
Electronic Preprint for Journal of Information Processing Vol.25

Regular Paper

Speeding up Exact Real Arithmetic on
Fast Binary Cauchy Sequences by Using Memoization

Based on Quantized Precision

Hideyuki Kawabata1,a)

Received: September 26, 2016, Accepted: December 27, 2016

Abstract: Exact Real Arithmetic on Fast Binary Cauchy Sequences (FBCSs) provides us a simple and fairly fast way
to obtain numerical results of arbitrary precision. The arithmetic on FBCSs can be implemented concisely in a lazy
functional language with unlimited-length integer arithmetic, such that each FBCS is represented by a function that
generates approximated values with respect to requested precisions. However, application of the arithmetic on FBCSs
to programs such as matrix computations, that usually involve large amount of references to common subexpressions,
requires care to avoid the blowup of the amount of computation caused by the fact that approximated values are not
shared among multiple references. Although simple memoization might alleviate the situation, the effect would be
limited since required precisions for subexpressions tend to be various. In this paper, we present an extended design
of the arithmetic on FBCSs that enables the memoization based on quantized precision, that is expected to enlarge the
reuse rate and reduce the amount of computation without sacrificing the properties of the arithmetic to be exact arith-
metic. Numerical experiments by using our prototype libraries in Haskell demonstrated that our approach possesses
the potential to outperform existing implementations by orders of magnitude in speed and memory consumption.

Keywords: Fast Binary Cauchy Sequence, exact real arithmetic, lazy evaluation, memoization, Haskell library

1. Introduction

Programming for numerical computation involves a kind of pe-
culiar aspect — you always have to pay much attention to the ac-

curacy of the resultant values, even though those values are of ba-
sic types of modern programming languages such as Haskell. Or-
dinary floating-point numbers, standardized and used for decades,
can not be unreservedly reliable and situations where catastrophic
results are obtained are not unusual. Here we show a plain exam-
ple taken from Ref. [12]. For a linear system Ax = b, where

A =
(
ai j

)
=

⎛⎜⎜⎜⎜⎝ 64919121 −159018721
41869520.5 −102558961

⎞⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎠ ,
solutions are obtained as follows.

x1 = a22/(a11a22 − a12a21) = 205117922 (1)

x2 = −a21/(a11a22 − a12a21) = 83739041 (2)

However, by using floating-point operations, totally incorrect re-
sults are obtained as x̃1 = 102558961.0 and x̃2 = 41869520.5.
Even for expressions as simple as Eqs. (1) and (2), floating-point
arithmetic produces strange-looking answers.

Exact real arithmetic offers a simple way of programming
to obtain arbitrarily accurate answers for computable real num-
bers [7]. It is different from variable precision arithmetic, since
the user does not have to consider the precisions of intermediate

1 Hiroshima City University, Hiroshima 731–3194, Japan
a) kawabata@hiroshima-cu.ac.jp

results when writing programs. It is also different from simple
verified computation based on a sort of interval arithmetic. By
using exact arithmetic, numerical results are not only verified but
also as precise as the user demands.

Several ways for implementing exact real arithmetic have been
studied [8]. Exact arithmetic on Fast Binary Cauchy Sequence

(FBCS) is one of them [7]. FBCS is a kind of effective Cauchy

sequence that represents a real number by an infinite sequence
of rational values whose elements are approximations of the real
value at different levels of accuracy. The precision of each ap-
proximate value in an effective Cauchy sequence is defined by
the index of the element in the sequence. For example, when a
computational result corresponding to a real number x is repre-
sented by an effective Cauchy sequence {q0, q1, q2, . . . , qi, . . .},

k ≥ e(p) =⇒ |x − qk | < 1
2p

holds for a recursive function e : N → N. From the property,
an approximation of x which is accurate up to the absolute error
of 1/2p can be obtained by evaluating qk where k ≥ e(p). FBCS
is, in a word, a restricted but computationally efficient version of
effective Cauchy sequence whose elements are integers. When
{n0, n1, . . . , np, . . .} is an FBCS, it is representable as a function
f = \p → np in a program and the approximation at the preci-
sion of p is obtained by evaluating (f p)/2p. As will be described
in Sections 2 and 3, the arithmetic on FBCSs can be concisely de-
signed [7] and implemented by using a lazy functional language
with long integers [9], [16], although other languages such as Java
can be used to implement [3]. Thanks to the functionality of pro-

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

gramming languages such as overloading of operators, the user
can write expressions exactly like Eqs. (1) and (2) to obtain suf-
ficiently accurate results without paying attention to what will
be done under the hood. Here we show an example written in
Haskell that corresponds to the expressions Eqs. (1) and (2), with
slight optimization of common-subexpression elimination.

let d = a11 ∗ a22 − a12 ∗ a21 — 1st ref of a22

let x1 = a22 / d — 2nd ref of a22

let x2 = − a21 / d

putStrLn $ "x1=" ++ (show x1) ++ ",x2=" ++ (show x2)

The arithmetic on FBCSs, defined formally in Ref. [7], how-
ever, has a weak point with respect to computational perfor-
mance. In programs based on FBCSs, all subexpressions are
represented as functions. In the case of the above example, all
identifiers constituting numerical expressions denote functions of
the type representing an FBCS. Thus, multiple references to com-
mon identifiers, such as a22 and d, cause multiple and indepen-
dent evaluation of the same functions. Although applying mem-
oization to each function that represents an FBCS might alleviate
the situation [9], the effect would be limited because required pre-
cision for each subexpression could vary a lot. For example, two
evaluations of a22 in the above program would require approxi-
mations at different precisions (although the detail of the behav-
ior depends on the data supplied to the program). It must be said
that applying the arithmetic on FBCSs to those that involve many
common subexpressions such as matrix computations and com-
putation on recursively defined sequences requires care because
the blowup of the amount of computation as well as the usage of
memory is difficult to avoid entirely.

In this paper, we present the idea of memoization based on

quantized precision for the arithmetic on FBCSs to realize ef-
fective memoization that reduces the amount of computation and
memory consumption, without sacrificing the properties of the
arithmetic to be exact arithmetic.

Our approach is based on the twofold idea; (1) relaxation of
constraints on precisions of approximated values used in each
arithmetic operator, and (2) memoization done for normalized ar-
guments while keeping the property of the exactness of the arith-
metic. In order to reduce the variety of required precisions for
each arithmetic operator, we make each operator possible to pro-
duce an approximation at a required precision from operands at
any precision that is greater than the limit. The relaxation of
constraints on precisions at each operator enables the usage of
constrained precisions in the course of computation — we can
restrict the precisions used in the library functions such that, e.g.,
multiples of 32. In the case, request for precisions of 30, 31, 32
are all quantized to 32 *1.

The effect of the reuse of precomputed higher-precision ap-
proximation, also called as caching, has been discussed [5], [14].
However, as we know of, performance optimization of memoiza-
tion applied to the arithmetic on FBCSs in a referentially trans-

*1 In the example program shown in this section, the approximated values
at the two references of a22 still can not be shared. However, as shown
in Section 6, the effectiveness of our approach is experimentally shown
for larger problems.

parent manner does not exist.
The contributions of the work reported in this paper are sum-

marized as follows:
• We present extended definition of the arithmetic on FBCSs

that can be used to reason about computations for approxi-
mation at relaxed, less restricted environment. We also show
some essential properties that those arithmetic should pos-
sess.

• We present the idea of memoization based on quantized pre-

cision of the arithmetic on FBCSs and give the implementa-
tion in Haskell that are extractable from the extended defi-
nition of the arithmetic on FBCSs. We show the arithmetic
possesses the property to be exact under quantized precision.
The definition is referentially transparent.

• We give some results of numerical experiments carried out
on some sensitive (difficult to solve by using floating-point
arithmetic), and complicated problems that contain huge
amount of common subexpressions. Experimental results
demonstrated our approach possesses potential to outper-
form existing implementations by orders of magnitude in
speed and memory consumption.

The organization of this paper is as follows. Sections 2 and
3 summarizes the definition of FBCS and the definition of the
arithmetic on FBCSs, respectively. In Section 4, we show the
extended definition of the arithmetic on FBCSs to relax require-
ments of precisions for intermediate approximations. In Sec-
tion 5, we present the idea of quantized precision to enlarge reuse
rate of approximated value for the arithmetic on FBCSs. We de-
fine the arithmetic and show that they possess essential properties
to be exact arithmetic. Section 6 describes several numerical ex-
amples demonstrating the effectiveness of our approach. Related
work is covered in Section 7. Finally, we conclude with a brief
summary in Section 8.

Throughout this paper, we use Haskell [1] with some extra
typesetting features to describe algorithms.

2. Fast Binary Cauchy Sequence and the
Arithmetic

2.1 FBCS as a Representation for Real Numbers
Effective Cauchy sequences are not only used for theoretical

discussions, but also known to be effective for actual numerical
computation. Fast Binary Cauchy Sequence (FBCS) is a version
of effective Cauchy sequence and is known to be effective for both
aspect of the computational speed and memory efficiency [7].
Definition 1. A Fast Binary Cauchy Sequence (FBCS) denoting a

real v is an infinite sequence of integer values {n0, n1, . . . , np, . . .}
where the following property holds

∣∣∣∣∣v − np

2p

∣∣∣∣∣ < 1
2p
, (p = 0, 1, . . .) . (3)

Once you get a sequence x = {n0, n1, . . .} that holds the prop-
erty of Eq. (3) for some v, you can obtain an approximated value
of v as np/2p at any precision, i.e., with an absolute error up to
1/2p for any natural number p, since

np − 1

2p
< v <

np + 1

2p

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

holds for p = 0, 1,
Here, we can see an FBCS x = {n0, n1, . . . , np, . . .} denot-

ing a real v as a mapping from an index to an integer, i.e.,
fx = \p → np. The expressions over FBCS are the compo-
sitions of those functions. In this view, the model of the com-
putable real numbers can be called a functional representation as
in Refs. [3], [5]. Hereafter, we use x (an FBCS which is a se-
quence of integer) and fx (the corresponding function from inte-
ger to integer) interchangeably.

2.2 Programming with FBCS
In order to construct a program to carry out exact computation

by using FBCS, you need (1) generating functions of FBCSs from
some representations of numbers used as the sources of the com-
putation, and (2) arithmetic operators on FBCSs, i.e., functions
that accept FBCSs as operands and return an FBCS. An entire
program will be actually a composition of arithmetic operators
and generating functions, followed by the process of extraction
of approximated numerical results.

Here, we introduce a simple notation for the relation between
a real number and an FBCS.
Definition 2. We write v� x if x is an FBCS that denotes a real

v.

The arithmetic operators on FBCSs are expected to satisfy the
following basic property of arithmetic, i.e., for any FBCSs x and
y and reals v and w,

v� x =⇒ −v� neg x

v� x ∧ w� y =⇒ v + w� add x y

v� x ∧ w� y =⇒ v × w� mul x y

v� x =⇒ 1/v� recip x

where neg, add, mul, and recip correspond to real operators −
(unary minus), +, ×, and reciprocal, respectively.

Once an FBCS x where v � x for a real v is constructed, for
any non-negative integer p, the approximation of v whose abso-
lute error is less than 1/2p is obtained as (x p)/2p. In this paper,
we call (x p)/2p the approximation at precision p of v where
v� x. Note that, in this paper, the word “precision” is not used
for the indicator of the relative error that corresponds to the num-
ber of meaningful digits, but used for the indicator of the absolute
error.

3. Exact Arithmetic on FBCSs

In this section, we show the arithmetic on FBCSs. All the def-
initions of the arithmetic are taken from Ref. [7]. We show them
adding our comments to make the following sections easy to read.
Existing implementations [9], [16], [17] are based on the same al-
gorithms. Proofs for properties of operators on FBCSs described
in this section are found in Ref. [7].

First, just for convenience, we define a type synonym for the
type of functions representing indexed integer sequences *2.

*2 Practically, we require unlimited length of integers, such as Integer type
of Haskell, to define arithmetic operators. However, Int will be sufficient
to denote precisions of subexpressions, thus the definition of the type
synonym ISeq. Difference between Int and Integer is not important for
the discussion in this paper.

type ISeq = Int → Integer

An instance f of ISeq that corresponds to the sequence x =

{n0, n1, . . . , np, . . .} is a function f = \p → np. An FBCS is rep-
resented as a function of type ISeq.

3.1 Generating Function from Literals
Integers are converted to FBCSs by applying the following

function:

set z :: Integer → ISeq

set z n = \p → 2p n

Constants with decimal points are treated as rationals and are con-
verted to FBCSs by dividing numerators by corresponding de-
nominators, both are FBCSs constructed from integers.

Note that for any integer n, n� set z n.

3.2 Addition
The sum of two FBCSs are defined as follows:

add :: ISeq → ISeq→ ISeq

add x1 x2 p = r

where n1 = x1 (p + 2)
n2 = x2 (p + 2)

r = �n1 + n2

4
	

Note that �q	 denotes an integer obtained by rounding a rational
number q.

For any instances of FBCS x1 and x2 and reals v1 and v2,
v1 � x1 ∧ v2 � x2 =⇒ v1 + v2 � add x1 x2.

It should be noted that the definition says that if you require an
approximation of v1 + v2 at the precision of p, the approximations
of v1 and v2, both at the precision of exactly p + 2, must be used.

3.3 Negation
Negation of an FBCS is defined as the elementwise negation of

the sequence.

neg :: ISeq → ISeq

neg x1 = \p → − (x1 p)

Obviously, for any instance of FBCS x1 and a real v1, v1 �
x1 =⇒ −v1 � neg x1.

3.4 Multiplication
The product of two FBCSs is defined as follows:

mul :: ISeq → ISeq→ ISeq

mul x1 x2 p = r

where s1 = �log2(|x1 0| + 2)
 + 3
s2 = �log2(|x2 0| + 2)
 + 3
n1 = x1 (p + s2)
n2 = x2 (p + s1)

r = � n1n2

2p+s1+s2
	

log2 in the above definition is a logarithm function for integer.
If v1 � x1 and v2 � x2, then v1 × v2 � mul x1 x2 holds.
Note that, different from the case of add, you can not say ap-

proximations of v1 and v2 at what precisions are actually used to

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

compute the approximation at a required precision of the product
v1 × v2 — it depends on the absolute values of v1 and v2.

3.5 Reciprocal
Division between two FBCSs can be composed of multipli-

cation and reciprocal. The reciprocal of an FBCS is defined as
follows:

recip :: ISeq → ISeq

recip x1 p = r

where s = min { s ∈ N | 3 ≤ |x1 s| }
n1 = x1 (p + 2s + 2)

r = �2
2p+2s+2

n1
	

If v1 � x1, then 1/v1 � recip x1 holds. Here, we suppose
0 � x1; otherwise, the evaluation of recip will not terminate.

In order to compute the approximation of 1/v1 at some given
precision, sufficiently precise approximation is searched and
used. Note that the searching algorithm is arbitrary. The Ex-
act Real package [9] uses a kind of binary search applicable to
monotonic functions.

3.6 Square Root
Square root function is as follows:

sqrt :: ISeq → ISeq

sqrt x1 p = r

where n1 = x1 (2p)
r = isqrt n1

Note that isqrt in the above definition is a square root function
for integer with rounding toward zero.

If v1 � x1 and v1 ≥ 0, then
√
v1 � sqrt x1 holds.

3.7 Other Functions
Other functions such as trigonometric, logarithmic, and ex-

ponential functions are constructed by power series function [7]
with appropriate range reduction.

4. Extended Definition of Exact Arithmetic on
FBCSs

In this section, we present our extended design of the arith-
metic on FBCSs. The arithmetic operators defined in this section
are relaxed version of the original operators shown in Section 3
in the sense that one can obtain an approximation at any precision
with operands at arbitrarily higher precision than the lower limit

by using the operators.
Here we explain the effect of the modification. Let us consider

the situation where you need an approximated sum of two num-
bers at the precision of p. If you use add in Section 3.2, you will
be required to calculate approximations of operands at the pre-
cision of exactly p + 2. If you use add a defined in this section
instead, you will just have to prepare approximations of operands
at any precision greater than or equal to p + 2. Thus, if you hap-
pen to have an approximation of the operand at the precision of
p + m + 2 for some m ≥ 0, you can reuse it. The chance of reuse
might be bigger with add a than with add.

We make use of the flexibility of the operators defined in this

section to introduce the idea of memoization based on quantized
precision and to extract the implementations of our arithmetic li-
brary in Haskell, which will be described in Section 5.
Definition 3 (Addition).

add a :: ISeq → ISeq→ Int→ Int → ISeq

add a x1 x2 m l p = r

where n1 = x1 (p + m + 2)
n2 = x2 (p + l + 2)

r = �2
ln1 + 2mn2

2m+l+2
	

Definition 4 (Multiplication).

mul a :: ISeq → ISeq→ Int→ Int → Int → Int → ISeq

mul a x1 x2 z1 z2 m l p = r

where s1 = �log2(|x1 z1| + 2)
 + 3
s2 = �log2(|x2 z2| + 2)
 + 3
n1 = x1 (p + s2 + m)
n2 = x2 (p + s1 + l)

r = � n1n2

2p+s1+s2+m+l
	

Definition 5 (Reciprocal).

recip a :: ISeq → Int → ISeq

recip a x1 m p = r

where s = min { s ∈ N | 3 ≤ |x1 s| }
n1 = x1 (p + 2s + 2 + m)

r = �2
2p+2s+2+m

n1
	

We suppose 0 � x1; otherwise, the computation of recip a

will not terminate.
Definition 6 (Square root).

sqrt a :: ISeq → Int → ISeq

sqrt a x1 m p = r

where n1 = x1 (2p + m)

r = �rsqrt
n1

2m
	

Note that rsqrt in the above definition is a square root function
for rational numbers with rounding toward zero.
Lemma 1. For any integers m, l ≥ 0,

(1) v1 � x1 ∧ v2 � x2 =⇒ v1 + v2 � add a x1 x2 m l,

(2) for any integers z1 and z2, if 4 > z1, z2 ≥ 0,

v1 � x1 ∧ v2 � x2 =⇒ v1 × v2 � mul a x1 x2 z1 z2 m l,

(3) v1 � x1 ∧ v1 � 0 =⇒ 1/v1 � recip a x1 m, and

(4) v1 � x1 ∧ v1 ≥ 0 =⇒ √v1 � sqrt a x1 m.

Proofs of the above properties are given in Appendix A.1.
Claim 1. There are following correspondences:

• add x1 x2 = add a x1 x2 0 0,

• mul x1 x2 = mul a x1 x2 0 0 0 0,

• recip x1 = recip a x1 0, and

• sqrt x1 = sqrt a x1 0.

5. Memoization on Quantized Precision

In this section, we present an implementation of the set of arith-
metic operators on FBCSs that are designed such that memoiza-

tion based on quantized precision is applicable.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

5.1 Quantized Precision
In order to raise the opportunity where requested precisions for

approximations coincide, we restrict the precisions for which ap-
proximated values are computed. Instead of allowing to request
approximate computation of arbitrary precision, we might restrict
the precision to be, e.g., multiples of 4. When approximation of
precision p is required, we compute approximation of precision
p′ where p′ = quantize p. We call this mapping quantization

because the function quantize should be a non-decreasing step
function.

Here, we can use a simple definition of quantize as follows:

quantize :: Int → Int

quantize p = (div (p − 1) step + 1) ∗ step

When you use the above definition of quantize with step of 4,

map quantize [0..18]
= [0,4,4,4,4,8,8,8,8,12,12,12,12,16,16,16,16,20,20].

Memoization of the arithmetic functions on FBCSs is done
based on normalized precision, where we define normalization

as the mapping from each level of the step (defined by the step
function quantize) to a natural number. For example, the nor-
malizing function normalize corresponding to the above quantize

should hold the following equality:

map normalize [0..18]
= [0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5].

The reason of the usage of normalization is to reduce both com-
putational and spatial overhead caused by the memoization.

In the course of computation of approximated values, normal-
ized values sometimes have to be converted to corresponding
quantized values. We call the mapping expansion.

When we use the definition of quantize above, normalize and
expand should be defined such that *3 expand . normalize =

quantize, e.g., as follows.

normalize , expand :: Int → Int

normalize p = div (p − 1) step + 1
expand p = step ∗ p

5.2 FBCS’s Property under Quantized Precision
Here, we introduce the relation �q with a quantizing func-

tion q, such that for any real v and a sequence of integers x′ =
{n0, n1, . . . , np, . . .},

v�q x′ ⇐⇒
∣∣∣∣∣v − n(q p)

2(q p)

∣∣∣∣∣ < 1
2(q p)

for p = 0, 1,

Obviously, for any quantizing function q, v � x =⇒ v �q x

holds. In addition, following properties hold.
Lemma 2. Let us assume q is a quantizing function. Then, for

any integers m, l ≥ 0,

(1) v1 �q x1 ∧ v2 �q x2 =⇒ v1 + v2 �q add a x1 x2 m l,

(2) for any integers z1 and z2, if 4 > z1, z2 ≥ 0, v1 �q x1

∧ v2 �q x2 =⇒ v1 × v2 �q mul a x1 x2 z1 z2 m l,

*3 In addition, if quantize (2 ∗ (quantize p)) = 2 ∗ (quantize p) holds, the
implementation of square root function becomes quite simple as shown
in Section 5.4.

Fig. 1 Memoizing functions [27], [28].

(3) v1 �q x1 ∧ v1 � 0 =⇒ 1/v1 �q recip a x1 m, and

(4) v1 �q x1 ∧ v1 ≥ 0 =⇒ √v1 �q sqrt a x1 m.

Proof. Substitution of p′ = q p for every p in the proof for
Lemma 1 in Section A.1 suffices. �

Once a sequence of integer x where v �q x for a real v under
a quantizing function q is constructed, for any non-negative in-
teger p, the approximation of v whose absolute error is less than
1/2(q p) is obtained as (x (q p))/2(q p).

5.3 Memoizing Function
Whether quantized precision are used or not, ordinary mem-

oization functions can be applied to the arithmetic functions on
FBCS. However, since precisions are limited to non-negative in-
teger numbers, memoizing facility could be optimized for the us-
age *4. For example, we can use the one based on infinite-sized
prefix binary tree [27], [28]. For example, we can use the func-
tions described in Fig. 1.

5.4 The Arithmetic Operators on FBCSs with Memoization
based on Quantized Precision

According to the discussion in Section 4, we can define Haskell
functions to construct the arithmetic library, i.e., addition, multi-
plication, reciprocal, and square root functions, as shown in this
section. Other functions such as exponential and trigonometric
functions can be constructed using those with the help of power
series function which is shown in Appendix A.3.

In the definitions of the arithmetic operators in this section, we
use memoizing function named memo. Any definition of function
memo of type (Int→ τ)→ (Int→ τ) can be used here as long as
memo f behaves the same as f where f is of type Int→ τ.

In the definitions in this section, we also use functions named
expand, normalize, and quantize. All of them are of type
Int → Int. quantize must be non-descending. We also assume
expand . normalize = quantize, and quantize . quantize =

quantize. A concrete example of quantize, normalize, and expand

is given in Section 5.1.
Note that precisions given to functions such as add x′ and

mul x′ as the last operand are always quantized. However, memo-

*4 The effect of the choice of memoizing facility will be described in part
in Section 6.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

ization is done based on the corresponding normalized precisions.
Definition 7 (Addition).

add x, add x′ :: ISeq → ISeq→ ISeq

add x x1 x2 p = memo (add x′ x1 x2 . expand)
(normalize p)

add x′ x1 x2 p′ = r

where q = quantize (p′ + 2)
n1 = x1 q

n2 = x2 q

r = �n1 + n2

2q−p′ 	
Definition 8 (Multiplication).

mul x, mul x′ :: ISeq → ISeq→ ISeq

mul x x1 x2 p = memo (mul x′ x1 x2 . expand)
(normalize p)

mul x′ x1 x2 p = r

where s1 = �log2(|x1 0| + 2)
 + 3
s2 = �log2(|x2 0| + 2)
 + 3
q1 = quantize (p + s2)
q2 = quantize (p + s1)
n1 = x1 q1

n2 = x2 q2

r = � n1n2

2q1+q2−p
	

Definition 9 (Reciprocal).

recip x , recip x ′ :: ISeq → ISeq

recip x x1 p = memo (recip x′ x1 . expand)
(normalize p)

recip x ′ x1 p = r

where s1 = head $ filter ((3 ≤) . abs . x1)
$ map expand [0..]

q = quantize (p + 2s1 + 2)
n1 = x1 q

r = �2
q+p

n1
	

Computation of s1 in the definition of recip x′, that is a search
for the minimum value in a set, can be done using a kind of bi-
nary search used in Ref. [9]. It is difficult to decide the best way,
though, because the performance might be significantly affected
depending on the application programs.
Definition 10 (Square Root).

sqrt x :: ISeq → ISeq

sqrt x x1 p = memo (sqrt x′ x1 . expand)
(normalize p)

sqrt x ′ x1 p = r

where n1 = x1 (2p)
r = isqrt n1

isqrt in sqrt x′ is a square root function of type Inte-

ger→Integer, with rounding toward zero. Note that sqrt x′ as-
sumes that quantize (2 ∗ (quantize p)) = 2 ∗ (quantize p) for any
q ≥ 0.

5.5 Properties of the Arithmetic
From the following theorem, we can say that the arithmetic op-

erators defined in this section possess the essential properties to

be exact arithmetic.
Theorem 1. For any reals v1 and v2, integer sequences x1 and

x2, the following relations hold under the assumption that appro-

priate quantizing function is used consistently:

(1) v1 �q x1 ∧ v2 �q x2 =⇒ v1 + v2 �q add x x1 x2.

(2) v1 �q x1 ∧ v2 �q x2 =⇒ v1 × v2 �q mul x x1 x2.

(3) v1 �q x1 ∧ v1 � 0 =⇒ 1/v1 �q inv x x1, and

(4) if quantize (2∗(quantize p)) = 2∗(quantize p) for any p ≥ 0,

v1 �q x1 ∧ v1 ≥ 0 =⇒ √v1 �q sqrt x x1.

Proof. (1) Let q = quantize (p′ + 2) and l = m = q − p′ − 2
for a p′ ≥ 0. Since quantize is non-decreasing, l,m ≥ 0
holds. Then, from the definitions of add a and add x′,
add a x1 x2 m l p′ is reduced to add x′ x1 x2 p′. With
these and Lemma 2, v1 + v2 �q add x′ x1 x2.
Now, from the definition of add x, add x x1 x2 (quantize p)
evaluates to the same value as add x′ x1 x2 (quantize p)
since the premise of the property of memo and the relations
expand . normalize = quantize and quantize . quantize =

quantize. This concludes the proof.
(2) Let s1 = �log2(|x1 0| + 2)
 + 3, s2 = �log2(|x2 0| + 2)
 + 3,

q1 = quantize (p′ + s2), q2 = quantize (p′ + s1), z1 =

z2 = 0,m = q1 − p′ − s2, and l = q2 − p′ − s1, for a
p′ ≥ 0. Since s1, s2 ≥ 4, l,m ≥ 0 hold. Then, from the
definitions of mul a and mul x′, mul a x1 x2 z1 z2 m l p′

is reduced to mul x′ x1 x2 p′. With these and Lemma 2,
v1 × v2 �q mul x′ x1 x2. Now, similar to the proof for (1),
mul x x1 x2 (quantize p) is shown to evaluate to the same
value as mul x′ x1 x2 (quantize p).

(3) Let s1 = min{s ∈ N|3 ≤ |x1 s|}, q = quantize (p′ + 2s1 + 2),
m = q − p′ − 2s1 − 2, for a p′ ≥ 0. The rest is similar to the
previous.

(4) Let q = quantize p′, for a p′ ≥ 0, and m = 0. The rest is
similar.

�

We have to say that the effects of memoization itself are diffi-
cult to formulate. For example, it would be hard to find out the
relation between the used step size of quantize and the reduced
amount of memory usage because the detailed behavior of the
arithmetic operations depends on the values given to the program.
However, as shown in Section 6, memoization based on quantized
precision appears to have some potential to enhance performance
of exact arithmetic on FBCSs.

6. Numerical Experiments

In this section, we present the results of some numerical exper-
iments carried out to evaluate the effectiveness of our approach,
i.e., memoization based on quantized precision applied to the
arithmetic on FBCSs.

All programs were written in Haskell and compiled using GHC
7.10.3, and were run on a MacBook Pro (Intel Core i7 3.1GHz
with 16GB memory) running OS X 10.11.6.

Comparisons were done among following arithmetic libraries
on FBCSs:
(1) The Exact-Real Package in Hackage [9] of version 0.12.1.

This package uses the module Data.Function.Memoize to

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 2 Elapsed times for solving Hilbert systems by LU factorization. De-
picted lines are the results of (a) ER-ORG, (b) ER-MEM, (c) ER-
MQR with step size 32, and (d) ER-MQR with step size 8.

memoize the arithmetic functions on FBCSs in a simple way.
We consider this is the baseline.

(2) The Exact-Real Package in Hackage that was modified to
use a memoizing function shown in Section 5.3.

(3) The exact real arithmetic library on FBCSs constructed with
the technique of memoization based on quantized precision

described in Section 5.4.
In the following, we refer to the arithmetic libraries mentioned

above as ER-ORG, ER-MEM, and ER-MQR, respectively. For
ER-MQR, the used functions for quantization were those given
in Section 5.1.

All the numerical computation were done so that the absolute
error of the results were guaranteed to be less than 2−53.

6.1 Experiment 1: Solving Sensitive Linear Systems of
Equations

The Hilbert matrix is a square matrix
(
hi j

)
, where hi j = 1/(i +

j − 1). A linear system of equations with a Hilbert matrix as its
coefficient is known to be difficult to solve precisely. Here, we
call the linear systems of equations Hilbert systems. We solved
Hilbert systems of several sizes. We used LU factorization al-
gorithm without pivoting. Right-hand side vectors were set to
(1 0 . . . 0)T . We used mutable arrays offered by Data.Array.IO

for manipulating matrices and vectors.
The results are shown in Fig. 2. Memoization based on quan-

tized precision ((c) and (d)) greatly affected the speeding-up of
the programs compared to the others, (a) and (b). In the figure,
we can only see a slight difference between (c) and (d). However,
in general, the performance of ER-MQP would vary depending
on used step size. Note that (b) is virtually the same as ER-MQP
with step size 1.

In Fig. 2, we can see a clear difference between (a) and (b). We
see that different memoizing facility could largely affect the com-
putational speed of the arithmetic on FBCSs, although we do not
touch the point any further here.

We should note that other libraries such as iRRAM [23] and
IFN [10] might be a few orders of magnitude faster than those
examined in this paper.
6.1.1 On the Amount of Computation for Approximate Val-

ues and the Reuse Rate
The amount of computation for approximate values and the

Fig. 3 The relation between the step size and the behavior of the exact arith-
metic libraries. Hilbert systems with 8 unknowns were solved. The
x-axis is the size of the step for quantization. The bars at step 1, 2, 4,
8, 16, 24, 32, 40, and 48 show the total number of references for ap-
proximated values during the computation with the designated step
size. The black part and the meshed part show the number of compu-
tation for approximations and the number of reuse of precomputed
approximations, respectively. The dotted line shows the elapsed time
(in seconds, right axis) for each configurations.

Table 1 Memory usage (in megabytes) for solving Hilbert systems with 8
unknowns. Measured by using the GHC’s runtime system. For
ER-MQP, columns labeled as s1, s8, and s32 are the results with
step size 1, 8, and 32, respectively.

ER-MEM ER-MQP
s1 s8 s32

Maximum Instantaneous Usage 24.5 22.7 4.62 2.17
Total Allocation 624 836 160 118

reuse rate were measured for solving Hilbert systems. The re-
sults are shown in Fig. 3.

We can see some interesting facts from Fig. 3. The bars in the
figure show a rapid decrease of the number of references to ap-
proximated values as the step size increases. The trend must have
largely affected the reduction of elapsed time as the step size get
large. However, the ratio of the number of reused approximated
values to that of computed values was almost the same among
the variety of step sizes. This could be attributed to the property
of ER-MQR, i.e., increased opportunity of reuse by the memo-
ization on quantized precision would cause the reduction of the
amount of references to approximated values. When the amount
of reuse and computation are both reduced, the ratio of reuse to
computation might be less important compared to the amount of
references itself.

As shown in Fig. 3, the number of reuse and computation were
the same for the execution of step size 32, 40, 48. For larger step
size than the point where the reduction of the amount of refer-
ences were saturated, computation of ER-MQP must have been
done at excessively high precision.

Here we put comments on another effect of our arithmetic li-
braries; memoized or not, usage of the quantized-precision-based
reciprocal, i.e., the recip x operator, was effective to reduce the
amount of references of approximated values since the number of
searched elements of FBCSs was decreased.
6.1.2 On the Amount of Memory Consumption

The amount of memory consumption is measured for selected
configurations as shown in Table 1. Note that each number in the
table includes not only the amount of memory to store approxi-
mated values but also all memory consumption for each execution

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 4 Values of xn (n = 0, . . . , 100) of obtained from the computation of
the logistic map xn = 4xn−1(1− xn−1) where x0 = 0.7501. Lines show
the results of double-precision arithmetic and exact values.

Fig. 5 Elapsed times for computing xn of the logistic map xn = 4xn−1(1 −
xn−1) where x0 = 0.7501. The x-axis corresponds to the index n of
xn. Depicted lines are the results of (a) ER-ORG, (b) ER-MEM, (c)
ER-MQR with step size 32, and (d) ER-MQR with step size 8.

of the program.
The table shows that the application of the memoization on

quantized precision leads to low memory usage. Roughly speak-
ing, the decreasing trends of the memory usage shown in Table 1
are similar to that depicted by the dotted line in Fig. 3.

6.2 Experiment 2: Computations of Logistic Map
The values of xn of the logistic map xn = 4xn−1(1 − xn−1) are

known to be in the interval (0, 1) and the distribution in the in-
terval is irregular against n. By using double-precision floating-
point arithmetic, exact values are difficult to obtain. Figure 4
shows the plot of xn for n = 0, . . . , 100. For n > 50, the results of
floating-point arithmetic is completely different from exact val-
ues.

Computational results on the logistic map are summarized in
Fig. 5. Memoization based on quantized precision (c) was not
always better than the original. However, (d) outperformed (b).
The difference between (c) and (d) could be explained by look-
ing at Fig. 6, where the amount of computation for approximate
values and the reuse rate are depicted. From the figure, saturation
of the reduction of the amount of references at step size 8 is no-
ticeable. The line (c) in Fig. 5 illustrates the result of the amount
of wasted time caused by too precise computations. The amount
of memory consumption for selected configurations shown in Ta-
ble 2 also confirms the fact.

In Fig. 6, elapsed time increases at higher rate compared to that
in Fig. 3 when step size get large. The reason of the difference
might be the fact that a simple iterative computation of elements
in a sequence, such as the logistic map, constructs a quite un-
balanced data-flow graph at runtime. In such a case, overhead
caused by the computation at excessively high precision might
sensitively affect the computation time. Some optimization found

Fig. 6 The relation between the step size and the behavior of the exact arith-
metic libraries. x100 of the logistic map xn = 4xn−1(1 − xn−1) were
computed where x0 = 0.7501. The x-axis is the size of the step
for quantization. The bars at step 1, 2, 4, 8, 16, 24, 32, 40, and 48
show the total number of references for approximated values dur-
ing the computation with the designated step size. The black part
and the meshed part show the number of computation for approx-
imations and the number of reuse of precomputed approximations,
respectively. The dotted line shows the elapsed time (in seconds,
right axis) for each configurations.

Table 2 Memory usage (in megabytes) for the computation of the logistic
map. Measured by using the GHC’s runtime system. For ER-MQP,
columns labeled as s1, s8, and s32 are the results with step size 1,
8, and 32, respectively.

ER-MEM ER-MQP
s1 s8 s32

Maximum Instantaneous Usage 16.7 26.2 4.44 9.67
Total Allocation 560 756 119 201

Fig. 7 Values of xn (n = 0, . . . , 100) of Muller’s sequence. The x-axis cor-
responds to the index n of xn. Lines show the results of double-
precision arithmetic and exact values.

in Refs. [19], [25] could be used to enhance performance for those
kind of problems.

6.3 Experiment 3: Muller’s Sequences
J.-M. Muller demonstrated the limitation of the floating-point

arithmetic using a sequence defined as follows [22]:

x0 =
11
2
, x1 =

61
11
, xn = 111 − 1130 − (3000/xn−2)

xn−1
.

From the specified initial values, limn→∞ xn = 6. However,
computational results with double-precision floating-point arith-
metic show completely different sequences as shown in Fig. 7.
Note that 100 and 6 are an attractor and a repellor of the dynami-
cal system defined by the above recurrence relation.

Numerical results on the sequence are shown in Fig. 8. Fig-
ure 9 depicts the amount of computation for approximate values
and the reuse rate. The amount of memory consumption for se-
lected configurations are shown in Table 3. The trends were al-
most the same as the results described in Section 6.2. The effect
of memoization on quantized precision for applying to Muller’s
sequence was less effective than to the logistic map.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 8 Elapsed times for computing Muller’s sequence. Depicted lines are
the results of (a) ER-ORG, (b) ER-MEM, (c) ER-MQR with step size
32, and (d) ER-MQR with step size 8.

Fig. 9 The relation between the step size and the behavior of the exact arith-
metic libraries. Muller’s sequence was computed. The x-axis is the
size of the step for quantization. The bars at step 1, 2, 4, 8, 16,
24, 32, 40, and 48 show the total number of references for approx-
imated values during the computation with the designated step size.
The black part and the meshed part show the number of computation
for approximations and the number of reuse of precomputed approx-
imations, respectively. The dotted line shows the elapsed time (in
seconds, right axis) for each configurations.

Table 3 Memory usage (in megabytes) for the computation of Muller’s se-
quence. Measured by using the GHC’s runtime system. For ER-
MQP, columns labeled as s1, s8, and s32 are the results with step
size 1, 8, and 32, respectively.

ER-MEM ER-MQP
s1 s8 s32

Maximum Instantaneous Usage 34.3 63.1 25.3 43.0
Total Allocation 578 1168 583 745

7. Related Work

The idea of exact real arithmetic is directly connected to
the study of computable real numbers that has been long stud-
ied [11], [15], [21], [24], [26]. There are several definitions of
computable reals [8], [15], [24]. Among them, Cauchy sequence
can be used to represent numbers in a class of computable real
numbers, i.e., recursive real numbers [24], and is known to be the
one which best expresses the existence of an algorithm permit-
ting one to calculate uniformly the terms of a sequence with any
desired degree of accuracy [21]. Fast Binary Cauchy Sequence
(FBCS), that is a modified version of effective Cauchy sequence,
was designed to be efficient with respect to the computational
speed and memory consumption [7].

Performance issues of exact arithmetic has been studied [4],

[14]. Reference [4] reports that the approach to represent real
numbers by infinite digits might not be attractive with respect to
computational speed. Optimization at several levels had been pro-
posed; supplying multiple levels of interfaces [13], and applying
static analysis to avoid too precise computation while performing
top-down error propagation [19], [25]. For FBCSs, caching of ap-
proximated values using mutable memory to reduce the amount
of computation has been proposed [3], [5].

The correctness is essential for exact arithmetic libraries to
be, indeed, exact arithmetic. Ménissier-Morain first proved the
correctness of her Cauchy sequence-based exact arithmetic [20].
FBCS is formally defined and the properties were shown in
Ref. [7] and validated by using PVS [17], [18]. Coq is also ap-
plied to certify correctness of exact arithmetic (of streams of dig-
its) [6].

In this paper, we proposed a way to enhance the computational
efficiency of FBCS in a referentially transparent manner, with
proof of the correctness of the extended arithmetic on FBCSs.

8. Conclusion

In this paper, we presented an approach to speed up the com-
putation of exact arithmetic based on Fast Binary Cauchy Se-
quences — memoization on quantized precision. We introduced
an extended definitions for arithmetic operators on FBCSs and
presented a Haskell implementation for them, in a referentially
transparent way, both with the proof of correctness as an exact
arithmetic under quantized precision. With the implementation,
we carried out several experiments to show the effectiveness of
our approach. Some results exhibited that programs with our
libraries run more than ten times faster than with an exact real
package available in Hackage.

Future work includes a detailed study on the “proper” quantiz-
ing funcion. In the numerical experiments described in Section 6,
we used the most simple definition of quantizing function given
in Section 5.1. The performance of the library with the memo-
ization on quantized precision might depend on the definition of
the quantizing function. The effect of the usage of “non-uniform”
step functions as quantizing functions should be examined.

There are applications that do not fit the approach of the memo-
ization on quantized precision. For example, our approach would
not improve the performance of the computation of calculator
style problems very much, such as calculating eπ

√
163 [2], unless

the problems contain large amount of common subexpressions.
Acknowledgments This work was supported in part by an

HCU Grant for Special Academic Research (General Studies) un-
der Grant No.1030301.

References

[1] Marlow, S. (Ed.): Haskell 2010 Language Report (2010).
[2] Blanck, J.: Exact Real Arithmetic Systems: Results of Competition,

Proc. CCA 2000, LNCS 2064, pp.389–393 (2001).
[3] Boehm, H.-J.: The Constructive Reals as a Java library, Journal of

Logic and Algebraic Programming, Vol.64, pp.3–11 (2005).
[4] Boehm, H.-J., Cartwright, R., Riggle, M. and O’Donnell, M.J.: Exact

Real Arithmetic: A Case Study in Higher Order Programming, Proc.
1986 ACM Conference on Lisp and Functional Programming, ACM
(1986).

[5] Boehm, H.-J.: Constructive Real Interpretation of Numerical Pro-
grams, Proc. 1987 ACM Conference on Interpreters and Interpretives

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Techniques, ACM (1987).
[6] Ciaffaglione, A. and Gianantonio, P.D.: A certified, corecursive im-

plementation of exact real numbers, Theoretical Computer Science,
Vol.351, pp.39–51 (2006).

[7] Gowland, P. and Lester, D.: The Correctness of an Implementation
of Exact Arithmetic, Proc. 4th Real Numbers and Computers Confer-
ence, pp.125–140 (2000).

[8] Gowland, P. and Lester, D.: A Survey of Exact Arithmetic Implemen-
tations, Proc. CCA 2000, LNCS 2064, pp.30–47 (2001).

[9] Hermaszewski, J.: The exact-real package, version 0.12.1, available
from 〈http://hackage.haskell.org/package/exact-real〉 (accessed 2016-
04).

[10] Kawabata, H. and Iwasaki, H.: Improving Floating-Point Numbers:
A Lazy Approach to Adaptive Accuracy Refinement for Numerical
Computations, Proc. ESOP 2016, LNCS 9632, pp.390–418 (2016).

[11] Ko, K.-I.: On the Definitions of Some Complexity Classes of Real
Numbers, Mathematical Systems Theory, Vol.16, pp.95–109 (1983).

[12] Krämer, W.: A Priori Worst Case Error Bounds for Floating-
Point Computations, IEEE Transactions on Computers, Vol.47, No.7,
pp.750–756 (1998).

[13] Lambov, B.: RealLib: An Efficient Implementation of Exact Real
Arithmetic, Mathematical Structures in Computer Science, Vol.17,
No.1, pp.81–98 (2007).

[14] Lee Jr., V.A. and Boehm, H.-J.: Optimizing Programs over the Con-
structive Reals, Proc. PLDI, pp.102–111 (1990).

[15] Lehman, R.S.: On primitive recursive real numbers, Fundamenta
Mathematicae, Vol.49, No.2, pp.105–118 (1961).

[16] Lester, D.: ERA: Exact Real Arithmetic, version 1.0, available from
〈http://hackage.haskell.org/package/numbers-3000.2.0.1/docs/
Data-Number-CReal.html〉 (accessed 2016-04).

[17] Lester, D.: The world’s shortest correct exact real arithmetic pro-
gram?, Information and Computation, Vol.216, pp.39–46 (2012).

[18] Lester, D. and Gowland, P.: Using PVS to validate the algorithms of an
exact arithmetic, Theoretical Computer Science, Vol.291, pp.203–218
(2003).

[19] Li, Y. and Yong, J.-H.: Efficient Exact Arithmetic over Construc-
tive Reals, The 4th Annual Conference on Theory and Applications
of Models of Computation (2007).

[20] Ménissier-Morain, V.: Arbitrary precision real arithmetic: Design and
algorithms, The Journal of Logic and Algebraic Programming, Vol.64,
pp.13–19 (2005).

[21] Mostwski, A.: On computable sequences, Fundamenta Mathemati-
cae, Vol.44, No.1, pp.37–51 (1957).

[22] Muller, J.-M.: Arithmétique des ordinateurs, Masson (1989).
[23] Müller, N.T.: The iRRAM: Exact Arithmetic in C++, Proc. CCA

2000, LNCS 2064, pp.222–252 (2001).
[24] Rice, H.G.: Recursive Real Numbers, Proc. American Mathematical

Society, Vol.5, No.5, pp.784–791 (1954).
[25] van der Hoeven, J.: Computations with effective real numbers, Theo-

retical Computer Science, Vol.351, pp.52–60 (2006).
[26] Weihrauch, K. and Kreitz, C.: Representations of the Real Numbers

and of the Open Subsets of the set of Real Numbers, Annals of Pure
and Applied Logic, Vol.35, pp.247–260 (1987).

[27] Tanaka, H.: Another way of implementing memoization in Haskell (in
Japanese), available from 〈http://d.hatena.ne.jp/tanakh/20100411/p1〉
(accessed 2016-04).

[28] Haskell.org: Memoization, available from
〈https://wiki.haskell.org/Memoization〉 (accessed 2016-04).

Appendix

A.1 Proofs of Lemmas in Section 4

The proofs shown here basically use the techniques in Ref. [7].
Lemma 1 (1) (Addition)
Proof. We must show the inequality (r − 1)/2p < v1 + v2 <

(r+1)/2p. First, v1 � x1 and v2 � x2 implies
n1 − 1
2p+m+2

+
n2 − 1
2p+l+2

<

v1+v2 <
n1 + 1
2p+m+2

+
n2 + 1
2p+l+2

. Next, r = �2
ln1 + 2mn2

2m+l+2
	 and Lemma 4

implies, for p > 0,
r − 1

2p
+

1
2p+1

<
2ln1 + 2mn2

2p+m+l+2
<

r + 1
2p
− 1

2p+1
.

From these inequalities, for m, l ≥ 0, we can derive the following.

r − 1
2p
≤ r − 1

2p
+

1
2p+1

− 2l + 2m

2p+m+l+2

≤ 2ln1 + 2mn2

2p+m+l+2
− 2l + 2m

2p+m+l+2
< v1 + v2

v1 + v2 <
2ln1 + 2mn2

2p+m+l+2
+

2l + 2m

2p+m+l+2

<
r + 1

2p
− 1

2p+1
+

2l + 2m

2p+m+l+2
≤ r + 1

2p

�
Lemma 1 (2) (Multiplication)
Proof. We show the inequality (r − 1)/2p < v1v2 < (r + 1)/2p.

Since v1 � x1 and v2 � x2,
n1 − 1
2p+s2+m

< v1 <
n1 + 1
2p+s2+m

and

n2 − 1
2p+s1+l

< v2 <
n2 + 1
2p+s1+l

hold, so do the following

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n1n2 − |n1| − |n2| − 1
22p+s1+s2+m+l

≤ min{(n1 ± 1)(n2 ± 1)}
22p+s1+s2+m+l

< v1v2 ,

v1v2 <
max{(n1 ± 1)(n2 ± 1)}

22p+s1+s2+m+l
≤ n1n2 + |n1| + |n2| + 1

22p+s1+s2+m+l
.

From r and Lemma 4,
r − 1

2p
+

1
2p+1

<
n1n2

22p+s1+s2+m+l
<

r + 1
2p
−

1
2p+1

. So,

r − 1
2p
+

(
1

2p+1
− |n1| + |n2| + 1

22p+s1+s2+m+l

)
≤ n1n2 − |n1| − |n2| − 1

22p+s1+s2+m+l

< v1v2

and

r + 1
2p
−

(
1

2p+1
− |n1| + |n2| + 1

22p+s1+s2+m+l

)
>

n1n2 + |n1| + |n2| + 1
22p+s1+s2+m+l

> v1v2,

and this implies it is enough to show |n1|+|n2|+1 ≤ 2p+s1+s1+m+l−1.
Now, from Lemma 6, if p > p′ ≥ 0, |x p|+1 < 2p−p′ |x p′|+2p−p′+

2 ≤ 2p−p′ (|x p′| + 2) holds. So, in our case, from Lemma 5 and
the definitions of s1 and s2, we get the following.⎧⎪⎪⎨⎪⎪⎩

|n1| + 1 < 2p+s2+m−z1 (|x1 z1| + 2) < 2p+s1+s2+m−z1−2

|n2| + 1 < 2p+s1+l−z2 (|x2 z2| + 2) < 2p+s1+s2+l−z2−2

Thus, since l, z1,m, z2 ≥ 0,

|n1| + |n2| + 1 < 2p+s1+s2−2(2m−z1 + 2l−z2) − 1 < 2p+s1+s1+m+l−1 .

�
Lemma 1 (3) (Reciprocal)
Proof. We show (r − 1)/2p < 1/v1 < (r + 1)/2p. Since v1 � x1,

n1 − 1
2p+2s+2+m

< v1 <
n1 + 1

2p+2s+2+m
. So, because (n1 − 1)(n1 + 1) > 0,

2p+2s+2+m

n1 + 1
<

1
v1
<

2p+2s+2+m

n1 − 1
. From Lemma 6, if p, p′ ≥ 0,

(x p′ − 1)2p−p′ − 1 < x p < (x p′ + 1)2p−p′ + 1. So, in our case,
(x1 s − 1)2p+s+2+m − 1 < n1, that implies n1 > 2p+s+3+m − 1 ≥ 7
since x1 s ≥ 3. So, n1(n1 − 1) > (2p+s+3+m − 1)(2p+s+3+m − 2) =
22p+2s+3+m · 8 · 2m − 3 · 2p+s+3+m + 2. Thus, since p, s,m ≥ 0,

n1(n1 − 1) − 22p+2s+3+m

= 22p+2s+3+m(8 · 2m − 1) − 3 · 2p+s+3+m + 2

= 2p+s+3+m(2p+s(8 · 2m − 1) − 3) + 2

> 0

and 22p+2s+3+m < n1(n1 − 1) < n1(n1 + 1) follows. Now, from the

definition of r and Lemma 4, r − 1
2
<

22p+2s+2+m

n1
< r +

1
2

. Using

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

these, the followings are shown.

(r − 1)(n1 + 1) <

(
22p+2s+2+m

n1
− 1

2

)
(n1 + 1)

= 22p+2s+2+m +
22p+2s+2+m

n1
− 1

2
(n1 + 1)

= 22p+2s+2+m +
1

2n1

(
22p+2s+3+m − n1(n1 + 1)

)

< 22p+2s+2+m

(r + 1)(n1 − 1) >

(
22p+2s+2+m

n1
+

1
2

)
(n1 − 1)

= 22p+2s+2+m − 22p+2s+2+m

n1
+

1
2

(n1 − 1)

= 22p+2s+2+m − 1
2n1

(
22p+2s+3+m − n1(n1 − 1)

)

> 22p+2s+2+m

Thus,

r − 1
2p
<

2p+2s+2+m

n1 + 1
<

1
v1
<

2p+2s+2+m

n1 − 1
<

r + 1
2p
.

�
Lemma 1 (4) (Square Root)
Proof. We must show the inequality (r − 1)/2p <

√
v1 <

(r + 1)/2p. r must be greater than or equal to zero. Note that
from Lemma 3, 2mr2 ≤ n1 < 2m(r + 1)2, i.e., n1 + 1 ≤ 2m(r + 1)2.
• Suppose r = 0. Then, v1 � x1 and v1 ≥ 0 implies 0 ≤ v1 <

n1 + 1
22p+m

. So, we just have to show
n1 + 1
22p+m

≤ (r + 1)2

22p
, that is

simplified to be n1 + 1 ≤ 2m(r + 1)2.
• Suppose r ≥ 1. Then, v1 � x1 and v1 ≥ 0 implies

n1 − 1
22p+m

< v1 <
n1 + 1
22p+m

. Now, we have to show
(r − 1)2

22p
≤

n1 − 1
22p+m

and
n1 + 1
22p+m

≤ (r + 1)2

22p
, i.e., 2m(r − 1)2 ≤ n1 − 1

and n1 + 1 ≤ 2m(r + 1)2. The former can be shown because
1 ≤ 2m(2r − 1) and 2mr2 ≤ n1.

�

A.2 Useful Facts from Ref. [7]

Lemma 3. For r ∈ Z and n ∈ R, r = � √n
 =⇒ r2 ≤ n < (r + 1)2.

Lemma 4. For p, q, n ∈ Z, q > 0, n = �p/q	 =⇒ (n − (1/2)) q ≤
p < (n + (1/2)) q.

Lemma 5. For n ∈ Z and m ∈ R, n = �log2(m)
 =⇒ 2n ≤ m <

2n+1.

Lemma 6. For integers p, p′ ≥ 0 and FBCS x, the following

inequality holds:

(np′ − 1)2p−p′ − 1 < np < (np′ + 1)2p−p′ + 1.

A.3 Implementation of the Basic Mathemati-
cal Functions using Power Series

Definition of the basic mathematical functions such as sin, exp,
and log can be constructed by using a power series function with
appropriate range reduction [7], [9]. The function powerSeries

in Ref. [9] can be extended to adopt memoization on quantized
precision as follows:

powerSeries :: [Rational] → (Int → Int) → ISeq→ ISeq

powerSeries qs f x p

= memo (powSer qs f x . expand) (normalize p))
powSer qs f x p = r /. 4ˆd
where t = f p

d = log2(toInteger t) + 2
p′ = p + d

p′′ = quantize $ p′ + d

d2 = p′′ − (p′ + d)
m = x p′′

xs = (%1) < $> iterate (\e → m ∗ e /. 2p′′) (2p′)
r = sum . take (t + 1) . fmap (round . (∗ (2ˆd)))

$ zipWith (∗) qs xs

The above definition of powerSeries is used to compute the
approximation of the sum

r =
∞∑

i=0

Qix
i

where Qi and x are list of rationals and a computable real, respec-
tively, where |x| < 1, |Qi| ≤ 1 for all i ≥ 0, and |∑∞i=t+1 Qixi| <
2−(p+1) for some t which is dependent on p. With appropriate f

such as f = \n→ max 1 n, the following inequalities hold:

r − 1
2p′ < powerSeries Q f x p <

r + 1
2p′

where p′ = p + �log2 (f p)
 + 2. Using the result, for example,
the function sin can be defined as below:

sin :: ISeq → ISeq

sin x p = r

where f = max 1 p

Q =

{
1
1!
,
−1
3!
, . . . ,

(−1)n

(2n + 1)!
, . . .

}

r = powerSeries Q f x p

For more details, see Refs. [7] and [9].

Hideyuki Kawabata received his B.E.
and Ph.D. degrees from Kyoto University
in 1992 and 2004, respectively. Since
2007, he has been a lecturer of Hiroshima
City University. His research interest in-
cludes numerical programming and pro-
gramming languages. He is a member
of ACM, IEEE Computer Society, IPSJ,

IEICE, Japan Society for Industrial and Applied Mathematics
(JSIAM), and Japan Society for Software Science and Technol-
ogy (JSSST).

c© 2017 Information Processing Society of Japan

