
Performance Evaluation of a Combination of the Parallel Bisection
Method and the Block Inverse Iteration Method with

Reorthogonalization for Eigenvalue Problems on MIC processor

Sho Araki1, Hiroyuki Ishigami2, Masayuki Osawa1, Kinji Kimura1 and Yoshimasa Nakamura1
1Graduate School of Informatics, Kyoto University, Kyoto, Japan

2Yahoo Japan Corporation, Tokyo, Japan

Abstract— We discuss the implementation, performance tun-
ing, and evaluation of an eigensolver of real symmetric tridiag-
onal matrices using the bisection method and the block inverse
iteration method with reorthogonalization on Intel Xeon Phi
(Xeon Phi) many integrated core (MIC) processor. We develop
an OpenMP thread parallel program for the eigensolver for
Xeon Phi and experimentally determine the optimal block size
parameter for both the MIC and CPU environments. Moreover,
we perform experiments for evaluating the performance of
the algorithm with the optimal block size. The eigensolver
exhibits higher computation speed and accuracy in the MIC
environment than the MRRR algorithm, which is known as the
conventional high-speed eigensolver.

Keywords: eigenpair problem; bisection method; block inverse
iteration method with reorthogonalization; parallel computing; MIC
processor;

1. Introduction
This study is mainly concerned with the standard eigenvalue

problem for an n× n dense symmetric matrix A, as follows

Avi = λivi, i = 1, . . . , n,

where {λi}ni=1(λ1 ≤ · · · ≤ λn) is the sequence of real
eigenvalues of A. We refer to the pair of eigenvalue and
eigenvector as “eigenpair” below.

There are many applications of the eigenvalue problem,
since problems in computational science are often reduced to
primal linear programming. Sometimes, only a small number
of eigenpairs are required. Target matrices of eigenpair prob-
lems have become increasingly large, and the solvers need to
be accelerated by means of parallel computing. Intel Xeon
Phi is a parallel processor exhibiting higher watt performance
than ordinary CPU (Central Processing Units) , and was
very similar to GPU (Graphics Processing Units) until the
previous “Knights Corner” generation. The largest difference
between MIC (Many Integrated Core) architecture and GPU
is the remarkably high compatibility of the former with CPU
architecture, which is capable of compiling existing source
code of C and Fortran languages without major modifications.
In addition, “Knights Landing” generation processors, released
in 2016, are mounted directly on CPU sockets. Therefore, the
bandwidth limitation of PCI-Express is no longer an issue.
Moreover, the higher compatibility of the updated Xeon Phi

with ordinary CPU widens the range of application of MIC
architecture in numerical calculations. The solver of eigenpair
problems considered in this paper is an example.

The computation of the eigenpairs of a real symmetric
matrix A generally employs the transformation of A to a
symmetric tridiagonal or band matrix. Then, the eigenpairs of
the tridiagonal or band matrix are computed. The eigenvalues
of the transformed tridiagonal or band matrix are equal to the
eigenvalues of the given matrix A, and the desired eigenvectors
are obtained by the reverse transformation of the previous
tridiagonal or band transformation. Many types of highly
efficient parallel computing methods have been proposed for
pre-processing and post-processing. Subsequently, one may
concentrate on the eigenvalue computation part.

In this paper, we consider the bisection method [1] for
obtaining the set (or a subset) of the eigenvalues of a pre-
processed real symmetric tridiagonal matrix. It should be
noted that there are several well-known methods for obtain-
ing the eigenvectors of a real symmetric tridiagonal matrix,
such as reverse iteration, MRRR (Multiple Relatively Robust
Representation) [2], QR, and Divide and Conquer methods.
MRRR can be used to compute all or a part of the eigenpairs
of a given matrix. By contrast, the QR and Divide and
Conquer methods can be used to compute all eigenpairs.
The advantage of the QR method is accuracy in terms of
absolute error measurement, whereas the advantage of the
Divide and Conquer method is high computation speed in
parallel environments. Even though the bisection method is
suitable for the partial eigenvalue problem as well, we evaluate
its performance in obtaining all eigenvalues, in order to make a
comparison with the QR and Divide and Conquer algorithms.
For parallel computing, Intel Math Kernel Library [3] (MKL)
provides the routines for the methods.

2. Implementation of the Target Eigen-
solver

The computation of the eigenpairs of a real symmetric
matrix is generally performed through the transformation of
the target matrix A to a symmetric band matrix, and subse-
quent computation of the eigenpairs of the band matrix. The
transformed symmetric band matrix, often a tridiagonal matrix,
has the same eigenvalues as the original matrix. Then, the
eigenvectors of the original matrix are obtained by the reverse

1ⓒ 2017 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2017-MPS-114 No.9
2017/7/17



transformation of the previous band transformation. In this
section, we briefly present the latter procedure of obtaining
eigenpairs of symmetric tridiagonal matrix.

2.1 Implementation of the Bisection Method
Herein, we discuss the implementation of the bisection

method for real symmetric tridiagonal matrices. The bisection
method is an algorithm for computing the eigenvalues of a
real symmetric matrix using binary search. It is proposed in
[1], and its implementation for ordinary CPU is provided by
the DSTEBZ routine of LAPACK (Linear Algebra PACKage)
[4].

We adopt the implementation introduced in [8] as a thread
parallel bisection method suitable for shared memory systems
such as MIC environments.

2.2 Implementation of the Inverse Iteration
Method

Herein, we briefly present the block inverse iteration method
with reorthogonalization [5]–[8] for the eigenvector problem.

For an n × n real symmetric tridiagonal matrix T , let
λi ∈ R(λ1 < · · · < λn) be its eigenvalues and qi ∈ R be
the eigenvectors corresponding to λi. If λ̃i is the approximate
value of λi, and the initial vector v(0)

i is randomly (uniformly)
generated, then the vector v

(j)
i converges to the eigenvector

qi as j →∞ in the following linear iterative equation

(T − λ̃iI)v(j)
i = v

(j−1)
i , j = 1, 2, . . . , (1)

where I is the n × n identity matrix. The inverse iteration
method [5]–[7] is based on the above procedure. The com-
plexity of this method for obtaining m(< n) eigenvectors is
O(mn). Practically, the vector v(j)

i must be normalized at each
iteration to avoid overflow and underflow. The obtained eigen-
vectors are orthogonal if the eigenvalues of T are sufficiently
separated. By contrast, it is known that the eigenvectors may
fail to be orthogonal if the eigenvalues of T are clustered.
In this case, it is proposed that eigenvectors corresponding to
clustered eigenvalues should be reorthogonalized.

We adopt the block inverse iteration method with reorthogo-
nalization proposed in [8] as the implementation of the inverse
iteration method for MIC environment. This is a modification
of the simultaneous inverse iteration method. The dominant
part of the block inverse iteration method could be imple-
mented, with efficient execution of matrix multiplications, on
SSE and AVX enabled processors.

3. Performance Evaluation
We present the results of the numerical experiments that

were conducted to evaluate the performance of the eigensolver
using the parallel bisection method (PBi) and the block inverse
iteration method with reorthogonalization (BIR). Specification
of CPU and MIC environments are shown in Tables 1 and 2,
respectively.

Test matrix for the evaluation is n×n symmetric tridiagonal
matrices T , random matrix with uniformly distributed random
numbers di, ei ∈ [0, 1].

Table 1: Specification of the experimental environment (CPU)

CPU Intel Xeon E5-2695 v4 x2 (2.10GHz, 18 cores x2)
RAM DDR4-2400 128GB

Compiler icc 16.0.4, ifort 16.0.4
Options -O3 -ipo -xCORE-AVX2 -fp-model precise

-qopenmp -mkl
Software Intel Math Kernel Library 11.3.4

Table 2: Specification of the experimental environment (MIC)

CPU Intel Xeon Phi 7250 (1.4GHz, 68 cores)
RAM DDR4-2133 96GB + MCDRAM 16GB (Cache mode)

Compiler icc 16.0.4, ifort 16.0.4
Options -O3 -ipo -xMIC-AVX512 -fp-model precise

-qopenmp -mkl
Software Intel Math Kernel Library 11.3.4

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

36 72 144 288 576

El
ap

se
d

 T
im

e 
[s

ec
]

r

n=10000 n=20000 n=30000

n=40000 n=50000 n=60000

n=70000

Fig. 1: Computation time for each block size (CPU, T )

3.1 Determining the Optimal Block Size for the
Eigensolver

We first determine the optimal block size for the BIR
algorithm. To this end, we use the following search method.

1) Set the initial block size r to the number of processor
cores of each experimental environment.

2) Measure the computation time for obtaining all eigen-
values and eigenvectors of T .

3) If the computation time is longer than that of previous
two trials, stop searching and let the block size giving
minimum computation time be optimal.

4) Otherwise, set the block size r := 2 × r and continue
searching.

Figures 1 and 2 show the computation time for T using
the block inverse iteration method with reorthogonalization
for different block sizes r on CPU and MIC environments for
the matrix T of size n. It should be noted that all graphs are
logarithmic.

We optimize the parameter for the BIR algorithm, since
it was more than 100 times slower than the PBi algorithm.
In addition, if we use hyper-threading technology, the PBi
algorithm becomes faster, whereas the BIR algorithm becomes
slower. Thus, hyper-threading technology is not adopted.

2ⓒ 2017 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2017-MPS-114 No.9
2017/7/17



1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

68 136 272 544 1088 2176 4352 8704

El
ap

se
d

 T
im

e 
[s

ec
]

r

n=10000 n=20000 n=30000

n=40000 n=50000 n=60000

n=70000

Fig. 2: Computation time for each block size (MIC, T )

These graphs show that block size r = 144 for CPU envi-
ronment and r = 2176 for MIC yield the best performance.

3.2 Comparison with Other Algorithms
We compare the execution time for obtaining all eigenvalues

and eigenvectors of the matrix T using the PBi+BIR algorithm
with the corresponding time for the MRRR algorithm. For
further comparison, we add the QR [9] and Divide and Con-
quer algorithms [10], which are well-known methods. Because
QR algorithm [9] and Divide and Conquer algorithm [10] are
not able to compute partial eigenvalue and eigenvectors of
target matrix. The implementations of these three algorithms
are provided in Intel Math Kernel Library (MKL) [3]. In
these experiments, we use DSTEMR, DSTEQR, and DSTEDC
LAPACK routines provided by Intel MKL as the parallel
implementations of the MRRR, QR, and Divide and Conquer
algorithms, respectively. We note that the number of threads in
all numerical experiments is set to be the number of processor
cores.

Figure 3 shows the execution time for obtaining all eigen-
values and eigenvectors using each algorithm for T (n =
10000, . . . , 70000). It should be noted that the graph is
semilogarithmic. The Divide and Conquer algorithm is the
fastest. However, it cannot be adopted for partial eigenvalue
and eigenvectors of the target matrix. PBi+BIR achieves higher
performance than MRRR in MIC environment, as the graph
shows.

Moreover, evaluations for accuracy are performed. Figure
4 shows the orthogonality ‖QᵀQ − I‖F of eigenvectors ob-
tained by each eigensolver for T , respectively (with n =
10000, . . . , 70000). n denotes the dimension of the target
matrix, D = diag{λ̃1, . . . , λ̃n}, and Q = [q1 · · · qn]. The
graphs are semilogarithmic. The lines of PBi+BIR (MIC),
DSTEMR(MIC), DSTEQR(MIC) and DSTEDC (MIC) are
hidden behind the corresponding lines in CPU environment,
since the results are nearly equal. The orthogonality among
the eigenvectors obtained by the PBi+BIR algorithm is signif-
icantly smaller than that obtained by the other algorithms.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

10000 20000 30000 40000 50000 60000 70000

El
ap

se
d

 T
im

e 
[s

ec
]

Matrix Dimension

PBi+RBI（MIC） PBi+RBI（CPU）

DSTEMR（MIC） DSTEMR（CPU）

DSTEQR（MIC） DSTEQR（CPU）

DSTEDC（MIC） DSTEDC（CPU）

Fig. 3: Computation time for T

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

10000 20000 30000 40000 50000 60000 70000

O
rt

h
o

go
n

al
it

y

Matrix Dimension

PBi+RBI（MIC） PBi+RBI（CPU）

DSTEMR（MIC） DSTEMR（CPU）

DSTEQR（MIC） DSTEQR（CPU）

DSTEDC（MIC） DSTEDC（CPU）

Fig. 4: Orthogonality of obtained eigenvectors for T1

Figure 5 shows the results of the evaluation of decompo-
sition accuracy, namely, the residuals ‖TQ − QD‖F of the
decomposed eigenvalues and eigenvectors for T , respectively.
PBi+BIR achieves higher accuracy than MRRR in terms of
decomposition. In conclusion, in terms of both speed and
accuracy, the PBi+BIR algorithm is superior to the MRRR
algorithm in MIC environment. The high accuracy of PBi+BIR
may be attributed to the high relative accuracy of the PBi
algorithm.

4. Conclusion
We evaluated the performance of an eigensolver us-

ing a combination of the parallel bisection method and
the block inverse iteration method with reorthogonalization
(PBi+BIRalgorithm) for computing all eigenpairs of a real
symmetric tridiagonal matrix. In particular, we compared the
performance of PBi+BIR with that of MRRR, which can be
adopted for obtaining a subset of eigenpairs. From the prelimi-
nary experiments, we determined the optimal block size for the
block inverse iteration method with reorthogonalization. We
measured the computation time of PBi+BIR, for each block

3ⓒ 2017 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2017-MPS-114 No.9
2017/7/17



1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

10000 20000 30000 40000 50000 60000 70000

R
es

id
u

al

Matrix Dimension

PBi+RBI（MIC） PBi+RBI（CPU）

DSTEMR（MIC） DSTEMR（CPU）

DSTEQR（MIC） DSTEQR（CPU）

DSTEDC（MIC） DSTEDC（CPU）

Fig. 5: Residuals of decomposition for T

of size r = 2m×C, where C is the number of processor cores,
and let the block size yielding the minimum computation time
be the optimal.

For T1, PBi+BIR with the optimal block size parameter
obtains the eigenpairs faster than MRRR in MIC environment.
This is true for T2 as well, with the condition that size of the
target matrix is n ≥ 60000. In addition, PBi+BIR is the only
algorithm computing eigenpairs faster in MIC environment
than in CPU environment. It is conceivable the AVX512
instruction set contributes to the superior performance of
PBi+BIR in MIC environment, as this algorithm involves a
large number of matrix multiplications. This suggests that
PBi+BIR is suitable for MIC environment. Moreover, in a
comparison of orthogonality of eigenvectors and residuals of
eigenpairs, PBi+BIR achieves higher accuracy than MRRR,
and there is no trade-off between computation speed and
accuracy in MIC environment.

There are many applications of eigensolvers for real sym-
metric matrices such as kernel principal component analysis,
which frequently appears in the industrial field. Fast and
accurate eigensolvers are in great demand in this field, and
PBi+BIR in MIC environment may be the eigensolver of
choice. In future work, we would perform a more detailed
examination of the relation between computation time and
block size, and establish a method for auto-tuning of the
algorithm in MIC environment.

Acknowledgment
This work was supported by JSPS KAKENHI Grant Num-

ber 17H02858.

References
[1] J. Wilkinson, “Calculation of the eigenvalues of a symmetric tridiagonal

matrix by the method of bisection”, Numer. Math., vol. 4, no. 1, pp. 362
367, 1962.

[2] I. S. Dhillon, B. N. Parlett, and C. Vömel, “The design and implementa-
tion of the MRRR algorithm”, ACM Trans. Math. Softw., vol. 32, no. 4,
pp. 533–560, 2006.

[3] Intel Math Kernel Library, “Available electronically at
https://software.intel.com/en-us/intel-mkl/.”

[4] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J.
Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney,
and D. Sorensen, LAPACK Users Guide (Third ed.). Philadelphia, PA,
USA: SIAM, 1999.

[5] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore, MD,
USA: Johns Hopkins University Press, 1996.

[6] J. W. Demmel, Applied Numerical Linear Algebra. Philadelphia, PA,
USA: SIAM, 1997.

[7] B. N. Parlett, The Symmetric Eigenvalue Problem. Philadelphia, PA, USA:
SIAM, 1998.

[8] H. Ishigami, K. Kimura, Y. Nakamura, “A New Parallel Symmetric Tridi-
agonal Eigensolver Based on Bisection and Inverse Iteration Algorithms
for Shared-memory Multi-core Processors”, 2015 10th International Con-
ference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),
pp. 216–213, 2015.

[9] W. Kahan, “Accurate eigenvalues of a symmetric tridiagonal matrix”,
Technical Report, Computer Science Dept. Stanford University, no. CS41,
1966.

[10] M. Gu and S. C. Eisenstat, “A divide-and-conquer algorithm for the
symmetric tridiagonal eigenproblem”, SIAM J. Matrix Anal. Appl., vol.
16, no. 1, pp. 172–191, 1995.

4ⓒ 2017 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2017-MPS-114 No.9
2017/7/17


