
IPSJ SIG Technical Report

Enumeration of Nonisomorphic Interval Graphs
and Nonisomorphic Permutation Graphs

Kazuaki Yamazaki1,a) Toshiki Saitoh2,b) Masashi Kiyomi3,c)

Ryuhei Uehara1,d)

Abstract: In this paper, a general framework for enumerating every element in a graph class is given. The
main feature of this framework is that it is designed to enumerate only non-isomorphic graphs in a graph
class. Applying this framework to the classes of interval graphs and permutation graphs, we give efficient
enumeration algorithms for these graph classes such that each element in the class is output in a polynomial
time delay. The experimental results are also provided. The catalogs of graphs in these graph classes are
also provided.

Keywords: Enumeration, graph isomorphism, interval graph, permutation graph, reverse search

1. Introduction

Recently we have to process huge amounts of data in the

area of data mining, bioinformatics, etc. In most cases, we

have to use some certain structure to solve problems effi-

ciently. We need three efficiencies to deal with a complex

structure; it has to be represented efficiently, essentially dif-

ferent instances have to be enumerated efficiently, and its

properties have to be checked efficiently. From the view-

point of the “difference,” in graphs, it is natural to consider

that two graphs are different when they are non-isomorphic.

However, in general, the graph isomorphism problem is dif-

ficult to solve efficiently even on restricted graph classes (see

[19]). Though, there are rich structures even if we restricted

to the graph classes that allow us to solve graph isomorphism

efficiently.

We investigate the enumeration of a graph class from this

viewpoint in this paper. In this context, there are two pre-

vious results by some of the authors [16], [17]. In the pa-

per, the authors gave efficient enumeration algorithms for

proper interval graphs and bipartite permutation graphs.

However, they are quite specific to some common properties

of these graph classes, and it is unlikely to extend to other

graph classes. Therefore, we focus on some graph classes

such that graph isomorphism can be solved efficiently, and

1 School of Information Science, Japan Advanced Institute of
Science and Technology (JAIST), Japan

2 School of Computer Science and Systems Engineering, Kyushu
Institute of Technology, Japan

3 International College of Arts and Sciences, Yokohama City
University, Japan

a) torus711@jaist.ac.jp
b) toshikis@ces.kyutech.ac.jp
c) masashi@yokohama-cu.ac.jp
d) uehara@jaist.ac.jp

we develop a general framework that gives us to enumerate

all non-isomorphic graphs with n vertices for a given inte-

ger n, in each of these graph classes. Intuitively, most of

the graph classes in which graph isomorphism can be solved

in polynomial time share a common property: Each graph

in the graph class can be characterized by a canonical tree

structure, and graph isomorphism can be checked essentially

by solving the graph isomorphism problem on these labeled

trees [12].

There are two well-known graph classes that graph iso-

morphism can be solved in polynomial time in this manner;

interval graphs [14] and permutation graphs [4]. We men-

tion that these graph classes have been widely investigated

since they have many applications, and they are very ba-

sic graph classes from the viewpoints of graph theory and

algorithms. Therefore many useful properties have been re-

vealed, and many efficient algorithms have been developed

for them (see, e.g., [3], [7], [18]). From the practical point

of view, when an efficient algorithm for a graph class is de-

veloped and implemented, we need many graphs belonging

to the class to check the reliability of the algorithm. Thus,

for such popular graph classes, efficient enumerations are

required [9]. However, as far as the authors know, these

concrete catalogs for these graph classes have never been

provided.

In this paper, we first propose a general framework of enu-

meration of a graph class in which graph isomorphism can

be solved in polynomial time. Then we turn to the details

of applications of this framework to interval graphs and per-

mutation graphs. We finally give the experimental results

of the implementations for these graph classes. That is, we

give the first actual catalogs of non-isomorphic graphs for

these graph classes for small n, where n is the number of

1ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-166 No.2
2018/1/28

IPSJ SIG Technical Report

vertices. (We note that, for interval graphs, some related

results can be found in [8] from the viewpoint of counting,

not enumeration.) Due to space limitation, some proofs and

some figures are omitted.

2. Preliminaries

We only consider simple graph G = (V,E) with no self-

loop and multiple edges. We assume V = {1, 2, . . . , n} for

some n, and |E| = m. For two integers i, j, we denote by

G+ {i, j} the graph (V,E ∪{{i, j}}), and by G−{i, j} the

graph (V,E \ {{i, j}}). Let Kn denote the complete graph

of n vertices and Pn denote the path of n vertices of length

n− 1.

A graph (V,E) with V = {1, 2, . . . , n} is an interval graph

when there is a finite set of intervals I = {I1, I2, . . . , In} on

the real line such that {i, j} ∈ E if and only if Ii ∩ Ij �= ∅
for each i and j with 0 < i, j ≤ n. We call the interval set I
an interval representation of the graph. For each interval I,

we denote by L(I) and R(I) the left and right endpoints of

the interval, respectively (hence we have L(I) ≤ R(I) and

I = [L(I), R(I)]).

A graph G = (V,E) with V = {1, 2, . . . , n} is a permu-

tation graph when there is a permutation π over V such

that {i, j} ∈ E if and only if (i − j)(π(i) − π(j)) < 0. In-

tuitively, each vertex i in a permutation graph corresponds

to a line �i joining two points on two parallel lines L1 and

L2 such that two vertices i and j are adjacent if and only if

the corresponding lines �i and �j intersect. We suppose that

the indices 1, 2, . . . , n of the vertices give the ordering of the

points on L1, and the ordering by permutation π over V

gives the ordering of the points on L2. That is, �i joins the

ith vertex on L1 and the π(i)th vertex on L2. We call this

intersection model a line representation of the permutation

graph.

We define a graph isomorphism between two graphs

G1 = (V1, E1) and G2 = (V2, E2) as follows. The graph

G1 is isomorphic to G2 when there is a one-to-one mapping

φ : V1 → V2 such that for any pair of vertices u, v ∈ V1,

{u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2. We denote by

G1 ∼ G2 for two isomorphic graphs G1 and G2.

3. General framework

For a graph class C, we suppose that the graph isomor-

phism can be solved in polynomial time for C. We denote

by Iso(n) the time complexity for solving the graph isomor-

phism problem for two graphs G1 and G2 of n vertices in the

class C. Here we define the notion of the canonical graph

for any given graph G in C with respect to the graph iso-

morphism. We first suppose that we can define a transitive

ordering < over isomorphic graphs in C. That is, (1) ei-

ther G1 < G2 or G2 < G1 holds for any given two graphs

G1 = (V,E1) and G2 = (V,E2) such that G1 ∼ G2 and

E1 �= E2, and (2) when G1 < G2 and G2 < G3 for three

isomorphic graphs G1, G2, G3, we have G1 < G3. Then

there exists a unique minimal graph G for any set of all

isomorphic graphs in C. We call this graph G the canonical

graph. Our goal is to enumerate all canonical graphs in the

class C. To this goal, we will use the following properties of

the class C:
Canonical property: For any graph G in C, we can com-

pute its canonical graph in polynomial time. That is, the

canonical property guarantees that any graphG can be dealt

with its canonical form (in polynomial time).

We use reverse search technique to enumerate all graphs

(see [1] for the details about reverse search). In reverse

search, we define a family tree T over the graphs in the

target graph class C by introducing a parent-child relation-

ship between two graphs G and G′ in C. More precisely, in

the class C, we first fix a root node*1 GR ∈ C. In this pa-

per, we will use Kn as the root node GR, since Kn belongs

to interval graphs and permutation graphs. For each graph

G ∈ C\{GR}, we assume that its parent G′ of G is uniquely

defined and computed in polynomial time. We will define

the parent-child relationship so that it is acyclic, it forms

a tree on the graphs rooted at GR in C. Thus we call the

resulting tree spanning the class C family tree, and denoted

by T .

For the current graph G, we will modify G by some basic

operation to find its parent or children in T of the class C.
In this paper, we will use “add an edge” as a basic operation

to find its parent. The key requirement is that the parent

should be uniquely determined for each graph except the

root node in T . In an interval graph (or in a permutation

graph) G which is not Kn, there is at least one edge e such

that G + e is an interval graph (or a permutation graph,

respectively). When there are two or more such edges e, we

have to determine the unique parent efficiently. To deter-

mine the unique parent for any given graph G ∈ C \ {GR},
we need the following operational property :

Operational property: Let G be any graph in C \ {GR},
where GR is the root node of T of C. Then, there exists

at least one graph G′ ∈ C such that G′ is obtained from

G by applying one basic operation. Moreover, we can find

minimal G′, which is determined uniquely, among them in

polynomial time.

The operational property guarantees that we can find a

unique parent of G for a given graph G in C \{GR} in poly-

nomial time. However, in reverse search, a graphG produces

the set of potential children S(G). Precisely, the algorithm

first produces a set of graphs S′(G) that consists of the

graphs obtained by applying the reverse of basic operation.

In our context, S′(G) is the set of graph G−e for each edge

e. It is guaranteed that all children in the family tree are in

S′(G), but there may be redundant graphs. There are three

considerable cases. The first case is easy; when G− e is not

in C, just discard it. The second case is that G produces two

or more isomorphic graphs by the reverse of basic operation.

*1 We use two terms “node” and “vertex” to indicate an element
in a graph. When we use “vertex,” it indicates a vertex in the
original graph G in the class C. On the other hand, when we
use “node,” it indicates meta-structure of graphs. That is, a
“node” in T indicates a graph in the class C.

2ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-166 No.2
2018/1/28

IPSJ SIG Technical Report

For example, when G is a complete graph and the basic op-

eration is “add an edge,” G produces all graphs G − {i, j}
for all 1 ≤ i, j ≤ n as potential children of G. In this case,

the algorithm discards all isomorphic graphs except one. Let

S(G) be the set of the nonisomorphic graphs in C obtained

from G by the reverse of basic operation. The last consider-

able case is that the graph G′ ∈ S(G) has a different parent.

This case occurs when G′ has two (or more) edges e1 and

e2 such that G′ + e1 ∈ C and G′ + e2 ∈ C. In this case,

G′ appears in both of S(G′ + e1) and S(G′ + e2). To avoid

redundancy, G′ will check which is the unique parent.

Now we are ready to show the outline of the enumeration

algorithm:

Algorithm 1: Outline of Enumeration Algorithm based

on Reverse Search
Input : An integer n

Output: All nonisomorphic graphs of n vertices in a graph

class C
A set S is initialized by the root node of the family tree of C;
while S is not empty do

Pick up one node that represents a graph G = (V,E) in

the class C;
Output G as an element in the class C;
Compute the set S(G) of nonisomorphic graphs in C
obtained by the reverse of basic operation;

// G may produce two or more isomorphic graphs,

which should be avoided here.

foreach G′ ∈ S(G) do
// Check if G is the unique parent of G′.
Compute the unique parent Ĝ′ of G′;
If Ĝ′ is isomorphic to G, push G′ into S;

The algorithm enumerates all elements in breadth first

search (BFS) manner when S is realized by a queue, and

in depth first search (DFS) manner when S is realized by

a stack. Hereafter, we suppose that it runs in BFS, which

makes proof of correctness simpler.

Let C be the graph class satisfying the properties above.

Then we have the main theorem for the framework:

Theorem 1. We can enumerate all nonisomorphic graphs

of n vertices in C with polynomial time delay. That is, the

running time of the algorithm is |Cn|p(n) for some poly-

nomial function p, where Cn denotes the subset of C that

contains all graphs of n vertices in C.

Proof. Without loss of generality, we suppose that the root

node is a complete graph Kn, and the basic operation is

“add an edge” for easy to read. We first confirm that the

family tree is well-defined if the parent-child relationship is

defined properly. Since Kn is the root node, each graph in

Cn \ {Kn} has its unique parent, and the parent-child rela-

tionship is acyclic by definition, we can observe that the

directed graph (Cn, A) forms a directed spanning tree T
rooted at Kn, where A is the set of arcs (u, v) such that

v is a child of u. This T is the family tree of Cn.

We define a level of a graph G in this family tree T as fol-

lows; Kn is of level 0, and for each i = 1, 2, . . . , G has level i

if it is a child of the graph of level i−1. In the current basic

operation, we can observe that G has level i if and only if

it has
(
n
2

)
− i edges. Moreover, since the algorithm runs in

BFS manner, the algorithm enumerates all graphs in level

by level.

We first show that every nonisomorphic graph is enumer-

ated exactly once by induction for the level i. When i = 0,

the algorithm enumerates the complete graph Kn at the

root node. The inductive hypothesis is that the claim holds

up to level i − 1. We assume i > 0. Let G′ be any graph

in the level i. Then, by the operational property, G′ has at
least one edge that can be added. Therefore, there is a set

of graphs belonging to the level i − 1. Among them, there

is the parent Ĝ′ of G′ in the level i − 1. By inductive hy-

pothesis, Ĝ′ was enumerated at the level i − 1. When Ĝ′

is enumerated, the algorithm constructs S(Ĝ′) which con-

tains a canonical graph G′′ with G′′ ∼ G′. By the canonical

property, G′′ is put into S since Ĝ′ is the parent of G′′ and
hence G′. Therefore, an isomorphic graph of G′ is enumer-

ated at least once. Now we show that G′ is not enumerated

twice or more. To derive contradictions, we suppose that

G′ and G′′ are enumerated by the algorithm and G′ ∼ G′′.
By the canonical property, G′ and G′′ share their common

parent Ĝ. Therefore, G′ and G′′ are enumerated because

they are put into S by when the algorithm deals with Ĝ.

However, this contradicts that S(Ĝ) is the set of nonisomor-

phic graphs. Therefore, each graph is enumerated exactly

once with respect to isomorphism.

Now we show the time complexity of the algorithm. We

show that each node G in T uses polynomial time. It is

easy to see that the claim holds when G is in level 0, or G

is Kn. Thus we assume that G �∼ Kn. When G = (V,E)

is picked up from S, it is output at first. Then the algo-

rithm constructs S(G). The key property is that S(G) can

be constructed in polynomial time. In the basic operation,

the number of elements in S(G) can be bounded above by

|E|. Thus the algorithm first makes all graphs G′ obtained
from G by applying the reverse of basic operation. Then it

checks and reduces the redundant graphs if S(G) contains

two graphs G1 and G2 with G1 ∼ G2. This can be done

in O(
(|E|

2

)
Iso(n)) time, which is polynomial by assumption.

For each G′ ∈ S(G), we compute its unique parent Ĝ′ again.
Since G′ contains |E|−1 edges, the number of candidates of

the parent is
(
n
2

)
− |E|+1. Among them, we can determine

the unique parent Ĝ′ in polynomial time by assumption.

Next, the graph isomorphism problem that asks if Ĝ′ ∼ G

or not is solved in Iso(n) time. In total, we can observe that

the algorithm runs in polynomial for each element in the

class Cn, which completes the proof.

By Theorem 1, we can establish that there are several

graph classes that admit to enumerate all elements in the

class in polynomial time delay. However, the efficiency of

the enumeration is strongly depending on the detailed imple-

3ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-166 No.2
2018/1/28

IPSJ SIG Technical Report

mentation for each class. We show two efficient implemen-

tations for two representative graph classes; interval graphs

and permutation graphs. We also show experimental results,

that is, we give catalogs for these graph classes. In both of

interval graphs and permutation graphs, we let Kn be the

root node of the family tree, and basic operation is “add an

edge” to obtain the parent.

4. Enumeration of nonisomorphic inter-

val graphs

We first focus on the enumeration of interval graphs of n

vertices. Let C be the set of interval graphs of n vertices

in this section. We first show the operational property for

C \ {GR}, where GR ∼ Kn. (We note that Kn is not only

an interval graph, but also a permutation graph, and we use

it as a common root node of the family trees for both graph

classes.)

Lemma 1 ([11]). Let G = (V,E) be any interval graph

which is not Kn. Then G has at least one edge e such that

G+ e is also an interval graph.

Proof. We here give a brief sketch, and readers can find

the details in [11]. For any interval representation IG of G,

when G is not Kn, we can take a “closest” pair of vertices

u, v such that R(Iu) < L(Iv) and there are no other end-

points between them. Then by swapping R(Iu) and L(Iv)

so that L(Iv) < R(Iu), we have another interval graph G+e

for e = {u, v}.

4.1 Canonical representation

We turn to the canonical representation of an interval

graph. We first show the canonical tree structure, and then

we give how to obtain a canonical representation for the

graph.

4.1.1 Canonical tree representation

As the tree structure for an interval graph, we use the

MPQ-tree model. The notion was developed by Korte and

Möhring [13] as a kind of labeled PQ-tree introduced by

Booth and Lueker [2].

A PQ-tree is a rooted tree T ∗ with two types of inter-

nal nodes: P and Q, which will be represented by circles

and rectangles, respectively. The leaves of T ∗ are labeled

1-1 with the maximal cliques of the interval graph G. The

frontier of a PQ-tree T ∗ is the permutation of the maximal

cliques obtained by the ordering of the leaves of T ∗ from left

to right. Two PQ-trees T ∗ and T ′∗ are equivalent, if one

can be obtained from the other by applying the following

rules;(1) arbitrarily permute the child nodes of a P-node,

or (2) reverse the order of the child nodes of a Q-node. A

graph G is an interval graph if and only if there is a PQ-tree

T ∗ whose frontier represents a consecutive arrangement of

the maximal cliques of G. The MPQ-tree T assigns sets

of vertices (possibly empty) to the nodes of a PQ-tree T ∗

representing an interval graph. A P-node is assigned only

one set, while a Q-node has a set for each of its children

(ordered from left to right according to the ordering of the

children).

For a P-node P , this set consists of those vertices of G

contained in all maximal cliques represented by the subtree

of P in T , but in no other cliques.

For a Q-node Q, the definition is more involved. Let

Q1, · · · , Qm be the set of the children (in consecutive or-

der) of Q, and let Ti be the subtree of T with root Qi. We

then assign a set Si, called section, to each Qi. Section

Si contains all vertices that are contained in all maximal

cliques of Ti and some other Tj , but not in any clique be-

longing to some other subtree of T that is not below Q. The

key property of MPQ-trees is summarized as follows:

Theorem 2 ([13], Theorem 2.1). Let T be the MPQ-tree

for an interval graph G = (V,E). Then we have the fol-

lowing: (a) T can be computed in linear time and space.

(b) Each maximal clique of G corresponds to a path in

T from the root to a leaf, where each vertex v ∈ V is

as close as possible to the root. (c) In T , each vertex v

appears in either one leaf, one P-node, or consecutive sec-

tions Si, Si+1, · · · , Si+j for some Q-node with j > 0.

For two interval graphs G1 and G2, let T1 and T2 be the

corresponding MPQ-trees. Then G1 ∼ G2 if and only if

T1 ∼ T2 (as labeled trees).

1L

2

3L4

5

6,7

12

8

9 10 11

φ

3R
1R

8
4 1 3

6
729 10

5 1211

9

10

1

2

5

7

8
4

3 12

6

11(A) (Β)

(C)

Fig. 1 An interval graph, its interval representation, and its cor-
responding MPQ-tree.

A simple example is given in Fig. 1. For a given inter-

val graph G in Fig. 1(A), its interval representation is given

in Fig. 1(B), and the corresponding MPQ-tree is given in

Fig. 1(C).

4.1.2 Definition of ordering of an MPQ-tree

Here, we define a total ordering over all MPQ-trees. For

an MPQ-tree T , we denote the index of the tree by Ind(T).

Then it should be (1) for any two MPQ-trees T1 and T2,

Ind(T1) = Ind(T2) if and only if T1 ∼ T2, (2) for any

three MPQ-trees T1, T2, and T3, Ind(T1) < Ind(T2) and

Ind(T2) < Ind(T3) imply Ind(T1) < Ind(T3), and (3) for

any two MPQ-trees T1 and T2 with T1 �∼ T2, we have either

Ind(T1) < Ind(T2) or Ind(T1) > Ind(T2). In our purpose,

we just need to compare two trees, and determine which is

“smaller.” Therefore, hereafter, we do not give their indices

explicitly, and give the rule that determines which is smaller.

We define the ordering step by step. We consider two

MPQ-trees T1 = (V1, E1) with n1 vertices and m1 edges,

and T2 = (V2, E2) with n2 vertices and m2 edges. First, if

the number of vertices are different, we define the ordering

according to them. That is, Ind(T1) < Ind(T2) if n1 < n2,

and Ind(T1) > Ind(T2) if n1 > n2. Therefore, hereafter, we

assume that n1 = n2. We here define two orderings; (1) a

4ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-166 No.2
2018/1/28

IPSJ SIG Technical Report

P-node is smaller than Q-node, and (2) a node with fewer

vertices is smaller than the other. The rule (1) precedes

the rule (2). We then compare the root nodes of T1 and

T2 according to this rule. If one of them is smaller, we are

done. Therefore, we assume that they are the same nodes

that consist of the same number of vertices. We have two

cases.

Case (a): They are P-nodes. We arrange all children of

these P-nodes according to their indices. Assume that the

P-node of T1 has k1 children and the P-node of T2 has k2

children. If k1 �= k2, the tree with fewer children is smaller.

Therefore we assume that k1 = k2. In this case, we arrange

these children from left to right according to their indices

recursively. We compare these lists of children in the lex-

icographical manner. That is, we first take the first two

children from k1 children and k2 children respectively, and

compare them. If they are different, their ordering gives the

ordering of the original MPQ-trees. If they are the same

(or isomorphic), we next take the second children from these

two MPQ-trees, and so on. If all children are in a tie, we

can conclude T1 ∼ T2.

1L
2L 3L

4L

1R
2R3R

4R
5L 5R

S1 S2 S3 S4 S5

Fig. 2 An example of a Q-node.

Case (b): They are Q-nodes. We first define the ordering

between two Q-nodes Q1 and Q2 whose drawing are fixed,

that is, they cannot be flipped. Let S1, S2, . . . , Sk be the

sections ofQ1 in this ordering and S′
1, S

′
2, . . . , S

′
k′ be the sec-

tions of Q2 in this ordering. When k �= k′, the Q-node with

fewer sections is smaller. Therefore we assume that k = k′.
For each section Si, we define a vector (x1, x2, . . . , xi−1, y)

as follows. For each j = 1, 2, . . . , i − 1, xj is the number

of intervals that have their right endpoints in this section

Si and their left endpoints are in Sj . The last variable y is

the number of intervals that have their left endpoints in this

section Si. For example, we observe a Q-node in Fig. 2. The

vector for S1 is (2) since it contains two left endpoints. The

vector for S2 is (0, 2) since it contains no right endpoints.

Then the vector for S3 is (1, 1, 0) since it contains the right

endpoint of the vertex 1 and 3, and their left endpoints are

in S1 and S2, respectively. The vectors of S4 and S5 are

(0, 1, 0, 1) and (1, 0, 0, 1, 0), respectively. Then we compare

these vectors from S1 and S′
1 to Sk and S′

k in the lexico-

graphical manner. That is, if j is the smallest index such

that the vectors corresponding to Si and S′
i are the same up

to j − 1, and they are different at j, we decide the ordering

according to Sj and S′
j . When all of them are the same, we

next compare the children of Si and Si′ in the same man-

ner recursively. When Sj and S′
j have the nonisomorphic

children, we can determine the ordering according to them.

Now we turn to the original problem that asks to deter-

mine the ordering of two Q-nodes that are allowed to flip

them. First, we take one Q-node Q. Then we have two ways

to draw it as sections S1, S2, . . . , Sk and Sk, . . . , S2, S1 from

left to right. We then compare these two drawings and take

the smaller one as the description of Q. Similarly, we take

another Q-node Q′, and fix its direction with respect to its

ordering. Finally, we compare these two fixed Q-nodes.

By induction for the depth of a MPQ-tree, it is straight-

forward that the ordering defined above is a total ordering

over all MPQ-trees. We again note that we can compare

two MPQ-trees directly in the above manner, and we do

not need to compute their indices explicitly.

4.1.3 Canonical string representation

The MPQ-tree T for an interval graph G = (V,E) is

the canonical form in the sense that for any two isomorphic

interval graphs G1 ∼ G2, the resulting MPQ trees T1 and

T2 are also isomorphic and they can be used to solve the

graph isomorphism problem for G1 and G2 in linear time

since it can be solved in linear time on such labeled trees.

We further introduce a canonical string representation for

a given interval graph to decide the parent of an interval

graph uniquely. Intuitively, we will introduce a string repre-

sentation for an interval graph so that if two interval graphs

are isomorphic, their corresponding strings are exactly the

same. We here define two basic cases: a complete graph Kn

is represented by 1234 . . . (n−1)nn(n−1) . . . 4321 and a path

Pn is represented by 1213243 . . . i(i−1)(i+1)i . . . n(n−1)n.

To define general canonical string representations, we need

more details. The translation from a given MPQ-tree to

the canonical string consists of three phases.

First, we draw the MPQ-tree as an ordered tree which

is a rooted tree with left-to-right ordering specified by the

children of each node. The children for a node are arranged

in the ordering from “left-heavy” to “right-light.” That is,

we introduce a total ordering over all MPQ-trees that is a

transitive relationship. This idea can be found in [10], and

the details of the ordering for an MPQ-tree is described

at section 4.1.2. The key property of the ordering is that

Ind(T1) and Ind(T2) for two MPQ-trees are equal if and

only if they are isomorphic. Once we draw the MPQ-tree

in the way of the ordered tree defined by the ordering, two

drawings of T1 and T2 are the same (except vertex labelings)

if and only if they are isomorphic.

In the second phase, we relabel the vertices V =

{1, 2, 3, . . . , n} according to the ordering in the breadth first

search manner on the drawing of the tree. (We suppose

that a left node is visited before a right node.) By this

traverse of vertices of V in the nodes in a MPQ-tree with

the basic rule that the canonical representation of Kn is

1234 . . . (n − 1)nn(n − 1) . . . 4321, we can observe that two

MPQ-trees T1 and T2 are isomorphic if and only if the

resulting drawings are completely the same including the

labels of vertices in V . In this sense, we call the relabeled

MPQ-tree T for an interval graph G the canonical MPQ-

tree of G. For example, when we apply this process to the

MPQ-tree in Fig. 1(C), we obtain the canonicalizedMPQ-

tree in Fig. 3(D).

In the last phase, we again traverse this canonical MPQ-

5ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-166 No.2
2018/1/28

IPSJ SIG Technical Report

tree T in breadth first search manner and generate the

canonical string of T as follows: for a P-node, the algo-

rithm first outputs all left endpoints of the vertices in the

node, make recursive calls for each of its children, and out-

put all right endpoints of the vertices in the node following

the basic rule of Kn. For a Q-node, the algorithm processes

each section by section in the Q-node. Let StrI(G) be re-

sulting string representation for a given interval graph G.

From the canonicalized MPQ-tree in Fig. 3(D), we obtain

the canonical string “1 2 5 6 8 8 9 9 10 10 6 5 3 7 7 2 11

11 12 12 3 4 4 1.” In Fig. 3(E), we add L and R that indi-

cate left and right endpoints, respectively. We also give each

corresponding string for each subtree rooted at the original

root up to level 0, 1, 2, and 3. Combining the results in [13]

and definitions above, we obtain the following theorem.

Theorem 3. Let G = (V,E) be any interval graph with

|V | = n and |E| = m. (1) The canonical MPQ-tree of

G and StrI(G) can be computed in O(n + m) time. (2)

|StrI(G)| = 2n. (3) Two interval graphs G1 and G2 are

isomorphic if and only if StrI(G1) = StrI(G2).

2L

7

3L 4

8

5,6

10

1

11 129

φ

3R
2R

1L2L5L6L8L8R9L9R10L10R6R5R3L7L7R2R11L11R12L12R3R4L4R1R

1L2L5L6L6R5R3L7L7R2R3R4L4R1R

1L2L3L2R3R4L4R1R

1L1R(D) (E)

Fig. 3 The MPQ-tree in left-to-right ordering with relabeling,
and its canonical string.

4.2 Parent-child relationship

As shown in Lemma 1, for any given interval graph

G = (V,E) with G �∼ Kn, there is at least one edge

e = {u, v} with e �∈ E such that G + e is also an in-

terval graph. For the graph G, let T be the canonical

MPQ-tree of G. Without loss of generality, we assume

that T is consistent to G from the viewpoint of labels. That

is, when we make T from G, the relabeling process does

not change any label of a vertex in V . By Theorem 3,

these G and T can be obtained in linear time. Now we

let Ê = {e = {u, v} | G+ e is an interval graph}. Among

Ê, we can pick up a unique edge ê that is the lexicograph-

ically smallest element in Ê. We define the parent of G by

G+ ê. Clearly, the parent is uniquely determined.

Theorem 4. Let G = (V,E) be any interval graph with

|V | = n and |E| = m. Then its parent can be computed in

O(n2(n+m)) time.

Proof. We first check if each element {u, v} �∈ E is in Ê or

not. This is simply done by using the recognition algorithm

for an interval graph, e.g., in [13], which runs in O(n +m)

time for each element. Thus, in total, this step runs in

O((
(
n
2

)
−m)(n+m)) time, or O(n2(n+m)) time. Then we

pick up the lexicographically smallest element in Ê. This

can be done in linear time, or O(
(
n
2

)
−m) time. (We note

that, from the practical viewpoint, the second phase is not

required when we start searching in lexicographical ordering.

Then the first element in Ê is the desired pair.)

4.3 Algorithm analysis

We here analyze the algorithm and show that each graph

is enumerated in polynomial time, which guarantees that

this algorithm achieves the polynomial time delay for each

graph. The root node can be enumerated in polynomial time

since it contains Kn. For each graph G in C, we evaluate

its running cost consists of its output, the computation of

S(G), and the process for each G′ ∈ S(G). The output of

G takes O(n + m) time. In this framework with the basic

operation, the set S(G) contains at most m children, each

of which is obtained from G by removing an edge. It takes

O(m(n+m)) time (by maintaining the set of canonical string

representations in a reasonable data structure, e.g., trie (or

prefix tree), we can reduce isomorphic graphs in this pro-

cess). Then we obtain the set of O(m) graphs, and each

G′ of them has n vertices and m − 1 edges. Now the al-

gorithm checks if the unique parent of each G′ is G or not.

It takes O(n2(n +m)) time by Theorem 4 for each. Thus,

this process takes O(n2m(n+m)) time in total. Therefore,

each graph consumes O(n2m(n + m)) time in total when

it is output. Since m = O(n2) in general, our enumeration

algorithm runs in O(n6) time per graph.

Our main theorem in this section is summarized as fol-

lows:

Theorem 5. We can enumerate every nonisomorphic in-

terval graph of n vertices. Each interval graph is enumer-

ated in O(n6) time delay.

4.4 Three variants of enumeration

Corollary 1. The algorithm in Theorem 5 can be modi-

fied to enumerate (1) connected graphs, and/or (2) at most

n vertices. In any variant, the delay is not changed from

O(n′6), where n′ is the number of vertices of the output

graph.

Proof. By the definition of the MPQ-tree, it is easy to

observe that an interval graph G = (V,E) is not connected

if and only if its corresponding MPQ-tree T has a P-node

R as a root, and R corresponding to an empty set of ver-

tices in V . Therefore, when the algorithm considers for each

G′ ∈ S(G), it is sufficient to discard G′ if G′ has the empty

P-node as the root node of the corresponding MPQ-tree

of G′. This check can be done in linear time, and it has

no effect on the delay of other graphs. (Precisely, in the

worst case, Θ(n) children may be discarded in O(n2) time,

which has no effect on O(n6) time for the next delay.) It is

easy to extend to “at most n vertices” by just repeating the

algorithm for each of 1, 2, . . . , n.

5. Enumeration of nonisomorphic per-

mutation graphs

We next focus on the enumeration of permutation graphs

6ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-166 No.2
2018/1/28

IPSJ SIG Technical Report

of n vertices. Let C be the set of permutation graphs of n

vertices in this section. We first show the operational prop-

erty for C \ {GR}, where GR ∼ Kn.

Lemma 2. Let G = (V,E) be any permutation graph

which is not Kn. Then G has at least one edge e such

that G+ e is also a permutation graph.

Proof. Let LG be any line representation of G that rep-

resents a permutation π. We remind that 1, 2, . . . , n gives

the ordering of endpoints on L1, and π(i) is the π(i)th end-

point on L2. Then, since G is not Kn, it has at least two

vertices u, v with {u, v} �∈ E. Without loss of generality, we

assume that u < v. Then π(u) < π(v) since {u, v} �∈ E. We

take “closest” pair {u, v} among them as follows. Let u, v

be any pair that satisfies u < v and π(u) < π(v). We first

consider the case that v−u ≤ π(v)−π(u). When v−u > 1,

there is w with u < w < v. Then we have three cases: (1)

π(u) < π(w) < π(v), (2) π(w) < π(u) < π(v), and (3)

π(u) < π(v) < π(w). In (1) or (2), we replace u by w and

consider w, v is closer pair than u, v. In (3), we replace v by

w and v, w is closer pair than u, v. We next consider the case

that v−u > π(v)−π(u). In this case, we perform the same

thing above on L2 instead of L1. In any case, after this re-

placement, we can observe that min{|v − u|, |π(v)− π(u)|}
decreases at least one. Therefore, repeating this process,

we finally obtain a closest pair u, v such that v − u = 1 or

π(v) − π(u) = 1. Then we define a new permutation π′ as
follows; π(w) = π′(w) for each w ∈ V \{u, v}, π(u) = π′(v),
and π(v) = π′(u). Intuitively, we cross the endpoints of two
line segments uπ(u) and vπ(v). Now it is easy to see that

G+ {u, v} is also a permutation graph characterized by π′.
Thus we have the lemma.

5.1 Canonical representation

Now we turn to the canonical representation of permu-

tation graphs. First, we introduce the notion of modular

decomposition tree.

5.1.1 Canonical tree representation

For a graph G = (V,E), a vertex set X ⊆ V is a module if

and only if every vertex x not in X, either every member of

X is adjacent to x or no member of X is adjacent to x. (See

[15] for the details.) Trivial modules are ∅, V , and all the

singletons {v} for v ∈ V . A graph (or a module) is prime if

and only if all its modules are trivial. For any permutation

graph G, G has a unique line representation (up to reversal)

if and only if it is prime [6].

In [6], Gallai defined the modular decomposition recur-

sively on a graph with vertex set V . Intuitively, maximal

modules give a unique partition of V recursively, and we

have a tree structure with respect to the partition, which

is called the modular decomposition tree. In a modular de-

composition tree T , if all children are joined by edges in the

original graph, the parent of them is called series node, and

if all children are independent, the parent is called parallel

node. It is well known that the modular decomposition tree

for a permutation graph (1) is canonical up to isomorphism

[4], and (2) can be computed in linear time and space (see,

e.g., [5]).

In out context, this fact can be summarized as follows.

For two given permutation graphs G1 and G2, let T1 and

T2 be their modular decomposition trees. Then G1 ∼ G2 if

and only if (1) T1 and T2 satisfy T1 ∼ T2 (as labeled trees),

and (2) corresponding prime modules are isomorphic.

5.1.2 Canonical string representation

The modular decomposition tree T for a permutation

graph G = (V,E) is the canonical form. As considered

for interval graphs, we again introduce a canonical string

representation for a given permutation graph as follows.

We first consider the case that G = (V,E) is a prime

module. In this case, as mentioned, G has a unique line rep-

resentation up to reversal, and hence G has two representa-

tions given by two permutations π and π′ with π = π′−1.

Each permutation can be represented by a string of length n

such that every integer i ∈ {1, . . . , n} appears exactly once.

(E.g., P3 is represented by either 231 or 312.) Therefore, we

can choose lexicographically smaller one of π and π′ as the
canonical string representation of G. (E.g., the canonical

string representation of P3 is 231.)

Now we turn to the general case. This case is similar to the

case of interval graphs. We first fix the drawing of the mod-

ular decomposition tree according to a total ordering. Then,

we can fix the ordering of modules, and then the correspond-

ing line representation is uniquely determined. We then re-

label all vertices in V such that they appear as 1, 2, . . . , n on

L1. From this line representation, we can obtain the unique

permutation π on L2. We regard this π as the canonical

string representation of G.

Now the following theorem is straightforward from the

results in [4], [5], [6] and definitions above.

Theorem 6. Let G = (V,E) be any permutation graph

with |V | = n and |E| = m. (1) the canonical modular de-

composition tree and the canonical string representation of

G can be computed in O(n+m) time. (2) Two permutation

graphs G1 and G2 are isomorphic if and only if π1 = π2,

where πi is the canonical string representation of Gi.

5.2 Parent-child relationship

As shown in Lemma 2, for any given permutation graph

G = (V,E) with G �∼ Kn, there is at least one edge

e = {u, v} with e �∈ E such that G + e is also a permu-

tation graph. Therefore, we can use the same idea used in

interval graphs. For a given permutation graph G, let T
be the canonical modular decomposition tree of G. We as-

sume that we relabel G according to its canonical string

representation, and T is the corresponding tree. It can

be obtained from the original permutation graph in lin-

ear time by Theorem 6. Now we let Ê = {e = {u, v} |
G+ e is a permutation graph}. Let ê be the lexicographi-

cally smallest element in Ê. We define the unique parent of

G by G+ ê.

Theorem 7. Let G = (V,E) be any permutation graph

7ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-166 No.2
2018/1/28

IPSJ SIG Technical Report

Table 1 Number of graphs enumerated

of vertices 1 2 3 4 5 6 7 8 9 10 11 12
of interval graphs 1 2 4 10 27 92 369 1807 10344 67659 491347 3894446
of connected int. graphs 1 1 2 5 15 56 250 1328 8069 54962 410330 3317302
of permutation graphs 1 2 4 11 33 138 - - - - - -
of conn. perm. graphs 1 1 2 6 20 101 - - - - - -

with |V | = n and |E| = m except Kn. Then its parent can

be computed in O(n2(n+m)) time.

Proof. Using the recognition algorithm for permutation

graphs instead of interval graphs, the proof itself is the same

as Theorem 4.

5.3 Algorithm Analysis

We here turn to analyze the algorithm. Replacing The-

orem 4 by Theorem 7, the analysis is as the same as the

case on interval graphs. Therefore, we obtain the following

theorem and corollary.

Theorem 8. We can enumerate every nonisomorphic per-

mutation graph of n vertices. Each permutation graph is

enumerated in O(n6) time delay.

Corollary 2. The algorithm in Theorem 8 can be modi-

fied to enumerate (1) connected graphs, and/or (2) at most

n vertices. In any variant, the delay is not changed from

O(n′6), where n′ is the number of vertices of the output

graph.

Proof. By the definition of the modular decomposition

tree, it is easy to observe that a permutation graph G =

(V,E) is not connected if and only if its corresponding mod-

ular decomposition tree has a parallel node as a root. There-

fore, when the algorithm considers for each G′ ∈ S(G), it

is sufficient to discard G′ if G′ has a parallel node as the

root node of the corresponding modular decomposition tree

of G′. Thus we have the same conclusion of the case of

interval graphs.

6. Experimental results

We implemented the proposed algorithms. The number

of vertices and the number of non-isomorphic graphs are

summarized in table 1 and all these graphs are available at

http://www.jaist.ac.jp/~uehara/graphs.

7. Concluding remarks

We propose a general framework that enumerates all non-

isomorphic elements in a graph class in which graph isomor-

phism can be solved in polynomial time. As applications,

we give two implementations of the framework for interval

graphs and permutation graphs. The first open problem is

efficiency. The implementations for the graph classes ran in

O(n6) time, and the real implementation ran up to some

certain n, and we succeeded to give real catalogs for these

classes. If we can improve running time, we can list up to

larger n. The other future work is to extend this framework

to more general classes. Even if graph isomorphism cannot

be solved in polynomial time, we may enumerate all noniso-

morphic graphs up to some certain n for some simple graph

classes.

References

[1] D. Avis and K. Fukuda. Reverse Search for Enumeration.
Discrete Applied Mathematics, 65:21–46, 1996.

[2] K.S. Booth and G.S. Lueker. Testing for the Consecutive
Ones Property, Interval Graphs, and Graph Planarity Us-
ing PQ-Tree Algorithms. Journal of Computer and System
Sciences, 13:335–379, 1976.

[3] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes:
A Survey. SIAM, 1999.

[4] C.J. Colbourn. On Testing Isomorphism of Permutation
Graphs. Networks, 11:13–21, 1981.

[5] Christophe Crespelle and Christophe Paul. Fully Dynamic
Algorithm for Recognition and Modular Decomposition of
Permutation Graphs. Algorithmica, 58(2):405–432, 2009.

[6] Tibor Gallai. Transitiv orientierbare Graphen. Acta Mathe-
matica Academae Scientiarum Hungaricae, 18:25–66, 1967.

[7] M.C. Golumbic. Algorithmic Graph Theory and Perfect
Graphs. Annals of Discrete Mathematics 57. Elsevier, 2nd
edition, 2004.

[8] P. Hanlon. Counting Interval Graphs. Transactions of the
American Mathematical Society, 272(2):383–426, 1982.

[9] Pinar Heggernes. Personal communication. 2013.
[10] Shin ichi Nakano and Takeaki Uno. Constant Time Gen-

eration of Trees with Specified Diameter. In International
Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG 2004), pages 33–45. Lecture Notes in Computer
Science Vol. 3353, Springer-Verlag, 2004.

[11] Masashi Kiyomi, Shuji Kijima, and Takeaki Uno. List-
ing Chordal Graphs and Interval Graphs. In International
Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG 2006), pages 68–77. Lecture Notes in Computer
Science Vol. 4271, Springer-Verlag, 2006.

[12] J. Köbler, U. Schöning, and J. Torán. The Graph Isomor-
phism Problem: Its Structural Complexity. Birkhäuser, 1993.

[13] N. Korte and R.H. Möhring. An Incremental Linear-Time
Algorithm for Recognizing Interval Graphs. SIAM Journal
on Computing, 18(1):68–81, 1989.

[14] G.S. Lueker and K.S. Booth. A Linear Time Algorithm for
Deciding Interval Graph Isomorphism. Journal of the ACM,
26(2):183–195, 1979.

[15] Ross M. McConnell and Jeremy P. Spinrad. Modular decom-
position and transitive orientation. Discrete Mathematics,
201:189–241, 1999.

[16] Toshiki Saitoh, Yota Otachi, Katsuhisa Yamanaka, and
Ryuhei Uehara. Random Generation and Enumeration of
Bipartite Permutation Graphs. Journal of Discrete Algo-
rithms, 10:84–97, 2012. DOI:10.1016/j.jda.2011.11.001.

[17] Toshiki Saitoh, Katsuhisa Yamanaka, Masashi Kiyomi, and
Ryuhei Uehara. Random Generation and Enumeration of
Proper Interval Graphs. IEICE Transactions on Informa-
tion and Systems, E93-D(7):1816–1823, 2010.

[18] J.P. Spinrad. Efficient Graph Representations. American
Mathematical Society, 2003.

[19] R. Uehara, S. Toda, and T. Nagoya. Graph Isomorphism
Completeness for Chordal Bipartite Graphs and Strongly
Chordal Graphs. Discrete Applied Mathematics, 145(3):479–
482, 2004. http://dx.doi.org/10.1016/j.dam.2004.06.008
doi:10.1016/j.dam.2004.06.008.

8ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-166 No.2
2018/1/28

