G-108

足裏圧力勾配に基づくヒューマノイドロボットの摺足移動

Shuffling Walk Based on Pressure Gradient of Soles for Humanoid Robots

鎌田 崇史† Takafumi Kamada

杉本 大樹 † Daiki Sugimoto 小枝 正直† Masanao Koeda

1. はじめに

一般的にヒューマノイドロボットは連続的な足踏み動作 により移動する.しかし,足踏み動作時にロボットの周囲 に一定量の空間が必要になるため狭隘域の劣姿勢移動には 不向きである.また,足踏み動作時に脚の上下運動よる振 動が発生するため安定性に難がある.この問題に対して, 摺足による移動に注目している(図 1.1).

摺足は,足を上げずに足裏全体で地面をするようにして 移動する方法である.そのため,移動の際に頭が上下左右 に揺れず,重心位置が常に安定している.また,従来の連 続的な足踏み歩行と摺足移動を組み合わせれば移動可能な 領域を格段に広げることが期待できる.

本研究では、関連研究[1]~[15]において考慮されていな かった摺足移動時における足裏に加わる圧力分布に着目す る.また、足首ピッチ・ロール軸と大腿ヨー・ロール軸で 再現でき、動作時における上半身の振動が少なく他の摺足 方法に比べバランスが安定している同期非平行摺足を用い る(図 1.2).

同期非平行摺足では、両足裏に加わる荷重の位置によっ て得られる足裏圧力の勾配が異なる.この時、足裏圧力勾 配に対する法線ベクトルの向きも荷重位置によって変化す る.足裏圧力勾配の法線ベクトルの向きが常に進行方向へ 加わる様に制御することで効率的な摺足移動になると考え られる.

2. 足裏圧力勾配モデルに基づく摺足移動

2.1 同期非平行摺足の分類

本研究で用いる同期非平行摺足について説明する. 荷重位置を足裏四隅に置き,足裏全体を回転させ摺足を行う.

同期非平行摺足のモーション手順を図 2.1 に示す. 前開 き(A)→平行(B)→後ろ開き(C)→平行(D)の順に動作を繰り 返し摺足を実現している.

同期非平行摺足における分類は荷重位置の与え方により 前開き(A),平行(B),後ろ開き(C),平行(D)のそれぞれの 状態において左右の足裏の荷重位置の与え方のよって以下 の4種類に分類できる.

(1)	右足 : 右寄り	-	左足 : 左寄り
(2)	右足 : 左寄り	-	左足:右寄り
(3)	右足 : 左寄り	_	左足:左寄り
(4)	右足 : 右寄り	_	左足:右寄り

荷重位置の与え方により足裏圧力勾配ベクトル向きが変 化する.足裏圧力勾配ベクトルによる進行方向へ押し出す 力と荷重位置を中心とした回転力を利用して移動を実現し ている.

节大阪電気通信大学, Osaka Electro-Communication University

図 1.1 狭隘域・劣姿勢移動での移動方法

図 1.2 同期非平衡摺足

2.2 足裏圧力勾配モデル

ロボットの全重量Wとし、ロボットの足底(図2.2)を剛体 平面で矩形と仮定する.ここでは前開き→平行における状 態を説明するが,他の状態でもほぼ同様である.

荷重位置を座標原点として、ロボットの左右方向をx軸, 前後方向をy軸とする.また、ロボット胴体の基準座標系 を Σ_{body} ,足裏座標系を Σ_{sole} とする(図 2.3).この時、荷 重位置に加わる圧力は最大とし、荷重位置の対角点に向か って圧力は減少する.

足底の左右,前後方向の寸法をそれぞれ*x_l,y_lとする.座*標(*x*,*y*)に単位面積に掛かる法線方向の力*f*(*x*,*y*)とし,以下の拘束条件を設ける.

$$f(x_l, y_l) = 0 \tag{1}$$

$$f(x_l, 0) = f_x \tag{2}$$

$$f(0, y_l) = f_y \tag{3}$$

また, 摺足動作は遅く慣性の影響を受けないものとする. これらの拘束条件から足裏圧力勾配式を仮定すると,

$$f(x,y) = -\frac{f_y}{x_l}x - \frac{f_x}{y_l}y + (f_x + f_y)$$
(4)

図 2.3 ロボットの座標系

f(x,y)を片足裏全体で重積分すると

$$V = \int_{X} f(x, y) \, dx \, dy \tag{5}$$

$$=\frac{x_l \cdot y_l}{2}(f_x + f_y) \tag{6}$$

となる.

同期非平行摺足移動においては常時、左右の脚に重量が 等分に配分されるため、片足裏ではV = W/2である.

$$\frac{x_l \cdot y_l}{2} (f_x + f_y) = \frac{W}{2}$$
(7)

$$f_x + f_y = \frac{W}{y_l \cdot x_l}$$
(8)

この時, $0 \le \alpha \le 1$ の制御パラメータを α とすると,

$$f_x = \alpha F \tag{9}$$

$$f_y = (1 - \alpha)F \tag{10}$$

となるように f_x , f_y を調整する.

2.3 足裏圧力勾配モデルに基づく効率的な摺足移動

式4より, 平面の法線ベクトルnは,

$$n_{xy} = \begin{pmatrix} -\frac{f_y}{x_l} \\ -\frac{f_x}{y_l} \\ f_x + f_y \end{pmatrix}$$
(11)

で, f(x,y)の勾配ベクトル∇f(図 2.4)は,

$$\nabla f = \begin{pmatrix} -\frac{f_y}{x_l} \\ -\frac{f_x}{y_l} \end{pmatrix}$$
(12)

 ∇f が足裏座標系 $\sum_{sole} \mathcal{O}x$ 軸となす角度 θ_x は,

α

$$tan\theta_x = \frac{\alpha F \cdot x_l}{(1 - \alpha)F \cdot y_l} \tag{13}$$

これを α で解くと,

$$=\frac{y_l \cdot tan\theta_x}{y_l \cdot tan\theta_x + x_l} \tag{14}$$

となる. ロボット胴体の基準座標系 *Lody* に対する足裏座 標系 \sum_{sole} の相対角度を θ_r とすると,

$$\theta_x = \theta_r \tag{15}$$

を摺足中に常時維持するようにαを調整することが望まし いと考える.

3. 評価実験

3.1 システム構成

3.1.1 Robovie-X PRO

Viston 株式会社が販売している小型 2 足歩行ロボットで ある. 頭部に1自由度, 腕に6自由度, 脚部に12自由度を 有している. 足底の寸法は縦 123mm, 横 70mm である. モ ーション生成には RobovieMaker2 を用いた.

3.1.2 LL センサ

LL センサ(図 3.1)は株式会社シロクが販売している電磁 誘導方式圧力分布センサである.スペックを表 3.2 に示す. 付属の評価用ソフトウェア「LLtest」(図 3.2)を用いるこ とで、圧力分布データを表示することができる.

図 3.1 LL センサ

図 3.2 LLtest ま30II センサ仕样

4X 3.2 LL	
センササイズ	580×480mm
センサ部制御	マトリックス制御
素子間隔	12.5mm
素子数	1660(37×45)
電源入力	USB 供給 5V
最小空間分解能	4mm
毎秒最大速度	100フレーム

3.2 実験内容

実験では荷重位置が異なる4種の同期非平行摺足を行い、 移動量と方向変化を比較し、提案手法の有効性を検証する.

(1)「可以的里	(1)	内寄り	荷重
----------	-----	-----	----

- (2)外寄り荷重
- (3) 左寄り荷重
- (4) 右寄り荷重

本実験におけるロボットの各関節角度の変化量をそれぞ れ表 3.3~3.6 に示す.

実験条件として、ロボットの脚部構造の理由から、摺足 動作中における大腿ヨー軸の最大回転角度を±6.5[deg]に制 限した.また、実験フィールドは水平な平地であり、実験 中における摺足動作回数は計20回とし、左方向への摺足移 動を行う.ロボットの足裏とLLセンサ間の摩擦係数を計 測したところ摩擦係数は約μ=0.2であった.実験にて使用 する摺足モーションは現在のポーズから次のポーズまで約 2.5 秒かけて関節角度を変化させている.

3.3 実験結果

それぞれの荷重位置ごとの平均移動量を図 3.3 に,標準 誤差を図 3.4 に,平均変化量を図 3.5 に示す.

表	33	内寄	n	荷重	での	盟節鱼	度
13	2.2	L T HI	· /	1HI #	~ ~ /	IT IN PI	12

	目体 ム	角度	[deg]
)))))))))))))))))))))))))))))))))))))))	左	右
	足首ロール軸	0.0	-0.5
前開き	足首ピッチ軸	4.0	3.0
A1	大腿ロール軸	-3.0	1.5
	大腿ヨー軸	-5.0	5.0
	足首ロール軸	0.0	-0.5
平行	足首ピッチ軸	0.0	0.0
B1	大腿ロール軸	-3.0	1.5
	大腿ヨー軸	0.0	0.0
	足首ロール軸	0.0	-0.5
後ろ開き	足首ピッチ軸	-4.0	-3.0
C1	大腿ロール軸	-3.0	1.5
	大腿ヨー軸	5.0	-5.0
	足首ロール軸	0.0	-0.5
平行	足首ピッチ軸	0.0	0.0
D1	大腿ロール軸	-3.0	1.5
	大腿ヨー軸	0.0	0.0

A 3.4 小前 9 何重 C 9 因即 月及					
	胆体品	角度	[deg]		
		左	右		
	足首ロール軸	-0.5	0.5		
前開き	足首ピッチ軸	0.0	4.0		
A2	大腿ロール軸	2.0	-2.0		
	大腿ヨー軸	0.0	5.0		
	足首ロール軸	-0.5	0.5		
平行	足首ピッチ軸	0.0	0.0		
B2	大腿ロール軸	2.0	-2.0		
	大腿ヨー軸	0.0	0.0		
	足首ロール軸	-0.5	0.5		
後ろ開き	足首ピッチ軸	-4.0	-4.0		
C2	大腿ロール軸	2.0	-2.0		
	大腿ヨー軸	-5.0	5.0		
	足首ロール軸	-0.5	0.5		
平行	足首ピッチ軸	0.0	0.0		
D2	大腿ロール軸	2.0	-2.0		
	大腿ヨー軸	0.0	0.0		

主21从 実り 苔舌での閉節 毎 度

り方向に方向変化し、後方に移動した.移動中の圧力分布 を図 3.6 に示す.

3.3.2 外寄り荷重

縦方向の平均移動量は 4[mm]で、横方向は-5.6[mm]であった.5回行った実験のいずれにおいても移動はごく少量だった.移動中の圧力分布を図 3.7 に示す.

	問答為	角度[deg]		
		左	右	
	足首ロール軸	0.0	0.0	
前開き	足首ピッチ軸	-2.0	-2.0	
A3	大腿ロール軸	-3.0	-3.0	
	大腿ヨー軸	-5.0	5.0	
	足首ロール軸	0.0	0.0	
平行	足首ピッチ軸	0.0	0.0	
B3	大腿ロール軸	-3.0	-3.0	
	大腿ヨー軸	0.0	0.0	
	足首ロール軸	0.0	0.0	
後ろ開き	足首ピッチ軸	2.0	2.0	
C3	大腿ロール軸	-3.0	-3.0	
	大腿ヨー軸	5.0	-5.0	
	足首ロール軸	0.0	0.0	
平行	足首ピッチ軸	0.0	0.0	
D3	大腿ロール軸	-3.0	-3.0	
	大腿ヨー軸	0.0	0.0	

表 3.5 左寄り荷重での関節角度

表 3.6 右寄り荷重での関節角度

	問答為	角度[deg]		
)	左	右	
	足首ロール軸	0.0	0.0	
前開き	足首ピッチ軸	1.5	1.5	
A4	大腿ロール軸	3.0	3.0	
	大腿ヨー軸	-5.0	5.0	
	足首ロール軸	0.0	0.0	
平行	足首ピッチ軸	0.0	0.0	
B4	大腿ロール軸	3.0	3.0	
	大腿ヨー軸	0.0	0.0	
	足首ロール軸	0.0	0.0	
後ろ開き	足首ピッチ軸	-1.5	-1.5	
C4	大腿ロール軸	3.0	3.0	
	大腿ヨー軸	5.0	-5.0	
	足首ロール軸	0.0	0.0	
平行	足首ピッチ軸	0.0	0.0	
D4	大腿ロール軸	3.0	3.0	
	大腿ヨー軸	0.0	0.0	

3.3.3 左寄り荷重

縦方向の平均移動量は 9.3[mm]で、横方向は-46[mm]であった.5回行った実験のいずれにおいても横方向へ移動した.移動中の圧力分布を図 3.8 に示す.

3.3.1 内寄り荷重

縦方向の平均移動量は 32.7[mm]で、横方向は-8.8[cm]で あった.5回行った実験のいずれにおいても最終的に右回

3.3.4 右寄り荷重

縦方向の平均移動量は 5.7[mm]で、横方向は-85[mm]であった.5回行った実験のいずれにおいても横方向へ移動し、 その平均移動量は実験で行った4種の摺足を比較すると最 も多く移動し、移動量の理論値に最も近かった.また、平 均方向変化量も4種の摺足の内では0.8[deg]と比較的に低かった.移動中の圧力分布を図 3.9 に示す.

4. おわりに

本稿では,摺足移動時における足裏に加わる圧力勾配に 着目し,足裏圧力勾配モデルから得られた圧力勾配に基づ き足裏に加わる圧力を変化させる制御方策を提案した.

実験結果より、荷重位置によって足裏圧力勾配の法線ベクトルの向きが異なる圧力勾配状態での摺足動作において 提案手法による圧力勾配調整の有効性を確認できた. 今後、ロボットの足裏に力センサを取り付け、提案手法に よるフィードバック制御を行う.次に、本研究で用いたロ ボットの足裏の形状が異なる場合でも同様の効果が得られ るのか検証する.

参考文献

[1] F.Kanehiro, et al.: "Locomotion Planning of Humanoid Robots to Pass through Narrow Spaces", ICRA2004, pp.604-609, 2004.

[2] 金広文男,他: "3D グリッドマップを用いたヒューマノ イドの狭隘部移動",日本ロボット学会誌,2007.

[3] M. Koeda, et al.: "Shuffle Turn with Both Feet of Humanoid Robot by Controlling Load Distribution of Soles", CLAWAR2009, pp.1007-1014, 2009.

[4] K. Miura, et al.: "A friction based "twirl" for biped robots", Humanoids2008, pp.279-284, 2008.

[5] K. Miura, et al.: "Analysis on a Friction Based "Twirl" for Biped Robots", ICRA2010, pp. 4249-4255, 2010.

[6] J.Kim, et al.: "Quick change of walking direction of biped robot with foot slip in single-support phase", Humanoids2011, pp339-344, 2011.

[7] M. Koeda, et al.: "Shuffle Turn and Translation of Humanoid Robots", ICRA2011, pp.593-598, 2011.

[8] M. Koeda, et al.: "Side Translation by Simultaneous Shuffle Turn for Humanoid Robots", ASCC2011, pp.1346-1351, 2011.

[9] S. Tsuichihara, et al.: "A sliding walk method for humanoid robots using ZMP feedback control", ROBIO2011, pp.275-280, 2011.

[10] 杉本大樹,他:"カセンサによるヒューマノイドの摺足 制御", SI2015, 2F3-1,pp.1429-1433, 2015.

[11] 杉本 大樹,他: "ヒューマノイドの ZMP フィードバック 摺足制御による移動性能検証", ROBOMECH2016, 2A1-12b6, 2016.

[12] D. Sugimoto, et al.: "ZMP-based Shuffling Walk Control for Humanoid Robot", RO-MAN2016, pp.904-905, TuIVS.2, 2016.
[13] 高林佑介,他: "2 足歩行ロボットにおける高速歩行実 現のための足裏摩擦の拘束に関する基礎研究", ROBOMECH2016, 1A2-06b1, 2016.

[14] K.Kojima, et al.: "Shuffle motion for humanoid robot by sole load distribution and foot force control", IROS2015, pp.2187-2194, 2015.

[15] K.Hashimoto, et al.:"Realization of Quick Turn of Biped Humanoid Robot by Using Slipping Motion with Both Feet", ICRA2011,pp.2041 - 2046, 2011.

図 3.9 右寄り荷重圧力分布