protein and an
edge corresponds to an interaction. PPI net-
works are expected to be a strong basis for pre-
diction of protein functions. For the purpose of
analyzing the structures of these networks, it is
important to develop good network-visualizing
methods. We have been developing the vi-
sualizing tool based on clustering where clus-
ters are defined as groups of relatively densely
connected nodes in the network®. Some re-
searchers have studied about sensuousness of
network visualizations, for example, Batini”
defined some sensuousness rules of network vi-
sualizing. However, it is difficult for us to
consider sensuousness for complicated networks
when we visualize them, because they have
many nodes and edges. If we try to visualize a
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large scale network entirely on a display, it will
usually end in failure. The visualizing network
will look like a square which are covered with
nodes and edges, because of abounding number
of nodes and edges. This kind of visualizing is
not so good and it is hard to understand any
network structure visually in this way. Given
the fact that visualization of an entire network
is difficult, it is natural that we must focus on
“partial visualization”. In this paper, we ad-
dress “cluster” as the target of “partial visu-
alization”. Therefore, we proposed a compre-
hensive visualizing method on the basis of clus-
ter structure of networks. In the present study,
clustering means dividing node set into cohesive
groups such that the nodes of a group are rela-
tively densely connected in the graph as shown
in Fig. 1.

In this work, we used the algorithms of
Refs.7) and 8). The algorithm of Ref.7) is
based on the concepts of density and periph-
ery of clusters and will be referred to as DP-
Clus algorithm. On the other hand, the algo-
rithm of Ref.8) uses global information about
network structure referred to as Newman algo-
rithm. Clustering approaches of these two algo-
rithms are quite different, so even if we give the
same network data to these algorithms, we will
not get the same output. So far it is difficult
to strictly define a complex/cluster/module re-
garding a network that can satisfy all purposes.
As a result many clustering algorithms have
been developed in view of different aspects. We
compare the outcome of two different clustering
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Fig.1 Notion of clusters in a network. The clusters
are represented by the dotted lines.

algorithms by applying them to a PPI network,
and point out some advantages and limitations
of both. It seems a better algorithm can be
developed by considering the positive points of
these two. In addition, we used PPI network
as subject of visualization, because we thought
that there is close relation between clustering
and prediction of protein functions, and be-
cause if we can visualize the PPI network en-
tirely, it can be expected that we can predict
unknown protein functions visually. All interac-
tion data are represented as binary relations be-
tween protein pairs and can be easily regarded
as a network. In the present paper, we also
briefly discuss GRINEditC which is a network
visualizing software tool. This is an upgraded
version of GRINEdit? which has been devel-
oped previously in our laboratory for visualiz-
ing complicated networks. One of the motiva-
tions of the present work is to find out a suit-
able clustering algorithm for GRINEditC. In
the following section we introduce the DPClus
and Newman algorithms. In the section entitled
“GRINEditC”, we briefly discuss our visualiza-
tion software. In the Results and Discussion
section, we compare the outcome of clustering
by applying DPClus and Newman algorithms
to a PPI network. Finally as conclusion, we
collect up the important points of this paper.

2. Clustering Algorithms

In this section, we introduce two clustering
algorithms which we used to visualize PPI net-
works.

2.1 DPClus Algorithm

In DPClus, a network is considered as an
undirected simple graph G = (N, E) that con-
sists of a finite set of nodes N and a finite set of
edges E. Before details of the algorithm, we de-
fine some terminologies used in this algorithm.
Definition 1. Density dj of any cluster k is

the ratio of the number of edges present in
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the cluster (|Ex|) and the maximum possible

number of edges in the cluster (|Eg|maz) and

is represented by Eq. (1).

gy = Bl 2 |Ey )
|Ek|maa: |N/€‘ X (|N/€| - 1)

Here, |Ng| is the size of the cluster, i.e., the

number of nodes in the cluster. The density

of a cluster is a real number ranging from 0

to 1.

Definition 2. The cluster property cp,j of
any node n with respect to any cluster k of
density dj, and size | Ny| is defined by Eq. (2).

LTI @)

di X | Ni|
Here, |Eynj| is the total number of edges be-
tween the node n and each of the nodes of
cluster k. In Fig. 2 (a), the cluster property
of node f with respect to cluster {a,b, ¢, d, e}
is 2/(0.7 x 5) &~ 0.57 while in Fig.2 (b) the
cluster property of node f with respect to
cluster {a,b,c,d,e} is 1/(1 x 5) = 0.2. A
higher value of cluster property of a neighbor
indicates that it is part of the cluster while
a lower value indicates that it is part of the
periphery. The graph of Fig. 2 (b) can be sep-
arated into two clusters by using the concept
of cluster property.

Definition 3. The weight w,, of an edge
(u,v) € E is the number of the common
neighbors of the nodes u and v.

Definition 4. The weight w,, of a node n is
the sum of the weights of the edges connected
to the node i.e. W,, = > W, for all u such
that (n,u) € E.

In the previous paper we discussed details of
the algorithm ™. So here we describe it some-
what briefly. The flowchart of the algorithm is
shown in Fig.2(d) and it is divided into five
major steps: Input & initialization, Termina-
tion check, Seed selection, Cluster formation
and Output & update.

Input & initialization: The input to the al-
gorithm is an undirected simple graph and
hence the associated matrix of the graph is
read first. It is also necessary to provide a
value of minimum density we allow for the
generated clusters and a minimum value for
cluster property that determines the nature
of periphery tracking. From now on, these
input values of density and cluster property
will be referred to as d;,, and cp;,, respectively.
Clustering can be performed several times us-
ing different input values for d;, and cp;,,

CPnk =
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Fig.2 Concepts of the DPClus algorithm. (a) and (b) Two typical graphs
of the same size and density. (c) A typical cluster and its neighbors.
(d) Flow-chart of the algorithm.

which allows the suitable set of clusters to be
chosen from among a number of options. The
cluster ID, k is initialized to 1.
Termination check: Once a cluster is gen-
erated, it is removed from the graph. The
next cluster is then formed in the remaining
graph and the process goes on until no edge
is left in the remaining graph. For a graph
with no edge, the degree of each node is zero.
When such situation arrives, the algorithm
terminates.

Seed selection: FEach cluster starts at a de-

terministic single node which we call the seed

node. The highest weight node is considered
as the seed node. However, if the highest
node-weight is zero, the highest degree node
is considered as the seed node. The weights
of nodes are determined by summing up the
weights of incident edges and the weights of
edges are calculated by matrix multiplication.
Cluster formation: The cluster starts as a
single node and then grows gradually by
adding nodes one by one from its neighbors.
The neighbors of a cluster are the nodes con-
nected to any node of the cluster but not part
of the cluster. It is very important to add pri-
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ority neighbors to the cluster first to guide the
cluster formation in a proper way. The pri-
ority is determined based on two measures:
(1) the sum of the weights of the edges be-
tween a neighbor and each of the nodes of
the cluster and (2) the number of edges be-
tween a neighbor and each of the nodes of the
cluster. Therefore, a double sorting is per-
formed to sort the neighbors. Furthermore,
we use some fine-tuning in the sorting pro-
cess when cluster length is more than one but
all neighbors are connected to the cluster by
only single edge. In the following example we
explain the purpose of fine-tuning. Fig.2 (c)
shows a dotted-line encircled cluster, say at
some instant of the cluster formation process,
and its neighbors a,b and c. All three neigh-
bors are of equal priority if sorting is per-
formed according to the two measures men-
tioned above. However, by common sense we
realize that b or ¢ should be given more pri-
ority. The fact is that other than the sin-
gle edge link with the cluster, b or c is also
connected to the cluster by a link of length 2
that goes outside of the cluster. Based on this
fact, we fine-tune the sorting of the neighbors
such that b or ¢ comes up as the highest pri-
ority neighbor. However when fine-tuning is
used to sort the neighbors, we use half the
value of ¢p;, for periphery checking and thus
help to form some sparse clusters. We check
two things before adding a node to a cluster.
First, we make sure that addition of the node
to the cluster does not cause the density dj of
the cluster to fall below d;,, the input den-
sity. Second, we check whether the node is
part of the cluster or part of the periphery.
If a node is part of the cluster it should be
connected to a reasonable number of edges
within the cluster. For example for a cluster
of density di, each node on an average should
be connected to dj x (|Ng| — 1) edges within
the cluster, where | Ny| is the size of the clus-
ter. We do not add a neighbor to a cluster
if its cluster property is less than cp;,. We
can choose the value of ¢p;,, from within the
range 0 < ¢p;p, < 1.

Output & update: Once a cluster is gener-
ated, it is printed and graph G is updated by
removing the present cluster, i.e. the nodes
belonging to the present cluster and the inci-
dent edges on these nodes are removed from
G. The cluster ID, k is updated by adding 1
to it.
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2.2 Newman Algorithm

In this section, we briefly introduce Newman
algorithm ® for network clustering. Newman’s
method is based on modularity, and proposes
the parameter Q-value as a measure of network
modularity. First, this method considers each
node as a cluster. In each subsequent step New-
man’s method combines two clusters for which
the increment of Q-value is the maximum and
hence this is a greedy algorithm. The process
of combining goes on until Q-value can not be
increased further. Q-value is defined as follows:

Q=2 (e —ai) (3)

Here, e;; means the fraction of edges in clus-
ter ¢ with respect to all the edges in the net-
work and a; means the fraction of the number
of edges that end in cluster i. If we try to cal-
culate all cases of (), we need to spend more
than exponential order of time® . However, we
can avoid this computational burden because
we only need to calculate the increment AQ
when we combine two clusters, say cluster ¢ and
cluster j. Newman showed that AQ can be cal-
culated as follows:

AQ = eij + 6]‘1‘ — 2aiaj = 2(61‘3‘ — aiaj)
(4)
Here, e;; means the half of the fraction of edges
between cluster ¢ and cluster j with respect to
all the edges in the network. Complexity of cal-
culating AQ is of the order O(N) where N is
the number of nodes in the network. We com-
bine two clusters at most N-1 times, so in sparse

networks, we can complete clustering in O(N?)
time.

3. GRINEJitC

GRINEditC is the software which can visu-
alize large networks with the aid of clustering
in a hierarchical fashion. In GRINEditC we
consider a network as a simple graph, i.e., we
do not consider the direction of edges, self-loop
and multiple-edges between nodes. This pro-
gram was written with Java and the software
has now been customized for the purpose of vi-
sualizing PPI networks so that we can analyze
these networks with ease. In the following we
explain the aspects of this software.

(1) GRINEditC reads “input network” from
a file which contains relations between arbi-
trary two proteins and additional information
about proteins.

(2) GRINEditC can execute DPClus cluster-
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Fig.3 Features of GRINEditC.

ing and Newman clustering upon an input
network and can visualize the cluster-graph
in a window (Fig. 3 (a)), where each node is a
cluster. The visualizing size of a cluster-node
is determined in proportion to the number of
nodes in the corresponding cluster. The visu-
alizing width of an edge in the cluster-graph
is determined depending on the number of
edges between the nodes in two clusters.

(3) If a user selects menu item “reclustering”
and clicks on a cluster, Newman clustering
algorithm will be applied to this cluster, and
the corresponding cluster-graph is visualized
in another window. We can do “reclustering”
as long as the target cluster contains more
than two nodes (Fig. 3 (b)).

(4) If a user chooses a cluster that has only
one node, and selects “reclustering”, he/she
can see a popup window which contains in-
formation on this single protein, its name and
functions (Fig. 3 (c)).

(5) If a user selects “Show subgraph” menu,
chooses one cluster-node by clicking, he/she

can see subgraph under this cluster in a sep-
arate window (Fig. 3(d)).

(6) If a user selects “Show rate chart” menu,
chooses one cluster-node by clicking, he/she
can see distribution of the proteins of the
cluster with respect to functional classes

(Fig. 3(e)).
4. Results and Discussion

As far as we know, there is no algorithm
that always outputs optimal clustering results.
Therefore, it is reasonable to compare the out-
puts of different algorithms and pointing out
the advantages and disadvantages of each. This
may lead to invention of better algorithm by
way of adding up the advantages of several al-
gorithms. So we compare DPClus algorithm
with Newman algorithm on the basis of clus-
ters they generate from a PPI network. DPClus
algorithm and Newman algorithm are cluster-
ing algorithms, but their clustering approaches
are very different from each other. For the sake
of comparison, we applied both of them to S.
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cerevisiage PPI data from DIP 9. In case of
DPClus algorithm, we used 0.6 as input den-
sity and 0.5 as input cluster property. We per-
formed Newman clustering based on maximiz-
ing the Q-value following a greedy approach. In
the following, we compare the results of cluster-
ing by these two algorithms from various per-

spectives.
4.1 Comparison Based on Size of Clus-
ters

DPClus and Newman algorithm extracted
167 and 78 clusters respectively from the S.
cerevisiae PPI network of DIP 9. The size of
the largest fifty clusters generated by each of
the algorithm is plotted in Fig. 4. The size of
the biggest cluster generated by DPClus is 33
while that in case of Newman algorithm is 987.
From Fig. 4, it is evident that some clusters gen-
erated by Newman algorithm are too big while
the others are too small depicting some imbal-
ance in the size of the generated clusters. On
the other hand, a few clusters generated by DP-
Clus algorithm are somewhat big and others are
of balanced size.

4.2 Comparison of Density Distrubu-

tions

Similar to the previous section, we consid-
ered the largest fifty complexes generated by
each of the two algorithms and we show the
distribution of these complexes with respect to
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density in Fig.5. Let x be the label of a col-
umn. A cluster whose density d is within the
range * < d < x + 0.1 has been counted for the
column with label x. While clustering using
DPClus algorithm, we selected input density as
0.6 and hence all the clusters generated by DP-
Clus algorithm have density 0.6 or more. On
the other hand, in case of the clusters gener-
ated by Newman algorithm, some clusters are

The number
of proteins
100

(a) DPClus
0 {
1000
(b) Newman
500
0
0 10 20 30 40 50

Fig.4 Sizes of the largest fifty clusters generated by
DPClus and Newman algorithms.
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Fig. 5 Distribution of clusters with respect to density.
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Fig.6 Cumulative distribution of known complexes with respect to w.

of high density, but most of the clusters are
of low density. Density can be regarded as an
overall measure of cohesiveness of the nodes of
a cluster. So DPClus makes it possible to se-
lect more cohesive clusters compared to those
of Newman algorithm.

4.3 Matching with known complexes

We also investigate how the generated clus-
ters by these two algorithms fit with the known
protein complexes. We collected 267 known
protein complexes from MIPS ). To calculate
how effectively a predicted complex matches or
overlaps with a known complex, we use a mea-
sure w defined as follows:

Z'Q

YTaxDb (5)

Here, i is the size of the intersection set of a
predicted complex with a known complex, a is
the size of the predicted complex and b is the
size of the known complex. We determined how
the known complexes matched with complexes
predicted by both the DPClus algorithm and
the Newman algorithm. We relate or assign a
known complex to a predicted complex if the
overlapping score w between them is the max-
imum. The cumulative distribution of known
complexes with respect to w is shown on Fig. 6.
We can easily find that many of the predicted
complexes by DPClus algorithm substantially
matched with known complexes.

4.4 Comparison of p-value Distribu-

tions

The proteins of S. cerevisiae can be clas-
sified into 16 functional classes'?) as follows:
(1) Cell cycle and DNA processing, (2) Protein
with binding function or cofactor requirement
(structural or catalytic), (3) Protein fate (fold-

ing, modification, destination), (4) Biogenesis
of cellular components, (5) Cellular transport,
transport facilitation and transport routes, (6)
Metabolism, (7) Interaction with the cellular
environment, (8) Transcription, (9) Energy,
(10) Cell rescue, defense and virulence, (11)
Cell type differentiation, (12) Cellular commu-
nication/signal transduction mechanism, (13)
Protein activity regulation, (14) Protein syn-
thesis, (15) Transposable elements, viral and
plasmid proteins, and (16) Development (Sys-
temic). To assess the statistical significance
of functional richness of proteins in individual
clusters we calculated their p-values using the
following formula:

g 0D o

Here N is the number of all proteins in PPI
data, C is the number of proteins in the clus-
ter, F' is the number proteins of a functional
group in the network, and k is the number of
proteins of the functional group in the cluster.
In general it can be suggested that the lower the
p-value the higher the statistical significance of
the cluster. Actually, it was difficult to calcu-
late p-value directly and we used the concept
of logarithm to calculate them. In Fig.7, we
show the distribution of largest fifty complexes
generated by each of the two algorithms with
respect to their p-values. The upper chart cor-
responds to Newman algorithm while the lower
chart corresponds to DPClus algorithm. We
can easily find that the DPClus algorithm per-
formed well compared to Newman algorithm in
terms of p-values of the generated clusters.
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Fig.7 Distribution of clusters with respect to p-value. The upper chart
corresponds to Newman algorithm and the lower chart corresponds

to DPClus algorithm.

4.5 Comparison on the Basis of Func-
tional Richness

To predict functions of proteins, it is impor-
tant to assess how similar function proteins are
accumulated in individual predicted clusters.
For this purpose, we considered 10 largest clus-
ters predicted by each of the algorithms and six-
teen functional classes from MIPS. The names
of these sixteen functional classes have been
mentioned in the caption of Fig. 8. cluster ID
to each cluster starting from the biggest one to
the decreasing order of their size. We calculated
percentage of proteins of each function present
in each cluster. The results are shown in Fig. 8,
where we show a histogram corresponding to
each cluster. The horizontal axis corresponds
to 16 functional classes. The heights of the
columns of a histogram depict the percentage
of proteins of a complex belonging to the corre-
sponding functional classes in the context of the

total number of proteins in each cluster. The
highest column/columns of a histogram are col-
ored as red. It is evident that the higher the red
column in a histogram the better the functional
richness of the cluster. The average of the per-
centages corresponding to the red columns is
0.8602 in case of DPClus algorithm and 0.2738
in case of Newman algorithm. Therefore, we
can conclude that DPClus algorithm performed
better compared to Newman algorithm in case
of extracting clusters that are rich with similar
function proteins.

It seems that DPClus algorithm works bet-
ter than Newman algorithm in the matter of
predicting protein complexes from PPI net-
works. However, as we previously mentioned,
the clustering approaches of DPClus algorithm
and Newman algorithm are quite different from
each other. Roughly speaking, DPClus algo-
rithm focuses on local information like density



Vol. 47 No. SIG 17(TBIO 1) Comparison of Protein Complexes 39
% DPClus Newman
100
1 59
oL II_Ame I n” H Ilonl nln[l[lnﬂl:lﬂ
’ H
Ilncne o ln ol nllon I HI‘II'II il
3
il oo Dnnnn =0 lnnl:l fl
4 ﬁ I
% n |:|III|:| Ilenn ol nﬂnl n
2
g ° I
: Ooomono o.m (IR nl 0o H nD
g
S 6
LC) il n n”n”nn plon elonlonen
L
7 _ H
Il I] 0.0.m.0 ol 00on l
8
DDH m ﬂ[l ” olonee Beollal_n
9
pfl 0 [I [allsl Dol lnﬂﬂ poll
ol [
I n I alom ploln.n.0
2

o
1

Function class

34567 8910111213141516

1234567 8910111213141516
Function class

Fig. 8 Distribution of proteins in individual clusters with respect to follow-
ing functional classes: (1) Cell cycle and DNA processing, (2) Protein
with binding function or cofactor requirement (structural or catalytic),
(3) Protein fate (folding, modification, destination), (4) Biogenesis of
cellular components, (5) Cellular transport, transport facilitation and
transport routes, (6) Metabolism, (7) Interaction with the cellular
environment, (8) Transcription, (9) Energy, (10) Cell rescue, defense
and virulence, (11) Cell type differentiation, (12) Cellular communica-
tion/signal transduction mechanism, (13) Protein activity regulation,
(14) Protein synthesis, (15) Transposable elements, viral and plasmid
proteins, and (16) Development (Systemic).

and cluster property, while Newman algorithm
focuses on global information by way of opti-
mizing Q-value. So, Newman algorithm may be
better in the sense that it takes into account the
global structure of the network. But, Newman
algorithm has ambiguities in the early step of
clustering, so some roughness could be seen in
the result of clustering. On the other hand, DP-
Clus does not focus on any type of global opti-
mization. Introducing some optimizing param-
eter in case of DPClus algorithm might pave the
way of finding a better clustering algorithm.

5. Conclusion

In this paper, we discussed the visualizing
method of PPI networks in which the nodes
represent proteins and the edges represent in-
teractions between protein pairs. Our visualiz-
ing method focuses on clusters, which is defined
as relatively densely connected group of nodes
in a network. Recounting all clusters from a
network is called clustering. Protein functions
can be predicted by visualizing a PPI network
with the aid of clustering. However, the results
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of visualization are quite different depending on
which clustering algorithm we use. In addition,
it seems that there is no optimum clustering
algorithm and a better algorithm can be devel-
oped by considering the positive points of more
than one algorithm. For this purpose, we com-
pared the performances of two clustering algo-
rithms, the DPClus algorithm and the Newman
algorithm and point out some advantages and
limitations of both.
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