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This paper proposes a novel clustering method based on graph theory for analysis of bio-
logical networks. In this method, each biological network is treated as an undirected graph
and edges are weighted based on similarities of nodes. Then, maximal components, which are
defined based on edge connectivity, are computed and the nodes are partitioned into clusters
by selecting disjoint maximal components. The proposed method was applied to clustering
of protein sequences and was compared with conventional clustering methods. The obtained
clusters were evaluated using P-values for GO (GeneOntology) terms. The average P-values
for the proposed method were better than those for other methods.

1. Introduction

Many clustering methods have been devel-
oped and/or applied for analyzing various kinds
of biological data. Among them, such hierar-
chical clustering methods as the single-linkage,
complete-linkage and average-linkage methods
have been widely used 1),2). However, these
clustering methods are based on similarities be-
tween two elements or two clusters, and rela-
tions with other elements or clusters are not so
much taken into account.

Relations between biological entities are of-
ten represented as networks or (almost equiva-
lently) graphs. For example, nodes are proteins
in a protein-protein interaction network, and
two nodes are connected by an edge if the cor-
responding proteins interact with each other.
For another example, nodes are again proteins
in a sequence similarity network of proteins,
and two nodes are connected by an edge if the
corresponding protein sequences are similar to
each other. Moreover, in this case, similarity
scores are assigned as weights of edges. Since
these networks are considered to have much in-
formation, clustering based on network struc-
tures might be useful. Of course, conventional
clustering methods can be applied to cluster-
ing of nodes in these networks 1),2). But, in-
formation on network structure is not so much
taken into account by these methods. For an
extreme example, suppose that the network is
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a complete graph and all edges have the same
weight. Then, all the nodes should be put into
one cluster and sub-clusters should not be cre-
ated. However, conventional clustering meth-
ods create many sub-clusters. Therefore, clus-
tering methods that utilize structural informa-
tion on a network should be developed. Though
clustering methods utilizing structural informa-
tion have been developed 3),4), many of these
are heuristic and/or recursive and thus it is un-
clear which properties are satisfied for the final
clusters.

Tuji, et al. applied two clustering meth-
ods based on network structure, DPClus algo-
rithm 5) and Newman algorithm 6) to protein-
protein interaction networks 7). DPClus algo-
rithm calculates density and cluster property
of each cluster. The density of each cluster is
defined to be the ratio of the number of edges
present in the cluster to the maximum capable
number of edges in the cluster, and the clus-
ter property of each node for each cluster is
defined to be the ratio of the total number of
edges between the node and each of the nodes
of the cluster to the average number of edges of
a node in the cluster. Newman algorithm cal-
culates modularity which is defined to be the
fraction of edges that fall within clusters, mi-
nus the expected value of the same quantity if
edges fall at random. Tuji, et al. compared the
above clustering methods, and concluded that
the results of visualization were quite different
depending on clustering algorithms.

On the other hand, in graph theory and
graph algorithms, the Gomory-Hu tree is well-
known 8) where it is defined for an undirected
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network with weighted edges. This tree es-
sentially contains all information on minimum
cuts for all pairs of nodes. It is known that
a Gomory-Hu tree can be computed efficiently
using a maximum flow algorithm. Furthermore,
maximal components can be efficiently com-
puted from a Gomory-Hu tree 9), where a max-
imal component is a set of nodes with high con-
nectivity (the precise definition is given in Sec-
tion 2). It is known that a set of maximal com-
ponents constitutes a laminar structure, which
is essentially a hierarchical structure.

Based on the above facts, we develop a novel
clustering method for an undirected network.
In this method, nodes are partitioned into clus-
ters by selecting disjoint maximal components.
The method works in O(n2m log(n2/m)) time,
where n and m are the numbers of nodes and
edges, respectively. The Gomory-Hu tree was
already applied to analysis of protein folding
pathways 10)–12). However, to our knowledge, it
was not applied to analysis of large scale protein
sequence networks. Moreover, as to be shown in
Section 3, our method employs additional ideas
to effectively utilize the Gomory-Hu tree.

In this paper, we apply the proposed clus-
tering method to classification of protein se-
quences and compare with the single-linkage,
complete-linkage and average-linkage meth-
ods. For that purpose, we construct a se-
quence similarity network from protein se-
quences in Saccharomyces Genome Database
(SGD) database 13) using BLAST 14) and re-
sulting E-values. We evaluate the computed
clusters using P -values for GO (GeneOntology)
terms. The results suggest the effectiveness of
the proposed method.

The organization of the paper is as follows.
In Section 2, we review maximal components of
undirected graphs along with related graph the-
oretical concepts, and conventional clustering
methods. In Section 3, we present our proposed
method for selecting disjoint clusters from a
hierarchical structure representing all maximal
components. In Section 4, we show the results
on computational experiment. Finally, we con-
clude with future work.

2. Preliminaries

In this section, we review edge-connectivity
and maximal components 9). We also re-
view three conventional hierarchical clustering
methods: single-linkage, average-linkage and
complete-linkage clustering methods.

Fig. 1 Illustration for minimum (k, i)-cut of a graph
G = (V, E) with V = {a, b, c, d, e, f, g, h, i, j, k, l,
m, n, o, p, q, r, s} and E, where each number
denotes the weight of the edge, and edges
without numbers are weighted by 1. Each
set of nodes surrounded with a dashed line
is a maximal component of G. For the
set X = {k, l, m, n, o, p, q, r, s}, dG(X) =∑

p∈X,q∈V −X
cG(p, q) = 6. For the other

set X′ = {a, b, c, d, k, l, m, n, o}, dG(X′) = 9.
λG(k, i) = mink∈X,i∈V −X dG(X) = 6.

2.1 Edge-connectivity
Let G = (V, E) be an undirected edge-

weighted graph with a vertex set V and an edge
set E, where each edge e is weighted by a non-
negative real cG(e) ∈ �+. We define the edge-
connectivity λG(u, v) between two nodes u and
v as follows:

λG(u, v) = min
{X⊆V |u∈X,v∈V −X}∑
p∈X,q∈V −X

cG(p, q). (1)

A subset X of V is called (u, v)-cut if u ∈
X and v ∈ V − X, or u ∈ V − X and v ∈
X. Among them, a (u, v)-cut X which gives a
minimum λG(u, v) is called a minimum (u, v)-
cut. Figure 1 shows an example of a minimum
cut.

2.2 Maximal Components
Definition 1 A subset X of V is called a

maximal component if it satisfies the following
conditions,

∀u, v ∈ X λG(u, v) ≥ l, (2)
∀u ∈ X, ∀v ∈ V − X λG(u, v) < l, (3)

where l = minu,v∈X λG(u, v). Such a subset X
is also called an l-edge-connected component.

Figure 2 shows an example of maximal com-
ponents. Definition 1 means that the inter-
nal nodes of a maximal component are con-
nected with each other more strongly than with
any other external nodes. Moreover, for rela-
tions between maximal components, connectiv-
ities between nodes of an internal maximal com-
ponent are stronger than (and equal to) those
between nodes of an external maximal compo-
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Fig. 2 Illustration for maximal components of the
graph G in Fig. 1. For example, the set X =
{a, b, c, d} is a maximal component because
λG(u, v) ≥ 5 for any u, v ∈ X, λG(u, v) <
5 for any u ∈ X and v ∈ V − X, and
minu,v∈X λG(u, v) = 5. It is also called a 5-
edge-connected component.

nent which include the internal maximal com-
ponents.

Definition 2 A family χ ⊆ 2V is called
laminar if X ∩ Y = ∅, X ⊂ Y , or Y ⊂ X
for any distinct sets X, Y ∈ χ.
In this paper, X ⊂ Y means that X cannot be
equal to Y , and X ⊆ Y means that X can be Y .
A laminar family χ is represented by a rooted
tree τ = (ν, ε). The node set ν is defined by
ν = χ ∪ {V }, where V corresponds to the root
of τ . Let tX denote a node corresponding to a
set X ∈ ν. For two nodes tX and tY in τ , tX
is a child of tY if and only if X ⊂ Y holds and
χ contains no set Z with X ⊂ Z ⊂ Y .

Theorem 1 Let χ(G) denote the set of all
maximal components of G. Then, χ(G) is a
laminar family.

Proof. We assume that there exist three
nodes x, y and z so that x ∈ X−Y , y ∈ Y −X,
and z ∈ X ∩ Y for two maximal components
X, Y ∈ χ(G), where X is an l-edge-connected
component and Y is an h-edge connected com-
ponent. We can assume without loss of gener-
ality that l ≥ h. From x, z ∈ X and Eq. (2)
of the definition of maximal components for X,
we have λG(x, z) ≥ l ≥ h. On the other
hand, from x /∈ Y, z ∈ Y and Inequality (3) for
Y , we have λG(x, z) < h. It contradicts our
assumption. �

2.3 Linkage Methods
We briefly review three linkage clustering

methods: single linkage (or nearest neighbor
method), complete linkage (or farthest neighbor
method), and average linkage. Each method
starts with a set of clusters, where each clus-
ter consists of a single distinct node. Then,
two clusters having the minimum distance are
merged into one cluster. This procedure is re-

peated until there is only one cluster as follows.

Procedure Linkage Clustering
Input : a set of nodes V and

distances d(x, y) for all x, y ∈ V
Output : a laminar family τ

Begin
χ := {{x}|x ∈ V }
τ = χ
while |χ| ≥ 2

(X, Y ) := argmin(X,Y )∈χ×χ,X �=Y D(X, Y )
Remove X and Y from χ
Add X ∪ Y into χ and τ

end
return τ

End

In this procedure, the distance D(X, Y ) be-
tween two clusters X and Y is defined using
d(x, y) in a different way depending on a clus-
tering method:

D(X, Y )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x∈X,y∈Y

d(x, y)

(for single linkage)
max

x∈X,y∈Y
d(x, y)

(for complete linkage)
1

|X||Y |
∑

x∈X,y∈Y

d(x, y)

(for average linkage)

. (4)

It should be noted that the distance between
two nodes should be small if the similarity be-
tween these nodes is high, whereas the weight
of the edge between these two nodes should be
large. Since we are going to use the similar-
ity score (which is high for similar nodes), we
use modified versions of these clustering algo-
rithms. In the modified versions, the clusters
with the maximum score are merged, instead of
the clusters with the minimum distance. More-
over, ‘min’ and ‘max’ in Eq. (4) are exchanged.

3. Selection of Disjoint Clusters from
Hierarchical Structure

The set of all maximal components χ(G) of a
graph G provides a hierarchical structure which
can be represented as a rooted tree τ (G) be-
cause the set χ(G) is a laminar family. This
structure gives a kind of hierarchical cluster-
ing. However, what we need is a set of dis-
joint clusters because we are interested in clas-
sification of protein sequences. That is, input
nodes should be partitioned into disjoint clus-
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Fig. 3 The rooted tree representation of maximal com-
ponents χ(G) of the graph G in Fig. 1. The six
sets of nodes surrounded by dashed lines are the
resulting clusters provided by the procedure Se-
lectLaminar.

ters. Thus, we propose a method to find disjoint
clusters from χ(G). This selection method is
based on a simple idea that a cluster does not
include more than one sufficiently clustered set.
In our method, a set of maximal components
χ(G) of the graph G is first computed using
a Gomory-Hu tree. And then, disjoint max-
imal components are selected in a bottom-up
manner, based on the tree structure τ (G). The
detailed procedure is given below. It should be
noted that |Xt| denotes the number of nodes in
G that are contained in Xt.

Procedure SelectLaminar
Input : a laminar family χ
Output : a set of clusters χc ⊆ χ

Begin
τ := (the rooted tree made from χ)
χc := ∅
repeat

Xp := (a parent node of not marked
deepest leaves of τ )

repeat
Xs := Xp

Xp := (the parent node of Xs)
until (Xp has a child Xt except Xs

such that |Xt| ≥ 2)
Add all the child nodes of Xp to χc

Mark all the descendant leaves of Xp in τ
until (all the leaves of τ are marked)
return χc

End

This procedure outputs a subset χc =
{X1, . . . , Xm} from the laminar family χ(G) of
all maximal components of a graph G such that
Xi ∩ Xj = ∅ holds for any two sets Xi �= Xj ∈
χc, and

⋃m
i=1 Xi = V holds. Figure 3 shows

an example. This procedure provides the clus-
ters according to the hierarchical structure.

4. Experimental Results

4.1 Data and Implementation
In order to evaluate the proposed clus-

tering method, we applied clustering meth-
ods to classification of protein sequences
based on the pairwise similarity. We used
5888 protein sequences (The file name is
“orf trans.20040827.fasta”) from SGD 13). This
file contains the translations of all systemati-
cally named ORFs except dubious ORFs and
pseudo-genes. We calculated the similarities
between all pairs of the proteins using a BLAST
search 14) with an E -value threshold of 0.1. An
edge between two nodes exists only when the E -
value between the proteins is less than or equal
to 0.1. All isolated nodes (i.e., nodes with de-
gree 0) are removed. As a result, 32,484 pair-
wise similarities and 4,533 nodes were detected.

As an edge-weight, we used the integer part
of −3000 log10 h for the E -value h of 10−

1000
3 <

h ≤ 0.1, and 106 for 0 ≤ h ≤ 10−
1000

3 . This
mapping was injective for all the E -values of
the data. It should be noted that the similar-
ity between proteins is large when the E -value
is small, and comparison operations of floating
point numbers can cause incorrect results.

We solved maximum flow problems with
HIPR (version 3.5) 15) which is an implemen-
tation of the algorithm developed by Goldberg
and Tarjan 16), and constructed a Gomory-Hu
tree 8) for an edge-weighted graph G to obtain
all the maximal components of G from the tree.

4.2 Results
To evaluate the performance of our cluster-

ing method, we used GO-TermFinder (version
0.7) 17). GO terms are structured and con-
trolled vocabularies which explain gene prod-
ucts with respect to biological processes, cel-
lular components, and molecular functions. A
GO term is linked not only to genes and gene
products in several databases, but also to other
GO terms.

To find the most suitable GO term for a spec-
ified list (cluster) of genes, this software calcu-
lates a P -value using the hypergeometric distri-
bution as follows:

P = 1 −
k−1∑
i=0

(
M
i

) (
N − M
n − i

)
(

N
n

)



Vol. 49 No. SIG 5(TBIO 4) A Clustering Method for Sequence Similarity Networks of Proteins 19

Table 1 Results for three ontologies on biological processes, cellular compo-
nents, and molecular functions, by four clustering methods using
maximal components, single linkage, complete linkage, and average
linkage.

Method # of clusters Process Component Function
Maximal component 869 −8.9462 2,618 −5.9189 2,641 −10.657 2,624
Single linkage 1,176 −5.2346 2,947 −4.5076 2,970 −4.7721 2,903
Complete linkage 1,509 −3.0674 3,258 −2.3149 3,391 −3.8539 3,050
Average linkage 1,440 −3.2556 3,692 −2.4423 3,761 −4.1007 3,508

Left column: the average of logarithm of corrected P-values.
Right column: the total number of proteins included in annotated clusters.

=
n∑

i=k

(
M
i

) (
N − M
n − i

)
(

N
n

) (5)

where N is the total number of genes, M is the
total number of genes annotated by the spe-
cific GO term, n is the number of genes in the
cluster, and k is the number of genes annotated
by the specific GO term in the cluster. P -value
means the probability of seeing k or more genes
with an annotation by a GO term among n
genes in the list, given that M in the popu-
lation of N have that annotation. For example,
P = 1 holds if none of the genes in the spec-
ified list are annotated by the GO term. On
the other hand, if all the genes are annotated,
P = M(M−1)···(M−n+1)

N(N−1)···(N−n+1) is very small because M
is usually much smaller than N .

By performing more than one statistical test,
the probability of falsely identifying a test to
be statistically significant can increase. In or-
der to avoid that many false positive GO terms
are chosen, we need to adjust such a proba-
bility or the alpha level (cut-off for P -values),
that is often set to 0.05, for multiple hypothe-
ses. The Bonferroni method adjusts the alpha
level of each individual test downwards. Alter-
natively, GO-TermFinder adjusts P -values by
multiplying by the number of hypotheses that
were tested, and the alpha level can be kept the
same level 18). We employed these corrected P -
values to evaluate clustering results.

We used three types of ontologies on bi-
ological processes, cellular components, and
molecular functions (Their file names are
“process.ontology.2005-08-01”, “component.on-
tology.2005-08-01”, and “function.ontology.
2005-08-01”). We obtained these files also from
SGD 13).

We compared the proposed method with
other clustering methods using single linkage,

complete linkage, and average linkage. These
clustering methods usually produce a hierar-
chical clustering. In order to obtain non-
hierarchical clustering results, we applied our
proposed procedure in the previous section, Se-
lectLaminar, to their results.

Table 1 shows the averages of logarithms of
corrected P -values over all 4,533 proteins and
the number of clusters. Among these proteins,
there were some proteins which could not be
annotated by GO-TermFinder. Therefore, we
regarded a corrected P -value as 1 for such pro-
teins, and calculated the averages. We see from
the table that our clustering method using max-
imal components outperformed other methods.
For every ontology, the average of our method
was lower than that of others. It means that our
method classified protein sequences into protein
functions better than others.

Figure 4 shows the distributions of the num-
ber of proteins in a cluster for resulting clusters
of clustering methods using maximal compo-
nents, single linkage, complete linkage, and av-
erage linkage. These methods had a similar dis-
tribution and many clusters were concentrated
in small sizes. In our selection method, Select-
Laminar, a set having more than one node is
considered as an independent cluster through
the condition |Xt| ≥ 2, though we can relax the
condition like |Xt| ≥ 3 to obtain larger clusters.

Figures 5, 6 and 7 show logarithms of cor-
rected P -values on 800 lowest proteins for the
ontologies on biological processes, cellular com-
ponents, and molecular functions, respectively.
For every ontology, corrected P -values of our
method were lower than others. The distribu-
tions of complete linkage and average linkage
had similar behavior. For the ontologies on bi-
ological processes and cellular components, cor-
rected P -values of single linkage were close to
those of our method. In particular, our method
provided good results for molecular functions.

Tables 2, 3 and 4 show GO terms with low-
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Table 2 GO terms with lowest 8 corrected P-value for the ontology of bi-
ological processes in resulting clusters of clustering methods using
maximal components, single linkage, complete linkage, and average
linkage.

Rank Maximal component
1 GO:0006319 (Ty element transposition) 2.7522e-190
2 GO:0006468 (protein amino acid phosphorylation) 2.4181e-113
3 GO:0008643 (carbohydrate transport) 1.2509e-43
4 GO:0006865 (amino acid transport) 1.0052e-37
5 GO:0006511 (ubiquitin-dependent protein catabolism) 9.4800e-24
6 GO:0006810 (transport) 1.2224e-21
7 GO:0006081 (aldehyde metabolism) 8.1134e-21
8 GO:0016567 (protein ubiquitination) 1.1405e-19

Rank Single linkage
1 GO:0006319 (Ty element transposition) 3.0396e-176
2 GO:0006081 (aldehyde metabolism) 4.0950e-19
3 GO:0006530 (asparagine catabolism) 3.5363e-16
4 GO:0006166 (purine ribonucleoside salvage) 5.0151e-15
5 GO:0045039 (mitochondrial inner membrane protein import) 3.1055e-14
6 GO:0046839 (phospholipid dephosphorylation) 7.8293e-14
7 GO:0005992 (trehalose biosynthesis) 3.4570e-13
8 GO:0006913 (nucleocytoplasmic transport) 4.4109e-13

Rank Complete linkage
1 GO:0006319 (Ty element transposition) 3.7058e-81
2 GO:0006319 (Ty element transposition) 9.1783e-55
3 GO:0008645 (hexose transport) 1.1156e-20
4 GO:0006319 (Ty element transposition) 4.1098e-18
5 GO:0000209 (protein polyubiquitination) 5.7229e-17
6 GO:0006530 (asparagine catabolism) 3.5363e-16
7 GO:0006081 (aldehyde metabolism) 2.1634e-15
8 GO:0006166 (purine ribonucleoside salvage) 5.0151e-15

Rank Average linkage
1 GO:0006319 (Ty element transposition) 4.4023e-79
2 GO:0006319 (Ty element transposition) 9.1783e-55
3 GO:0008645 (hexose transport) 1.1156e-20
4 GO:0006081 (aldehyde metabolism) 4.0950e-19
5 GO:0006319 (Ty element transposition) 4.1098e-18
6 GO:0006530 (asparagine catabolism) 3.5363e-16
7 GO:0006166 (purine ribonucleoside salvage) 5.0151e-15
8 GO:0045039 (mitochondrial inner membrane protein import) 3.1055e-14

Fig. 4 Distributions of the number of proteins in a
cluster for resulting clusters of clustering meth-
ods using maximal components, single linkage,
complete linkage, and average linkage.

est 8 corrected P -value in resulting clusters of
clustering methods using maximal components,
single linkage, complete linkage, and average

Fig. 5 Logarithms of corrected P-values on 800 lowest
proteins for ontology on biological processes.

linkage for the ontology of biological processes,
cellular components, and molecular functions,
respectively. In both complete linkage and av-
erage linkage for the ontology of biological pro-
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Table 3 GO terms with lowest 8 corrected P-value for the ontology of cel-
lular components in resulting clusters of clustering methods using
maximal components, single linkage, complete linkage, and average
linkage.

Rank Maximal component
1 GO:0000943 (retrotransposon nucleocapsid) 1.7383e-191
2 GO:0005839 (proteasome core complex) 1.0925e-40
3 GO:0005740 (mitochondrial membrane) 4.6006e-36
4 GO:0005886 (plasma membrane) 2.1740e-25
5 GO:0005886 (plasma membrane) 4.0445e-24
6 GO:0005832 (chaperonin-containing T-complex) 3.7844e-22
7 GO:0042555 (MCM complex) 1.7940e-19
8 GO:0005940 (septin ring) 2.2970e-18

Rank Single linkage
1 GO:0000943 (retrotransposon nucleocapsid) 2.7425e-177
2 GO:0019773 (proteasome core complex, alpha-subunit complex) 1.8389e-22
3 GO:0008540 (proteasome regulatory particle, base subcomplex) 1.3396e-17
4 GO:0005946 (alpha,alpha-trehalose-phosphate synthase complex) 1.7976e-13
5 GO:0042719 (mitochondrial intermembrane space protein transporter complex) 1.3137e-12
6 GO:0042555 (MCM complex) 3.7336e-12
7 GO:0019774 (proteasome core complex, beta-subunit complex) 7.7437e-12
8 GO:0000307 (cyclin-dependent protein kinase holoenzyme complex) 1.7423e-11

Rank Complete linkage
1 GO:0000943 (retrotransposon nucleocapsid) 1.4767e-81
2 GO:0000943 (retrotransposon nucleocapsid) 4.5547e-55
3 GO:0019773 (proteasome core complex, alpha-subunit complex) 1.8389e-22
4 GO:0000943 (retrotransposon nucleocapsid) 2.6265e-18
5 GO:0005946 (alpha,alpha-trehalose-phosphate synthase complex) 1.7976e-13
6 GO:0019774 (proteasome core complex, beta-subunit complex) 7.7437e-12
7 GO:0000307 (cyclin-dependent protein kinase holoenzyme complex) 1.7423e-11
8 GO:0008540 (proteasome regulatory particle, base subcomplex) 2.7877e-11

Rank Average linkage
1 GO:0000943 (retrotransposon nucleocapsid) 1.7874e-79
2 GO:0000943 (retrotransposon nucleocapsid) 4.5547e-55
3 GO:0019773 (proteasome core complex, alpha-subunit complex) 1.8389e-22
4 GO:0000943 (retrotransposon nucleocapsid) 2.6265e-18
5 GO:0000307 (cyclin-dependent protein kinase holoenzyme complex) 1.6203e-14
6 GO:0005946 (alpha,alpha-trehalose-phosphate synthase complex) 1.7976e-13
7 GO:0042719 (mitochondrial intermembrane space protein transporter complex) 1.3137e-12
8 GO:0042555 (MCM complex) 3.7336e-12

Fig. 6 Logarithms of corrected P-values on 800 lowest
proteins for ontology on cellular components.

cesses, the same GO term (GO:0006319 Ty el-
ement transposition) was annotated to the first
and second lowest clusters. It means that a
cluster having the GO term was divided into

Fig. 7 Logarithms of corrected P-values on 800 lowest
proteins for ontology on molecular functions.

two or more clusters by the methods. It was
also observed in maximal components, com-
plete linkage, and average linkage for the on-
tology of cellular components.
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Table 4 GO terms with lowest 8 corrected P-value for the ontology of molec-
ular functions in resulting clusters of clustering methods using max-
imal components, single linkage, complete linkage, and average link-
age.

Rank Maximal component
1 GO:0004672 (protein kinase activity) 7.6717e-183
2 GO:0003723 (RNA binding) 1.8308e-110
3 GO:0003924 (GTPase activity) 4.1636e-63
4 GO:0003724 (RNA helicase activity) 1.5530e-51
5 GO:0051119 (sugar transporter activity) 2.1704e-48
6 GO:0005215 (transporter activity) 7.4571e-40
7 GO:0015171 (amino acid transporter activity) 1.6321e-39
8 GO:0008639 (small protein conjugating enzyme activity) 1.2381e-38

Rank Single linkage
1 GO:0003723 (RNA binding) 6.6055e-104
2 GO:0004386 (helicase activity) 3.3796e-26
3 GO:0004190 (aspartic-type endopeptidase activity) 1.0869e-24
4 GO:0018456 (aryl-alcohol dehydrogenase activity) 4.8306e-24
5 GO:0000293 (ferric-chelate reductase activity) 7.5718e-23
6 GO:0016820 (hydrolase activity) 1.5294e-20
7 GO:0003993 (acid phosphatase activity) 8.5729e-17
8 GO:0004749 (ribose phosphate diphosphokinase activity) 9.6445e-17

Rank Complete linkage
1 GO:0003964 (RNA-directed DNA polymerase activity) 1.0121e-93
2 GO:0003723 (RNA binding) 1.5609e-35
3 GO:0004386 (helicase activity) 2.1096e-31
4 GO:0000293 (ferric-chelate reductase activity) 7.5718e-23
5 GO:0005353 (fructose transporter activity) 9.4981e-22
6 GO:0004840 (ubiquitin conjugating enzyme activity) 3.4803e-19
7 GO:0018456 (aryl-alcohol dehydrogenase activity) 1.9535e-18
8 GO:0004190 (aspartic-type endopeptidase activity) 2.2326e-18

Rank Average linkage
1 GO:0003964 (RNA-directed DNA polymerase activity) 5.2819e-91
2 GO:0003723 (RNA binding) 1.5609e-35
3 GO:0004386 (helicase activity) 1.9841e-30
4 GO:0004190 (aspartic-type endopeptidase activity) 1.0869e-24
5 GO:0018456 (aryl-alcohol dehydrogenase activity) 4.8306e-24
6 GO:0000293 (ferric-chelate reductase activity) 7.5718e-23
7 GO:0005353 (fructose transporter activity) 9.4981e-22
8 GO:0003756 (protein disulfide isomerase activity) 8.5729e-17

As for CPU time, the proposed method
is reasonably fast. Though the worst case
time complexity of the proposed method is
O(n2m log(n2/m)), it is expected to work faster
in practice. Indeed, the proposed method took
6.3 sec. for clustering of a graph with 4,533
nodes on a Linux PC with Xeon 3.6 GHz CPU
and 4 GB memory. Though the single-linkage
clustering took only 0.024 sec., our proposed
method produced better results. Moreover, for
memory usage, the space complexity of our
method is O(mn). Actually, our method used
about 5.5 M bytes memory for the graph with
4533 nodes.

5. Conclusion

We developed a clustering method for anal-
ysis of biological data. The proposed method
makes use of maximal components, where a

maximal component can be characterized as
a subgraph having maximal edge connectivity.
Since a set of maximal components constitutes
a hierarchical structure, we developed a method
to select disjoint clusters from the hierarchical
structure. We compared the proposed method
with the single linkage, complete linkage, and
average linkage clustering methods using a se-
quence similarity network of proteins. Our pro-
posed method outperformed these three meth-
ods in terms of the corrected P -values provided
by GO-TermFinder, and classified protein se-
quences into protein functions better than the
three methods.

We did not compare clustering methods other
than the linkage methods with our method in
this study since a number of clustering meth-
ods have been proposed and it is unclear which
methods are appropriate for analysis of se-
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quence similarity networks of proteins. For ex-
ample, the k-means method 19) is well known as
a non-hierarchical clustering method. However,
it cannot be directly applied to edge-weighted
graphs because it is difficult to define the center
of a cluster and the distance between the center
and any node in the graph.

We applied our procedure, SelectLaminar,
to maximal components and to some linkage
methods. However, there may exist better se-
lection methods and/or evaluation methods to
compare the results of hierarchical clustering.
Study of such methods is left as future work.

One of the most important features of our
proposed method is that each cluster has a
clear mathematical meaning that each clus-
ter has maximal edge connectivity. Of course,
many other clustering methods try to guaran-
tee some mathematical properties 3),6). How-
ever, in most of these methods, clusters are ob-
tained using recursive procedures and thus the
meanings of clusters are unclear if more than 2
clusters are obtained. Of course, having math-
ematical meanings may not be important from
a biological viewpoint. However, the most im-
portant contribution of this paper is that we
demonstrated that a graph theory based al-
gorithm performed better for protein sequence
data than the standard linkage-based clustering
methods.

There are several future works. We used
log of E -values as edge-weights. However, this
weighting method is not necessarily the best.
Thus, finding better weighting method is im-
portant future work. We developed a simple
method in order to select disjoint clusters from
a set of maximal components. However, better
results may be obtained by using a more elabo-
rated method. Thus, improvement of selection
of disjoint clusters should be done. Besides, we
did not make much use of hierarchical struc-
ture of maximal components. More active use
of hierarchical structure should also be exam-
ined. We have applied the proposed cluster-
ing method to clustering of protein sequences.
However, our method is not limited to analysis
of protein sequences. For example, clustering of
gene expression data is one of extensively stud-
ied problems. Therefore, application to analysis
of gene expression data is also important future
work.
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