スーパーコンピュータシステムITOの性能評価

大島 聡史^{1,a)} 南里 豪志¹ 渡部 善隆¹ 天野 浩文¹ 小野 謙二¹

概要:九州大学情報基盤研究開発センターではスーパーコンピュータシステム"ITO"を導入し、2017年 10月より一部システムによる試験運用を開始、2018年1月より全システムによるサービス提供を予定し ている。本システムは最新の CPU や GPU を搭載していることに加えて、オープンデータの活用やパブ リッククラウドサービスとの連携を考慮した挑戦的なシステムである。本稿では ITO の設計を紹介し、既 に試験運用を開始しているバックエンドサブシステム B を用いて測定した性能評価の結果を示す。

1. はじめに

九州大学情報基盤研究開発センター(以下、当センター)で はこれまで数年間にわたって高性能アプリケーションサーバ システム (HITACHI HA8000 および SR16000)、高性能演 算サーバシステム (FUJITSU PRIMERGY CX400)、およ びスーパーコンピュータシステム (FUJITSU PRIMEHPC FX10)を運用してきた。当センターは、箱崎キャンパス にて 2007 年に従来の情報基盤センターと事務局情報企画 課の統合による改組により設置された、研究開発と全国共 同利用計算サービスを担当する部局である。情報基盤セン ターとしての設置システムも含め、従来のスーパーコン ピュータシステム群は全て箱崎キャンパスに設置してき た。一方、現在九州大学では全学的なキャンパス移転を進 めており、当センターも 2016 年 10 月に箱崎キャンパスか ら伊都キャンパスへ移転した。これに伴い、新システムは 伊都キャンパスに設置する第一号のシステムとなるものと して調達を進めてきた。

今回当センターに導入されたスーパーコンピュータシス テムは、伊都キャンパスに設置される初めてのスーパーコ ンピュータシステムであることから ITO と名付けられた。 ITO は従来のスーパーコンピュータシステム群の利用者に 引き続き計算資源を提供するという役割に加えて、利用者 からの要望や社会的ニーズ等に答えるべく、AI (人工知能, 機械学習)、ビッグデータ、データサイエンスなどの新しい 分野の研究及びこれらを活用した研究に対応した研究基盤 の提供を目指して仕様策定されたものである。さらに詳細 な電力モニタリング機構や本格的なクラウド連携の仕組み を導入し、従来にはない新しいスーパーコンピューティン グの方向性や利用者層・課題の拡大に向けたインフラの提供を目指している。

ITO は 2017 年 10 月に一部システムの試験運用 (無償提 供)を始めており、2018 年 1 月に全システムによる有償 サービスの提供開始を予定している。本稿ではバックエン ドサブシステム B を用いて実施した性能評価の結果を報告 する。なおバックエンドサブシステム B は試験運用中のシ ステムであり、動作の安定化や性能向上のためにシステム 設定の変更やドライバの更新等を度々実施している。した がって、本稿の内容と有償サービス提供開始後とでは得ら れる性能やその傾向に違いが生じる可能性がある。

2. ITO システムの紹介

2.1 概要

ITO の全体構成を図 1 に示す。ITO は、2000 ノードの 計算ノードにより構成されるバックエンドサブシステム A、ノードあたり 4 基の GPU を搭載した 128 台の計算ノー ドにより構成されるバックエンドサブシステム B、インタ ラクティブな用途のために用意されたフロントエンドサブ システム (基本フロントエンドノード群および大容量フロ ントエンドノード群)、システム全体で共有されるストレー ジサブシステムにより構成されており、これらが 100Gbps の InfiniBand EDR によって接続されている。

ITO システムの納入業者は富士通株式会社である。ただ しフロントエンドシステムなど一部の構成要素については 富士通株式会社以外による製品も活用されている。図2に ITO システムの外観 (稼働中のバックエンドサブシステム B の写真)を示す。表1にはITO システムの仕様 (性能諸 元)を示す。ITO システムの冷却システムは、バックエン ドサブシステム A/B のみ水冷、その他は空冷である。全シ ステムは情報基盤研究開発センター内に設置されている。

¹ 九州大学 情報基盤研究開発センター

^{a)} ohshima@cc.kyushu-u.ac.jp

バック	バックエンドサブシステム A (2000 ノード)						
CPU	型番と数量	Intel Xeon Gold 6154 (Skylake-SP) 18 \beth $プ$ 3.0 - 3.7 GHz \times 2					
	1CPU あたり理論演算性能	1.728 TFLOPS					
	メインメモリ	DDR4 2666 MHz, 192 GiB (96 GiB/CPU)					
	1CPU ソケットあたり理論メモリバンド幅	127 GB/s					
ローカ	ルストレージ	1TB HDD × 2, 0.8TB SSD (一部ノードのみ)					
ノード間接続		InfiniBand EDR 100Gbps					

表 1 ITO システムの性能諸元

バック	バックエンドサブシステム B (128 ノード)					
CPU	型番と数量	Intel Xeon Gold 6140 (Skylake-SP) 18 $\exists {\Bbb Z}$ 2.3 - 3.7 GHz \times 2				
	1CPU あたり理論演算性能	1.3248 TFLOPS				
	メインメモリ	DDR4 2666 MHz, 384 GiB (192 GiB/CPU)				
	1CPU ソケットあたり理論メモリバンド幅	127 GB/s				
GPU	型番と数量	NVIDIA Tesla P100 (Pascal), 1189 - 1328 MHz \times 4				
	1GPU あたりメモリ	HBM2 16 GB, 732 GB/s $$				
	1GPU あたり理論演算性能	5.3 TFLOPS (DP)				
	ホストとの接続	PCI-Express Gen.3 x16 (16GB/s)				
	GPU 間の接続	NVLink 2 (20GB/sec)				
ローカルストレージ		1TB HDD \times 2, 0.8TB SSD				
ノード間接続		InfiniBand EDR 100Gbps (2port)				

基本フ	基本フロントエンドノード群 (160 ノード)						
CPU	型番と数量	Intel Xeon Gold 6140 (Skylake-SP) 18 $ \exists \vec{} $ 2.3 - 3.7 GHz \times 2					
	1CPU あたり理論演算性能	1.3248 TFLOPS					
メインメモリ		DDR4 2666 MHz, 384 GiB (192 GiB/CPU)					
	1CPU ソケットあたり理論メモリバンド幅	127 GB/s					
GPU	型番と数量	NVIDIA Quadro P4000 (Pascal) \times 1					
	1GPU あたりメモリ	GDDR5, 8 GiB					
	ホストとの接続	PCI-Express Gen.3 x16 (16GB/s)					
ローカルストレージ		2TB HDD \times 2					
 ノード間接続		InfiniBand EDR 100Gbps (2port)					

	大容量フロントエンドノード群 (4 ノード)						
CPU 型番と数量		型番と数量	Intel Xeon E 7-8880 v4 (Broadwell-EP) 22 $\lnot \mathcal{7}$ 2.2 - 3.3 GHz \times 16				
		1CPU あたり理論演算性能	774.4 GFLOPS				
メインメモリ		メインメモリ	DDR4 1600 MHz, 12 TiB (0.75 TiB/CPU)				
		1CPU ソケットあたり理論メモリバンド幅	51.2 GB/s				
	GPU	型番と数量	NVIDIA Quadro M4000 (Maxwell) \times 1				
		1GPU あたりメモリ	GDDR5, 8 GiB				
		ホストとの接続	PCI-Express Gen.3 x16 (16GB/s)				
ローカルストレージ		ルストレージ	2 TB HDD $\times 2$				
	ノード	間接続	InfiniBand EDR 100Gbps (4port)				

ストレージサブシ	ストレージサブシステム				
OSS	PRIMERGY RX2540 M2, 16 台 (4 台 ×4 セット)				
OST	DDN 社製 SFA14KX, 4 台				
MDS	PRIMERGY RX2540 M2, 6 台				
MDT	ETERNUS DX600 S3,3 台				
ストレージ容量	24.64 PByte				
バンド幅	バックエンドサブシステム A に対して 100GB/sec 以上				
	バックエンドサブシステム B およびフロントエンドサーバ群に対して 30GB/sec 以上				
	A,B, フロント全体に対して 120GB/sec 以上				

IPSJ SIG Technical Report

図1 ITO システムの全体構成

図 2 ITO システム (バックエンドサブシステム B) の外観

2.2 バックエンドサブシステム A

バックエンドサブシステム A は 2000 ノードの計算ノー ドにより構成されている。各計算ノードには 18 コアから なる Intel Xeon Gold 6154 (Skylake-SP) が 2 ソケット、メ インメモリとして DDR4 メモリが 192 GiB 搭載されてい る。計算ノードあたりの理論演算性能は 3.456 TFLOPS、 メモリバンド幅は 255 GB/sec である。バックエンドサブ システム A 内の全計算ノードは InfiniBand EDR により Full Bisection Bandwidth Fat Tree で接続されており、合 計で 6.912 PFLOPS および 510 TB/sec の性能を持つ。

2.3 バックエンドサブシステム B

バックエンドサブシステム B は 128 ノードの計算ノード により構成されている。各計算ノードには 18 コアからなる Intel Xeon Gold 6140 (Skylake-SP) が 2 ソケット、メイン メモリとして DDR4 メモリが 384GiB 搭載されている。さ らにアクセラレータとして NVIDIA Tesla P100 (Pascal) が4基搭載されており、GPU 間は NVLink により相互に接 続されている。計算ノードあたりの理論演算性能は 23.8496 TFLOPS(CPU のみで 2.6496 TFLOPS、GPU のみで 21.2 TFLOPS)、メモリバンド幅は、3183 GB/sec (CPU のみ で 255 GB/sec, GPU のみで 2928 GB/sec) である。バッ クエンドサブシステム B 内の全計算ノードは InfiniBand EDR により Full Bisection Bandwidth Fat Tree で接続されており、合計で 3.052 PFLOPS および 407 TB/sec の性能を持つ。

2.4 フロントエンドサブシステム

フロントエンドサブシステムは、ログインノードと、160 ノードの基本フロントエンドノード群および4ノードの 大容量フロントエンドノード群によって構成されている。 バックエンドサブシステム A/B がバッチ処理にて運用さ れるのに対して、フロントエンドノード群はリソースを事 前に予約して利用するインタラクティブなシステムであ り、仮想マシンまたはベアメタルマシンとして様々な用途 に活用されることが期待されている。

基本フロントエンドノード群は 18 コアからなる Intel Xeon Gold 6140 (Skylake-SP) を 2 ソケット、メインメモ リとして DDR4 メモリを 384GiB、可視化処理等のため に NVIDIA Quadro P4000 (Pascal) を 1 基搭載した HPE DL380 Gen 10 により構成されている。

大容量フロントエンドノード群は 22 コアからなる Intel Xeon E7-8990 v4 (Broadwell-EP) を 16 ソケット、メイン メモリとして DDR4 メモリを 12TiB、可視化処理等の為に NVIDIA Quadro M4000 (Maxwell) を 1 基搭載した SGI UV300 により構成されており、特に大容量のメモリを活 用した大規模プリ処理/ポスト処理への活用が想定されて いる。

2.5 ストレージサブシステム

ITO システムには実効容量 24.64PB の共有ファイルシス テムが搭載されている。ストレージサブシステムは、バッ クエンドサブシステム A から 100GB/sec 以上、バックエ ンドサブシステム B およびフロントエンドサブシステムか らそれぞれ 30GB/sec 以上、全システムから同時にアクセ スした場合でも 120GB/sec 以上の性能でアクセス可能な 共有ファイルシステムである。ストレージのフォーマット は FEFS である。

ITO システムの備える共有ファイルシステムは単一の ストレージサブシステムのみであり、ログインノードで の作業からバッチ処理およびインタラクティブ処理まで 常に同じストレージを参照することができる。一方、各計 算ノードにはローカルな HDD(SATA 接続) が 1TB または 2TB 搭載されており、さらにサブシステム A の一部 (256 ノード) およびサブシステム B の全ノードにはノードあた り 0.8TB の SSD(SATA 接続) も搭載されている。これら のローカルストレージはおもにジョブ実行中の一時的な作 業領域としての活用が期待されている。

2.6 ソフトウェア、その他

システム納入業者である富士通株式会社製のコンパイ

ラやライブラリ、ジョブ管理システムが利用可能である。 さらに Intel コンパイラや PGI コンパイラ、様々なサード パーティー製及びオープンソースのソフトウェアやライブ ラリがインストールされている。詳細情報は Web ページ にて提供し、随時更新しているので参考にされたい [1]。

3. 性能評価

本章では計算ノードに対する性能評価として STREAM、 HPL、HPCG を、通信性能に対する評価として OSU Micro-Benchmarks を、ファイルシステムに対する性能評価とし て IOR および mdtest を行った結果を示す。さらに、より 実アプリケーションに近いプログラムを実行した際の性能 を評価するため、GeoFEM-Cube-OMP/CG ベンチマーク の結果を示す。

3.1 評価環境

本章の性能評価はすべてバックエンドサブシステム B にて実施した。バックエンドサブシステム B の基本的な ハードウェア構成は 2.3 節で述べたとおりである。NUMA 構成については、CPU1 ソケットあたり 1 つの Sub Numa Cluster (SNC)、計算ノード 1 ノードあたりは 2 つの SNC である。CPU と GPU の配置については、nvidia-smi topo -matrix の結果から GPU0 と GPU1 が CPU ソケット 0 に、 GPU2 と GPU3 が CPU ソケット 1 に接続されているこ とが確認できている。また GPU 間の NVLink 接続につ いては、CUDA の p2pBandwidthLatencyTest の結果から GPU0 と GPU1 の間および GPU2 と GPU3 の間が高速で ある (NVLink 接続が 2 本になっている) ことが確認できて いる。

また、性能比較対象として東京大学情報基盤センターに 設置されている Reedbush-U/H/L(以下では RB-U/H/L と 称する)[2] を用いる。RB-U/H にて性能評価を行った結果 は、実測値および参考文献 [3],[4] にて公開されている情報 を参照している。ITO と RB-U/H/L の主な違いについて は**表 2**の通りであり、CPU については ITO が 1 世代新し く、GPU はいずれも同じ型番である。

3.2 STREAM ベンチマーク

STREAM ベンチマーク [5] はメモリ転送性能を測定す ることができるベンチマークプログラムであり、

Copy 配列のコピー

Scale 配列のスカラ倍

Add 2つの配列の要素同士の加算

Triad Scale と Add の組み合わせ

の4種の測定が用意されている。STREAM ベンチマーク はFortran 版とC版が提供されており、いずれもOpenMP による並列化が施されている。今回はC版を用いて1ノー ドのみの STREAM 性能を測定した。コンパイラとして は icc 17.0.4 を使用し、主なコンパイルオプションとし ては-O3 -no-prec-div -fp-model fast=2 -xHost -qopenmp mcmodel=medium -qopt-streaming-stores=always を指定、 問題サイズは 400,000,000 とした。

スレッド数と性能の関係を図 3 に示す。1 ソ ケット使用時の性能 (a) については環境変数 KMP_AFFINITY=granularity=fine,compact 指定を行い、 2 ソケット使用時の性能 (b) については環境変数 KMP_AFFINITY=granularity=fine,scatter 指定を行い測定 した。いずれの測定についても numactl コマンドで-Iを指 定することにより常に近くのメモリを参照させている。実 行結果から、1 ソケット使用時には 11 スレッド程度用いた 時点で性能が頭打ちとなり、Copy と Scale で約 90GB/sec、 Add と Triad で約 82GB/sec の性能が得られた。最も高い 性能が得られたのは 13 スレッド Scale の 91.9GB/sec であ り、理論メモリバンド幅 127GB/sec に対して 72.3%であ る。2 ソケット使用時には、20 スレッド程度用いた時点で 性能が頭打ちとなり、Copy, Scale, Add で約 180GB/sec、 Triad では約 165GB/sec であった。最も高い性能が得られ たのは 26 スレッド Copy の 182.2GB/sec であり、理論メモ リバンド幅 255GB/sec に対して最大 71.4%である。利用 スレッド数が少ない場合には Copy と Scale に比べて Add と Triad の方が高速であるのにスレッド数が増えると逆転 することや、Addと Triad の性能の上下幅が Copy と Scale と比べて大きいことも確認できたが、その理由は判明して いない。

さらに、STREAM ベンチマークのソースコードに OpenACC の指示文を挿入して GPU 向けのプログラムを作成 し、1GPU 上で実行して性能を測定した。コンパイラとし ては pgcc 17.7 を使用し、主なコンパイルオプションとし ては-acc -ta=tesla,cc60 -tp=haswell を指定、問題サイズは 100,000,000 とした。

実行結果を**表 3**に示す。測定は 5 回実施し、各測定項目 ごとに最大性能のものを選択している。Copy と Scale は約 515GB/sec、Add と Triad は約 545GB/sec の性能であっ た。最も高い性能が得られたのは Triad の 547.8GB/sec で あり、理論メモリバンド幅 732GB/sec に対して 74.8%の性 能が得られた。

RB と ITO の性能を比較すると、RB-U にて CPU2 ソ ケット使用時の最大性能が 130.5GB/sec(Add) と報告され ているのに対して ITO では 182.2GB/sec(Copy) であり、 1.39 倍の性能が得られている。1CPU あたりの理論性能の 差 (1.65 倍) と比べると低い倍率ではあるが、メモリクロッ クの向上およびメモリチャンネル数の増加の効果は大き い。GPU の性能については、同一の型番ということもあ り、両者にほとんど違いはなかった。

表 2 ITO と RB-U/H/L の比較 (計算ノード 1 ノードあたり)							
	RB-U/H/L	ITO (サブシステム B)	性能差				
CPU 型番と数量	Xeon E5-2695 v4 $\times 2$	Xeon Gold 6140 $\times 2$					
	(18 コア, 2.10-3.30GHz, Broadwell-EP)	(18 ゴブ, 2.30-3.70GHz, Skylake-SP)					
1CPU あたり理論演算性能 (DP)	604.8GF	1324.8GF	\times 2.19				
メインメモリ種別と容量	DDR4-2400 128GiB	DDR4-2666 384GiB					
	(1CPU あたり 2 チャンネル)	(1CPU あたり 3 チャンネル)					
1CPU あたりメモリ理論転送性能	$76.8 \mathrm{GB/s}$	127GB/s	\times 1.65				
CPU-CPU 間接続	QPI 9.6GT/s $\times 2$	UPI 10.4GT/s $\times 3$					
GPU 型番と数量	Tesla P100 $\times 2$ (RB-H)	Tesla P100 $\times 4$					
	Tesla P100 $\times 4$ (RB-L)						
1GPU あたり理論演算性能 (DP)	5.3TF	5.3TF	\times 1.0				
ノード間接続	IB EDR 100Gps (RB-U)	IB EDR 100Gbps $\times 2$					
	IB FDR 56Gbps $\times 2$ (RB-H)						
	IB EDR 100Gbps $\times 2$ (RB-L)						

(a) 1 ソケット使用時の性能

図 3 STREAM ベンチマーク	(CPU)	の結果
-------------------	-------	-----

表 3	S_{1}	REAM べ	₹EAM ベンチマーク (GPU					
	-	測定項目	性能 GB/sec					
	-	Copy	516.4					
		Scale	515.6					
		Add	544.0					
		Triad	547.8					

3.3 HPL ベンチマーク

High Performance Linpack (HPL) ベンチマーク [6] は LU 分解により連立一次方程式の求解を行うベンチマーク であり、倍精度浮動小数点データに対する行列積和演算 **表 4** HPL ベンチマーク (CPU) の結果

ノード数	Ν	NB	Р	Q	性能	ピーク
					(TF)	性能比 (%)
1	38400	384	1	1	1.76	66.4 (%)
2	268800	384	1	2	3.41	64.3 (%)
4	268800	384	2	2	6.41	60.5~(%)

(Level-3 BLAS DGEMM) の性能が性能に大きな影響を及 ぼすことが知られている。またスーパーコンピュータシス テムの性能をランキング付けする TOP500/Green500[7] で 利用されていることでもよく知られている。今回は試験運 用期間中の測定ということもあり、計算ノード単体から最 大で16 ノードまでの小規模な測定を実施した結果を示す。

CPU のみを用いて実施した HPL の結果を表 4 に示す。 プログラム (実行ファイル) は Intel コンパイラ 2017.4.196 に含まれている MKL によって提供されているコンパイル 済 HPL(xhpl.intel64_dynamic) を用いた。MPI についても 同コンパイラに含まれている IntelMPI を用いた。測定の結 果、1 ノードでは 1.76TFLOPS、4 ノードでは 6.41TFLOPS の性能が得られており、それぞれ理論演算性能に対して 66.4%および 60.5%の性能であった。今回の測定では問題 サイズやプロセスの配置などの最適化が十分に行えておら ず、さらなる最適化によってより高い性能が得られること を期待している。

GPUを用いて実施した HPL の結果を表 5 に示す。プ ログラム (実行ファイル) は、NVIDIA 社により提供され た P100 向けコンパイル済 HPL バージョン 2.13.17 のう ち、OpenMPI 1.10.2 向けにコンパイルされたものを用い た。測定の結果、1 ノードでは 15.19TFLOPS、16 ノード では 167.1TFLOPS の性能が得られた。それぞれ理論演算 性能に対して 63.5%および 43.7%の性能であった。使用す るノード数を増やすごとに性能比が低下しており、問題の 分割方法や MPI プロセスの配置には改善の余地がありそ うな結果となった。

表 5 HPL ベンチマーク (GPU) の結果

ノード数	Ν	NB	Р	Q	性能	ピーク
* GPU 数					(TP)	性能比 (%)
1*1	38400	384	1	1	4.036	60.9
1 * 2	67200	384	2	1	7.641	57.6
1 * 4	76800	384	2	2	15.19	63.5
2 * 4	130176	384	4	2	28.53	59.8
4 * 4	192000	384	4	4	51.19	54.3
8 * 4	260352	384	8	4	93.50	49.8
16 * 4	384000	384	8	8	167.1	43.7

RBとITOの性能を比較すると、RB-Uでは1ノードあた り CPUのみで1149.6GF (95.0%)、RB-H では2GPUも含 めて1ノードあたり10.04TF (85.0%)の性能が報告されて いる。ITOではCPUのみで1.76TF (60.5%)、2GPUを含 めて7.641TF (57.6%)、4GPUを含めて15.19TF (63.5%) となっており、ITO における HPL 実行については最適化 の余地が大きいと考えられる。

3.4 HPCG ベンチマーク

HPCG ベンチマーク [8] は HPL ベンチマークよりも実 アプリケーションに近いベンチマークとして提案されてい るベンチマークであり、有限要素法から得られる疎行列を 対象として共益勾配法 (Conjugate Gradient, CG 法) を用 いて連立一次方程式を解く部分の演算性能を求めるもので ある。実行の結果を**表 6** および**表 7** に示す。CPU, GPU ともに問題サイズは nx = ny = nz = 256 である。

CPU向けのHPCGベンチマーク測定は、Intel コンパイ ラ 2017.4.196 に含まれている MKL によって提供されてい るコンパイル済 HPCG を用いて行った。対応する HPCG のバージョンは 2.4 である。1 ノードあたり 1 プロセスよ りも 2 プロセス (ソケットごとに 1 プロセス)の方が数%程 度高い性能が得られ、また AVX512 環境向けに作成された バイナリよりも AVX2 環境向けに作成されたバイナリの 方が数%程度高い性能が得られたことから、AVX2 向けに 作成されたものを用いてノードあたり 2 プロセスで実行し た結果のみを示す。なお AVX2 環境向けに作成されたバイ ナリの方が高速である理由としては、Skylake-SP CPU は AVX 未使用時よりも AVX2 使用時、AVX2 使用時よりも AVX512 使用時に計算コアの動作周波数が低くなるためで あると考えられる。

GPU 向けの HPCG ベンチマーク測定は、HPCG の Web サイトにて配布されている NVIDIA GPU 向けの HPCG 3.1 Binary (dated Oct 8, 2017) を用いて行った。得られ た性能については、CPU との性能比較のため HPCG 3.0 基準と HPCG 2.4 基準のデータを併記する。

測定の結果、CPUのみの性能は1ノードで32.8GF、16 ノードで505GF、ピーク性能比はそれぞれ1.23%および 1.19%であった。GPUを用いた場合は1ノード4GPUで

表 6 HPCG ベンチマーク (CPU) の結果

ノード数	性能 (GF)	ピーク	
		性能比 (%)	
1	32.82	1.23	
2	66.83	1.26	
4	134.64	1.27	
8	259.38	1.22	
16	505.20	1.19	

表 7 HPCG ベンチマーク (GPU) の結果

性能 (GF)	性能 (GF)	ピーク
	(HPCG 2.4 相当)	性能比 (%)
200.04	202.73	1.67
394.49	398.44	1.65
746.50	755.04	1.56
1463.57	1479.39	1.53
2891.07	2922.94	1.51
5470.15	5529.53	1.44
	性能 (GF) 200.04 394.49 746.50 1463.57 2891.07 5470.15	性能 (GF) (HPCG 2.4 相当) 200.04 202.73 394.49 398.44 746.50 755.04 1463.57 1479.39 2891.07 2922.94 5470.15 5529.53

(ピーク性能比は HPCG 3.0 のスコアに対して算出)

394.4GF、16 ノード 4GPU で 5470.1GF、ピーク性能比は それぞれ 1.65%および 1.44%であった。使用しているノー ド数が少ない割に複数ノード使用時の性能の低下具合が目 立っており、プロセス配置の見直しになどによる最適化の 余地があると考えられる。

RB と ITO の性能を比較すると、RB-U では 1 ノード あたり CPU のみで 21.9GF (3.6%)、RB-H では 2GPU も 含めて 1 ノードあたり 226.2GF (1.9%) の性能が報告され ている。ITO では CPU のみで 32.82GF (1.23%)、2GPU を含めて 200.04GF (1.67%)、4GPU を含めて 394.49GF (1.65%) となっている。CPU の性能については、ITO は RB-U と比べてピーク性能比で大きく劣るものの得られた 性能自体は 1.49 倍と高い。GPU の性能については、ITO は同じ 2GPU で RB-H に劣っており、HPL 同様に実行時 のパラメタ等を見直す余地がありそうである。

3.5 OSU Micro-Benchmarks

OSU Micro-Benchmarks はオハイオ州立大学にて公開さ れている [9] 通信性能評価用のベンチマークである。今回 は1ノード内の2プロセスによる通信性能と、2ノード間に 1プロセスずつ配置した場合の通信性能を測定した。CPU と GPU の対応付けについては、MPI プロセスは常にプロ セスが存在する CPU ソケットから近い GPU(2GPU のう ちのいずれか)を制御している。

図 4 は、1 ノード内の 2MPI プロセスが通信を行った場 合の性能を示している。2 プロセスがともに CPU ソケッ ト 0 上に配置されている場合 (0-0) と 2 プロセスがともに CPU ソケット 1 上に配置されている場合 (1-1) はほぼ同様 の性能傾向を示しており、最大で 10GB/sec 超の性能を得 られている。2 プロセスが CPU ソケットを跨いで配置さ 情報処理学会研究報告

IPSJ SIG Technical Report

 図 4 1 ノード内の CPU 間通信性能 (OpenMPI 1.10.7, 下段のグ ラフは上段のグラフの部分拡大版, 凡例は CPU ソケット番号)

れている場合 (0-1) には大幅に性能が低下しており、最大で 5.5GB/sec 程度である。この性能は CPU ソケット間を繋 ぐ UPI の性能に律速されていると考えられるが、GT/s 性 能しか明確にされておらず、理論性能に対する実測性能の 差は不明である。レイテンシについても同一ソケット内で は最小で 0.3us 程度まで低下しているのに対して、ソケッ ト間では 1us 程度要していることがわかる。

図 5 は、1ノード内の 2MPI プロセスが GPU 上のメ モリを用いて通信を行った場合の性能を示している。具 体的には OpenMPI に-mca btl_openib_want_cuda_gdr 1 を 与え、ベンチマークプログラムの引数に D D を与えて 性能を測定している。実行結果から、CPU と同様に同一 CPU ソケットに接続された GPU メモリによる通信 (0-0 および 1-1) とソケットをまたいだ GPU メモリによる通 信 (0-1) には性能の隔たりがあり、最大転送性能は前者が 31.6GB/sec に対して後者が 17.6GB/sec であった。いず れも最大性能 16GB/sec の PCI-Express(Gen.3) ではなく、 NVLink(20GB/sec、前者は 2 本) によって通信が行われて いることがわかる。

図 6 は、2 ノード間の 2MPI プロセスが通信を行った場合の性能を示している。結果から CPU ソケット 1 同士の通信がバンド幅もレイテンシも最も優れており、CPU ソケット 0 同士が最も劣っていることがわかる。これは各ノード上の NIC が CPU ソケット 1 側に接続されていることを裏付ける結果であると言える。

図 7 は、2 ノード間の 2MPI プロセスが GPU 上のメモ リを用いて通信を行った場合の性能を示している。ホスト メモリを用いて通信を行ったときと同様に CPU ソケット 1 上の GPU メモリ同士で通信を行ったときの性能が最も 優れており、CPU ソケット 0 上の GPU メモリ同士は最も 劣っている。

図 5 1 ノード内の GPU 間通信性能 (OpenMPI 1.10.7, 下段のグ ラフは上段のグラフの部分拡大版, 凡例は CPU ソケット番号)

 図 6 2 ノード間の CPU 間通信性能 (OpenMPI 1.10.7, 下段のグ ラフは上段のグラフの部分拡大版, 凡例は CPU ソケット番号)

3.6 IOR ベンチマーク

IOR ベンチマークは Los Alamos National Lab (LANL) が公開している I/O ベンチマーク [10] であり、ブロック 入出力のスループットを計測するものである。今回は 1 プ ロセスあたり 1 ノードに割り当て、プロセスごとに異なる ファイルに対する読み書きの性能を測定した。

表 8 に測定結果を示す。POSIX と MPIIO に大きな性 能差は見受けられないが、ジョブ実行状況の都合により高 い並列度での評価ができておらず、より高い並列度での性 能評価が必要であると言える。

3.7 mdtest ベンチマーク

mdtest ベンチマークは IOR ベンチマークとともに Los

 図 7 2 ノード間の GPU 間通信性能 (OpenMPI 1.10.7, 下段のグ ラフは上段のグラフの部分拡大版, 凡例は CPU ソケット番号)

I/O 万式:POSIX					
R/W	1ノード	2 ノード	4 ノード	8ノード	
Write	1006.05	1957.61	3870.06	7710.11	
Read	730.78	1424.61	2700.58	5448.13	
I/O 方式:MPIIO					
R/W	1ノード	2 ノード	4 ノード	8ノード	
Write	988.49	1976.00	3936.60	7685.96	
Read	748.05	1405.91	2777.77	5251.23	

表 8 IOR ベンチマークの結果 (MB/sec)

表 9	mdtest	ベンチマー	クの結果	(ops	(sec))
-----	--------	-------	------	------	-------	---

対象	ノード	File	File	File	File
ファイル	数	creation	stat	read	removal
単一	1	4439	2259	6785	6576
	2	8755	5479	13259	13531
	4	16005	10268	24018	17072
独立	1	4412	2430	6667	6400
	2	8716	5041	12287	8148
	4	14841	10436	22174	10858

Alamos National Lab (LANL) が公開している I/O ベンチ マークであり、各種のファイル/ディレクトリ操作の性能 を計測するものである。今回は1プロセスあたり1ノード に割り当て、ファイル操作の性能を測定した。

表 9 に測定結果を示す。性能値にはベンチマーク出力結 果のうち Mean の値 (小数値切り捨て)を示している。単一 ファイルへの処理の方がプロセスごとに独立したファイル への処理よりも若干高速であるが、ジョブ実行状況の都合 により高い並列度での評価ができておらず、より高い並列 度での性能評価が必要であると言える。

3.8 GeoFEM-Cube-OMP/CG ベンチマーク

GeoFEM-Cube-OMP/CG は並列有限要素法プラット

フォーム「GeoFEM」を元に整備したベンチマークプログ ラムである。対象問題は、一様な物性を有する単純形状 (Cube 型)を対象とした三次元弾性静解析問題である。係 数行列が対象正定な疎行列であることから、ブロック対角化 (BlockDiagonalization)による前処理を適用した共役勾配 法 (Conjugate Gradient, CG 法)によって連立一次方程式 を解いている。本ベンチマークではこの CG 法部分の性能 を計測している。オリジナルの GeoFEM は Fortran90 で 書かれており、Flat MPI 版と OpenMPI/MPI ハイブリッ ド版が存在するが、本ベンチマークは後者を元に OpenMP のみで並列化を行ったものである。プログラムの詳細につ いては参考文献 [11] を参照されたい。なお本ベンチマーク は NUMA 環境向けの最適化は適用されていない。

性能の測定は RB-U の計算ノードと ITO のバックエンド サブシステムBの各1ノードにて行った。コンパイラは両 者ともに ifort 17.0.4 を用いた。主なコンパイルオプション は、RB-U では-O3 -no-prec-div -fp-model fast=2 -xCORE-AVX2 -qopenmp -mcmodel=medium -align array32byte 、 ITO では-03 -no-prec-div -fp-model fast=2 -xCORE-AVX2 -qopenmp -mcmodel=medium -align array64byte と-O3 no-prec-div -fp-model fast=2 -xCORE-AVX512 -qopenmp mcmodel=medium -align array64byte の2種類を比較した。 使用 CPU ソケット数1の際には環境変数 KMP_AFFINITY に compact を指定し、使用 CPU ソケット数2の際には環 境変数 KMP_AFFINITY に scatter を指定し、さらに常に numactl-lを用いてスレッドとメモリを近い配置にした。 問題サイズ Nx=Ny=Nz=129(2,146,689 節点、2,097,152 要 素、6,440,067 自由度)の問題をそれぞれ実施したところ、 表 10 に示す性能が得られた。ITO の AVX2 と AVX512 に ついては、わずかながら AVX2 の方が高い性能が得られた。 これは、Skylake-SP が通常時より AVX2 使用時、AVX2 使 用時より AVX512 使用時の動作周波数が低く、AVX512 命 令の実行率が低いときやメモリ律速の場合などには性能が 低下してしまうことが原因である。RB-Uと ITO の性能を 比較すると、ITO(AVX2)はRB-Uの1.48倍(1ソケット) および 1.80 倍 (2 ソケット) の性能を発揮している。両者 の理論性能には演算性能で 2.19 倍、メモリ性能で 1.65 倍 の差があるが、メモリ性能の差に近い性能差が得られてお り、妥当な性能だと考えられる。1 ソケット使用時よりも 2 ソケット使用時に性能差が広がる点については、本プロ グラムが NUMA 環境向けの最適化が適用されていないた めに CPU ソケット間の通信性能の差が影響したと考えて いる。

4. おわりに

本稿では、2017 年 10 月より一部運用を開始したスー パーコンピュータシステム ITO のバックエンドサブシステ ム B を用いた性能評価の結果を示した。ITO の搭載する

		,		
実行環境	使用 CPU	実行時間	反復	1 反復
	ソケット数	(秒)	回数	時間 (秒)
RB-U	1	1.08e+2	1305	8.29e-2
	2	6.75e+1	1305	5.16e-2
ITO	1	7.31e+1	1305	5.60e-2
(AVX2)	2	3.72e+1	1305	2.85e-2
ITO	1	7.33e+1	1305	5.61e-2
(AVX512)	2	$3.78e{+1}$	1305	2.89e-2

表 10 Geo-FEM-Cube-OMP/CG ベンチマークの結果

最新の Skylake-SP CPU は旧世代の CPU よりも大幅に演 算性能が向上しているものの、SIMD 長が長いことなどか ら高い実行効率を得る難しさも感じられる性能評価結果と なった。メモリ転送性能の向上は疎行列ソルバーを始めと した様々なプログラムにて恩恵が得られると期待される。 各ノードに4基搭載された GPU は、最適化研究も進んで おり対応するアプリケーションも増えているものの、MPI を用いた多ノードでの実行についてはまだ難しさがあるた め、今後も利用技術の調査と ITO システム利用者への適 切な情報提供に努めていく予定である。

今回の性能評価は、システム利用開始からの時間が短く ノード数の少ない部分運用環境下における測定のため、十 分な最適化が行えていない評価項目も目立つ結果となっ た。今後、2000 ノード 4000 ソケットの Skylake-SP を搭 載したバックエンドサブシステム A が稼働開始した後に は、1000 ノード規模や全系を用いた性能評価やプログラム 最適化技術の研究、さらにフロントエンドサブシステムの 活用などについても取り組んでいきたい。

謝辞 ベンチマークプログラムや Reedbush システム上 での性能評価についての情報をご提供いただいた東京大学 情報基盤センターの中島研吾教授と塙敏博准教授および NVIDIA Japan の皆様に感謝します。

参考文献

- [1] ソフトウェア 九州大学情報基盤研究開 発センター https://www.cc.kyushu-u.ac.jp/scp/ software/ (accessed 2017-11-22).
- [2] Reedbush スーパーコンピュータシステム [東京 大学情報基盤センタースーパーコンピューティ ング部門], https://www.cc.u-tokyo.ac.jp/system/ reedbush/ (accessed 2017-11-24).
- [3] 塙敏博, 中島研吾, 大島聡史, 伊田明宏, 星野哲也, 田浦健次朗: データ解析・シミュレーション融合スーパーコン ピュータシステム Reedbush-Uの性能評価, 情報処理学会 研究報告 (HPC-156), 9月8日発行 (Vol.2016-HPC-156), pp.1-10 (2016).
- [4] 塙敏博, 星野哲也, 中島研吾, 大島聡史, 伊田明弘: GPU 搭載スーパーコンピュータ Reedbush-Hの性能評価, 情報 処理学会 研究報告 (HPC-159), 4月10日発行 (Vol.2017-HPC-159), pp.1-6 (2016).
- [5] John D. McCalpin, "STREAM: Sustainable Memory Bandwidth in High Performance Computers", http: //www.cs.virginia.edu/stream/ (1991-2007).
- [6] HPL A Portable Implementation of the High-

Performance Linpack Benchmark for Distributed-Memory Computers http://www.netlib.org/ benchmark/hpl/ (accessed 2017-11-22).

- [7] Home TOP500 Supercomputer Sites https://www. top500.org/ (accessed 2017-11-22).
- [8] HPCG http://www.hpcg-benchmark.org/ (accessed 2017-11-22).
- [9] MVAPICH :: Benchmarks http://mvapich.cse. ohio-state.edu/benchmarks/ (accessed 2017-11-24).
- [10] IOR-LANL/ior: IOR and mdtest https://github.com/ IOR-LANL/ior (accessed 2017-11-24).
- [11] 中島研吾: T2K オープンスパコン (東大) チューニング連載講座番外編 Hybrid 並列プログラミングモデルの評価 (I), http://www.cc.u-tokyo.ac.jp/support/press/ news/VOL11/No4/200907tuning.pdf (accessed 2017-11-24).