未来に向かって

開かれたソフトウェアのモデリング

ソフトウェアモデリング= UML 切図を描くこ亡?

ソフトウェア工学のコンテキストでモデリング (ソフ トウェアモデリングのこと、本稿では以降モデリング と略記) と言えば、まずは UML (Unified Modeling Language、オブジェクト指向をベースにしたモデ リングを行うための標準的な言語) の図を描くことを 思い浮かべる人が多いかもしれない。 そして、UML とは少し古い話題だな、とも思われるだろうか、

確かに、UMLの研究や現場導入の議論が活発に なされるという時代は過ぎたようだ. ソフトウェア工学 のトップカンファレンス ICSE (本特集の1,4 を参照) でも、10年ほど前にはUMLをソフトウェア開発の中 でどのように使うかをテーマにセッションが立てられる など、UMLに関する研究が複数見受けられた。 し かし最近ではそうしたこともない. UML 自身は, さま ざまなドメインで用いられるさまざまな図 (ダイアグラ ム)を包含するようになり、改訂を重ねながら発展を 遂げてきた、その結果、仕様書は膨大なページ数に なり、分かりやすく単純化することが求められ、2015 年6月にそれまでの2分冊構成を改め1冊に統一し た UML2.5 が発行された. 仕様書の構成としてはシ ンプルになったが、図式言語としての記法や意味に大 きな変化はなく、UML はおおむね安定したように思

野田夏子(芝浦工業大学) 岸 知二(早稲田大学)

われる(その後の改訂も、本原稿執筆時点ではない).

表-1 はモデリング技術やモデル活用方法の変遷 を示すものである. UML そのものの研究は落ち着 いてきたが、それを活用する研究はさまざまな広が りを見せていることが分かる。このようにモデリン グの重要性は一層増していると言える.

モデリング=対象の抽象化

モデリングとは何か. それは対象を抽象化し、形 式性のある記法で記述することである.

現実世界で使われるソフトウェアは実に大規模で 複雑だ.(独)情報処理推進機構(IPA)の最近の 調査によれば、ソフトウェアの総行数は、エンタプ ライズ系で平均約17万行,組込み系では平均約38 万行. 100万行を超えるものも珍しくはなく、中には 1,000 万行を超えるものもある ^{1), 2)}. このような大規 模なものをそのままの形で理解することはもはや不 可能であり、特定の側面ごとに抽象化してコンパクト に表現することが不可欠である.

その表現形式として標準化されたものの1つが UMLである。前述のように、その発展の中でさまざ まな図を包含することになったので、現在ではさまざ まな対象を UML で記述できる. また, UML はそれ 自身に拡張して使うための機構を含むため、目的に

時期	1970 年代~	1980 年代後半~	2000 年代~	2010 年代~
IT	メインフレーム	PC/NW	モバイル	IoT
モデリング 技術	(方法論) データフロー図 実体関連図 状態遷移図	(モデリング支援) オブジェクト指向モデリング/ アスペクト指向モデリング 記法統一(UML) フィーチャモデル ゴールモデル	(自動化) メタモデル 変換定義(QVT)	(SDx 時代への適用) システム記述 非機能モデリング
モデル 活用	手動 ドキュメント	記述支援ツール	モデル駆動 形式手法	統計 AI・探索

モデリング技術

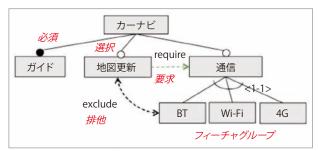


図-1 フィーチャモデルの例

合わせてカスタマイズして使うことができる。だからと いって UML が唯一の表現形式ではなく、ある目的 に対してより素直な、あるいは分かりやすい表現が あればそれらを使うことも可能だ. 一例として、ソフ トウェアプロダクトライン開発で用いられるフィーチャ モデルの例を図-1に示す. フィーチャモデルは、あ る製品群が共通に持つ特徴(フィーチャ),製品ごと に異なり得る特徴を表現するものである。図 -1 では すべてのカーナビにはガイドが備わっているが、地図 更新や通信は一部のカーナビだけにあることなどを示 している.

さて、対象を抽象化する、と書いたが、対象とは 何か. もちろん一義的にはソフトウェアであるが、 ソフトウェア(により実現されるシステム)によっ て解決したい問題を表現することもあれば、問題の 解決策としてのソフトウェアを表現することもある ので、その区別は重要だ、典型的には、前者は要求 定義におけるモデリングであり、後者は設計におけ るモデリングということになる.

さらに同じ対象を抽象化するのであっても、もの ごとの切り取り方、つまり視点は複数存在する. 大 きな軸として、静的な構造を見ているのか、動的な 構造を見ているのか、という分類がある。また構造 の一例を例示するためのモデルと、構造を一般化し て示すためのモデルがある. たとえば UML のクラ ス図は一般化した構造を示すものであり、オブジェ クト図は構造の例示である.

なお,一般的には,図法は対象や視点と一対一に 対応するものではない. たとえば、クラス図は解決 したい問題の構造を表現することも、解決策として のソフトウェアの構造を表現することもできる.

これからのモデリングの課題

現在すでに、さまざまなものがソフトウェアで定義 されるようになってきている。従来はソフトウェアの 外側にあるものと捉えられてきたストレージやネット ワークまでもが、ソフトウェア的な見方で捉えられコ ントロールされるようになってきた。また、複数の独 立したシステムを接続して1つのシステムとするシステ ム・オブ・システムズも増えている。従来対象にして いたのは、いわば 「閉じた」 ソフトウェアであったも のが、「開かれた」ソフトウェアになってきているので ある. このような変化の中で、モデリングの性格や 要件も多様化してきている. 重要な課題はいくつも あるが、その中から特に3つの点を取り上げる.

→ システム記述

コントロールの対象がハードウェアに広がり、ほかの システムとも接続されるようになると、モデリングの対 象もこれらハードウェアやほかのシステムを含むことに なる。したがって、これからのモデリングはシステム 記述としての性格がより強くなってくると考えられる.

ソフトウェアプロダクトライン開発を例にとると、ソ フトウェアだけではなくシステム全体のプロダクトライ ンを対象とする研究や実践例がここ数年増えている. 前述したフィーチャを単位にシステムの製品系列を扱 おうとするフィーチャベースの開発手法が、システムエ ンジニアリングの業界団体から提案されるなどの動き もある。このようなシステム全体のプロダクトラインの 開発では、フィーチャモデルも、用いるハードウェア やその特性を含めて記述されるようになってきている.

➡ 非機能特性

これまでも、ソフトウェア開発において非機能特性 への考慮は非常に重要であった. 今後、コントロール の対象がハードウェアを含めたさまざまなものに広が るにつれ、システム全体の振舞いはリアルな世界との かかわりがより強くなり、非機能面の扱いがさらに重 要となる。モデリングにおいては、従来はややもする と補足情報といった形で扱われることもあったが、モ

デルの一部として明示化し解析することが重要となる. UMLを用いたモデリングにおいて非機能特性を記 述できるプロファイルもすでに存在するし³⁾, フィー チャモデル上に非機能特性情報を付加し製品の非機 能特性を解析する技術なども研究されている.

→ 規模の爆発

システムのすべてがソフトウェア化し、多くのシ ステムが統合されたシステムを扱わなければならな いという変化の中で、モデリングの対象の規模が爆 発的に大きくなっている. たとえば、先に紹介した フィーチャモデルでは、1つのプロダクトラインに 含まれるフィーチャの数は今や数千に上るものも珍 しくなく、数万にもなるものもある.

対象が大規模化しているのだから、単純にモデル だけ小さくしたところで意味はないが、かといってモ デルの規模が大きすぎればその活用も難しくなる.

こうした問題に対して、たとえばスライシング技術 をモデルに適用し、注目する部分だけ抜き出すといっ たことが行われている. フィーチャモデルに対しても, さまざまなスライシングのアルゴリズムが提案されてい る ⁴⁾. また、フィーチャモデルは製品群に含まれる製 品の導出に活用されるが、フィーチャの数が膨大にな ると人手で正しい製品の導出を行うことが難しくなる. これに対して、探索技術を用いて効率的に妥当な製 品の導出を行うといったことも研究されている⁵⁾.

また、さまざまなものをソフトウェアとして扱っ たり、さまざまなシステムを接続したシステムを考 えたりする場合には、規模が大きくなっているだけ でなく、規模が実は分からない、つまりどこまでが モデル化の範囲なのかその境界が曖昧になるという ことも起こってくる. このような状況にあっては、 常に厳密で正しいモデルを定義・維持することはも はや困難である. 重要な部分は厳密にモデル化する が、重要度が低い部分、あるいは検討を後に遅らせ ても当面問題がなさそうな部分に関しては、ある程 度の不確かさを許容するといったことも必要になっ てきており、研究も始まっているところである.

モデリングの本質は変わらない

上記3つの観点から述べたが、これらがすべて であるということではない、本特集でも、要求工学、 ソフトウェア検証等、ソフトウェア開発のさまざま なプロセスの動向が紹介されているが、それぞれに おいてモデリングは必要であり、また特有の問題を 包含する。また、ゲームのソフトウェアなのか、車 載システムなのかといったドメインごとにも特有の 課題がある.それらを網羅することは不可能なので、 比較的共通する3つを選んで紹介した. なお、最近 のモデリングやモデル活用の動向でフィーチャモデ ルに関するもの多くを取り上げているが、ほかのモ デル (記法) についても同様の研究はある. 同じモ デルに対しての広がりを感じていただくためにあえ てフィーチャモデルを中心に論じた.

さて、さまざまな課題を見てきたが、モデリングが 抽象化であるという本質は変わらない。むしろ本稿 で述べたようなモデリングの対象範囲や規模の拡大、 機械処理を想定した活用の多様化などの状況の中、 より明確な視点を持った合目的なモデリングをするこ とが一層重要となる。そういう意味で、今こそ本質を 踏まえたモデリングが重要となっているといえる.

参老文献

- 1) ソフトウェア開発データ白書 2016-2017, (独) 情報処理推進機
- 2) 組込みソフトウェア開発データ白書 2015, (独) 情報処理推進
- 3) UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems (2011), http://www.omg.org/spec/ MARTE/1.1
- 4) Krieter, S., et.al: Comparing Algorithms for Efficient Feature-Model Slicing, 20th Int. Systems and Software Product Line Conference (2016).
- 5) Sayyad, A. S., et.al: Scalable Product Line Configuration: A Straw to Break the Camel's Back, 28th IEEE/ACM Int. Conference on Automated Software Engineering (2013).

(2017年5月15日受付)

野田夏子(正会員) nnoda@shibaura-it.ac.jp

東京女子大学大学院理学研究科数学専攻修了. 2008 年北陸先端科 学技術大学院大学博士後期課程修了. 博士(情報科学). 日本電気(株) を経て、2013年より芝浦工業大学准教授.

岸 知二(正会員) kishi@waseda.jp

1982年京都大学工学研究科情報工学専攻修了. 2002年北陸先端 科学技術大学院大学博士後期課程修了. 博士(情報科学). 日本電気 (株), 北陸先端大学を経て, 2009年より早稲田大学教授.