
Vol. 49 No. SIG 2(ACS 21) IPSJ Transactions on Advanced Computing Systems Mar. 2008

Regular Paper

Level-3 BLAS and LU Factorization on a Matrix Processor
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As increasing clock frequency approaches its physical limits, a good approach to enhance
performance is to increase parallelism by integrating more cores as coprocessors to general-
purpose processors in order to handle the different workloads in scientific, engineering, and
signal processing applications. In this paper, we propose a many-core matrix processor model
consisting of a scalar unit augmented with b×b simple cores tightly connected in a 2D torus
matrix unit to accelerate matrix-based kernels. Data load/store is overlapped with computing
using a decoupled data access unit that moves b×b blocks of data between memory and the
two scalar and matrix processing units. The operation of the matrix unit is mainly processing
fine-grained b×b matrix multiply-add (MMA) operations. We formulate the data alignment
operations including matrix transposition and skewing as MMA operations in order to overlap
them with data load/store. Two fundamental linear algebra algorithms are designed and an-
alytically evaluated on the proposed matrix processor: the Level-3 BLAS kernel, GEMM, and
the LU factorization with partial pivoting, the main step in solving linear systems of equa-
tions. For the GEMM kernel, the maximum speed of computing measured in FLOPs/cycle is
approached for different matrix sizes, n, and block sizes, b. The speed of the LU factorization
for relatively large values of n ranges from around 50–90% of the maximum speed depending
on the model parameters. Overall, the analytical results show the merits of using the matrix
unit for accelerating the matrix-based applications.

1. Introduction

The idea of attaching accelerators or co-
processors to general-purpose processors for
enhancing the compute-intensive parts of ap-
plications has been used and is now getting
more attention due to approaching the phys-
ical limits of VLSI technology. One recent
example is the STI Cell/BE processor which
has eight special-purpose Synergistic Process-
ing Elements (SPEs) augmented to a PowerPC
general-purpose microprocessor to enhance vec-
tor operations in graphics and scientific ap-
plications 1). Other example accelerators in-
clude: vector co-processors 2),3) that enhance
the floating-point workloads found in scientific
applications, and Graphics Processing Units
(GPUs) that can efficiently deal with graphics
and streaming applications.

The basic linear algebra subprograms (BLAS)
were introduced to make the performance of
dense linear algebra algorithms portable on
high performance computers 4)–6). There are
three levels of BLAS according to the complex-
ity of computations. The most important of
these levels is Level-3 BLAS, and the most im-
portant of Level-3 BLAS is the GEneral Matrix
Multiply operation (GEMM) since it is pos-
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sible to express all Level-3 BLAS kernels in
terms of the highly optimized GEMM and a
small percentage of Level-1 and Level-2 of the
BLAS 7)–9).

Solving linear systems of equations is one
of the most important computations in scien-
tific computing. The most compute-intensive
part of the solution process is the factorization
phase. The standard factorization algorithm
using Gaussian elimination can be expressed us-
ing levels 1 and 2 of the BLAS. However, these
levels have a low degree of data reuse and hence
couldn’t reach the potential speed on high per-
formance processors 10). To use the GEMM-
based Level-3 BLAS, the matrices and vectors
are segmented into blocks that can reside in the
upper levels of the storage hierarchy (registers,
cache, local memory) and be maximally reused
before moving to lower levels of storage (off-
chip memories and disks) 11),12). In so doing the
speed gap between processing and memory can
be hidden and consequently the performance of
the LU factorization increases.

Our motivation in this research is that ma-
trix multiplication is a pervasive operation, and
many scientific and signal processing applica-
tions can be formulated in terms of matrix-
matrix multiplication 11),13). Moreover, the
trend in chip-manufacturing is to put more
processing units or cores together to handle
the diverse demands of current and future ap-
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plications. However, many problems remain
unsolved such as the interconnection topol-
ogy that guarantees scalability, the applications
that could benefit from all of these parallel re-
sources, the memory organization that keeps
pace with the powerful processing speeds, etc.

In this paper, we propose a model of a many-
core matrix processor consisting of a scalar unit
augmented with b×b simple cores tightly con-
nected into a 2D torus SIMD matrix unit to ac-
celerate matrix-based applications. The SIMD
matrix unit uses local communications between
PEs and avoids global connections (the latency
of the long wrap-around connections can be
overcome by folding the torus 14)), and hence
it is scalable. The matrix unit is optimized
for executing fine-grained b×b MMA opera-
tions in the minimal computing time. A key
point that distinguishes our proposed acceler-
ator from others such as ClearSpeed CSX-600
processor, Cell processor and GPUs is that lo-
cal communications between PEs are merged
and overlapped with computing. Specifically,
each PE performs a scalar ‘multiply-add-roll’
as one operation. In this operation the scalar
multiply-add c←c+a×b, is executed while both
scalars a and b, or a (or b) and c are rolled
or circularly shifted to the appropriate neigh-
bor PEs. The rolling of a or b is done simulta-
neously with computing c while in the case of
rolling the result c, it must be done at the end
of the multiply-add-roll operation due to data
dependency. Using software pipelining and loop
unrolling optimization techniques, the through-
put of the multiply-add-roll operation can reach
one multiply-add-roll operation every clock cy-
cle. Consequently, the theoretical peak perfor-
mance of the proposed b×b matrix unit can
reach 2b2 FLOPs/cycle.

We present three optimal ways to perform
the b×b MMA on the matrix unit 15),16). To
implement these ways, we propose using three
forms of the multiply-add-roll operation differ-
ing in the directions of data rolling (see Sec-
tion 2). The three optimal ways that per-
form the b×b MMA have different data dis-
tributions and require alignment overhead be-
fore and may be after computing. One simple
solution to the alignment problem is to store
data in the aligned form. Indeed, this is not
practical since alignment is also needed dur-
ing all the processing time. Our approach is
to hide this alignment overhead by formulating
the alignment operations, including the matrix

transpose, as MMA operations executed on the
matrix unit. Using a decoupled load/store unit,
we could overlap the alignment overhead with
the load/store operations.

To evaluate the merits of the proposed ma-
trix processor, we designed our algorithms to
implement the Level-3 BLAS, represented by
the GEMM kernel, and the LU factorization
with partial pivoting. It was recently recog-
nized that storing matrices by square blocks
enhances the performance of memory hierarchy
and consequently on dense linear algebra appli-
cations 17),18). Therefore, the idea behind our
algorithm design is that the matrices are stored
as b×b blocks rather than row- or column-
major formats. This required the load/store
unit to move contiguous b×b blocks to both
the scalar and matrix units. Therefore, any
block loaded into the matrix registers and/or
data cache must be maximally reused in order
to reduce the cost of the load/store operations.
Our analytical evaluation of the GEMM kernel
showed that the maximum speed of computing
measured in FLOPs/cycle for different matrix
sizes is approached.

The LU factorization with partial pivoting
is an example of an application that includes
scalar, vector and matrix operations. Based
on storing the coefficient matrix as square
b×b blocks, we designed a fine-grained blocked
right-looking algorithm to run on both the ma-
trix and scalar processing units. We did not
consider execution overlapping between the two
processing units. We scheduled the primitives
of the algorithm so that only the matrix mul-
tiplication part is executed on the matrix unit
and all other parts on the scalar unit. This re-
quired returning results to the main memory
before switching computing between the two
processing units. We included this data move-
ment overhead in our timing model. Our anal-
ysis showed that the fraction of matrix mul-
tiplication in this algorithm dominates as the
size of the matrix increases and consequently,
the speed of computing is asymptotically deter-
mined by the speed of the matrix co-processor
on executing the MMA kernel. The analytical
results showed the speed of the LU factoriza-
tion with partial pivoting for large matrix size
32 K ranges from around 50–90% of the maxi-
mum speed depending on the model parameters
which we will discuss.

In Section 2, a description of the proposed
matrix processor and its timing model is pre-



Vol. 49 No. SIG 2(ACS 21) Level-3 BLAS and LU Factorization on a Matrix Processor 39

sented. In Section 3, three optimal data distri-
butions to execute the b×b MMA operation on
the matrix unit are presented. The formulation
of the alignment operations as matrix multiply-
add operations is introduced, and an algorithm
of one variant of the GEMM operation is de-
scribed and its predicted execution time is cal-
culated. In Section 4, the standard LU factor-
ization algorithm is discussed, and we designed
a blocked right-looking algorithm and show how
its primitives are scheduled between the scalar
and matrix units. In addition, an algorithm for
each primitive is described using software pre-
fetching techniques, and the expected times are
computed. Performance evaluation of the pro-
posed algorithms is demonstrated in Section 5.
Section 6 concludes the paper.

2. The Matrix Processor

2.1 Architecture Model
The proposed matrix processor is regarded

as a 2D matrix register file augmented to a
general-purpose scalar processor to accelerate
matrix-based applications. The matrix register
file is partitioned into b×b banks where each
bank is directly connected to a simple core or
PE. This partitioning of the matrix register file
is called element-partitioned 19) since a matrix
(or vector) is partitioned into b×b blocks (or b-
element segments) so that each element resides
in a different bank. The PEs are tightly coupled
to form a 2D b×b torus matrix unit where the
latency of the long wrap-around connections
can be overcomed by folding the torus such that
all connections between PEs become equal 14).
All PEs are working synchronously in a Sin-
gle Instruction Multiple Data (SIMD) mode. A
matrix instruction causes the PEs to process
the elements in the same position at all register
file banks simultaneously. Therefore, the ma-
trix register file is viewed as a number of layers
or matrix registers (see Fig. 1). Communica-
tions between PEs are local, and each PE can
send and receive data to/from its four NEWS
neighbors (North, East, West, and South) at
the same time. For example, it can simulta-
neously receive data from South and East and
send data and/or partial results to North and
West, respectively.

The basic operation of the matrix unit is ex-
ecuting fine-grained b×b MMA operations in
b multiply-add-roll time-steps where the scalar
multiply-add c←c+a×b is performed while the
appropriate data is rolled to neighbor PEs. Our

Fig. 1 The proposed matrix processor block diagram.

idea is to merge and overlap the rolling of data
with computing. That is, the rolling of c is
done at the end of the multiply-add-roll opera-
tion while the rolling of a and b is done simul-
taneously with computing c. We propose three
forms of the multiply-add-roll operation corre-
sponding to the three optimal ways (see Section
3) to execute the b×b MMA operation on the
matrix processor. The difference between the
three forms is the direction of data rolling. In
one form, both b and a are rolled northward and
westward, respectively. In the other two forms,
b and c, and c and a are rolled northward and
westward, respectively. (Other forms of data
rolling may be useful in other data-parallel al-
gorithms not considered in this paper. In ad-
dition, element-wise operations such as matrix
addition/subtraction and register copying do
not require data rolling. Combining all these
multiply-add-roll forms in one generalized form
is a matter of further investigations.)

The scalar unit of the matrix processor is a
full-fledged core capable of executing the se-
quential part of an application beside control-
ling the matrix unit. The program instructions
are loaded into the instruction cache for execu-
tion. The required data for the scalar execution
is loaded into a software-controlled data cache
near to the scalar registers. To reduce data miss
penalty, we applied software pre-fetching tech-
niques 20) where pre-fetch or pre-load instruc-
tions are inserted automatically by the com-
piler or manually by the programmer to bring
data ahead of its use. The pre-load instruction
causes a matrix block to be brought from the
main memory to the data cache. This pre-load
instruction looks like a load instruction except
no register is specified 20).

To preserve the integrity of data between
the scalar unit data cache and the main mem-
ory, the altered blocks in the data cache must
be written back (or post-stored) into the main
memory before switching the computing to the
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matrix unit. The cache replacement policy is
assumed to be software-controlled. While us-
ing software-controlled memories increases the
complexity of programming, it has been demon-
strated that this approach is effective in hiding
memory latency using smaller cache sizes than
conventional hardware-controlled caches 21).

The movement of data/results between the
main memory and the data cache of the scalar
unit and between the main memory and the ma-
trix register file of the matrix unit is decoupled
from processing by using a separate data access
(or load/store) unit. Therefore, computing and
data load/store can be partially or fully over-
lapped, which is required to hide the memory
latency. The main components of the proposed
matrix processor are shown in Fig. 1.

2.2 Timing Model
In order to evaluate the effectiveness of the

proposed matrix processor especially the co-
processor unit we need to predict the execu-
tion times of the designed algorithms. We de-
velop an execution time model for our proposed
matrix processor. This model is simple, deter-
ministic, and predictable due to using software-
controlled data cache.

We decompose the total execution time of
an algorithm into: 1) computing time, 2)
load/store time, and 3) overhead time. The first
term is the time spent in processing on both the
matrix and scalar units. The second term is the
time elapsed in the load/store operations. This
term also includes the time of data pre-fetching
and post-storing which are needed at the begin-
ning and the end of the algorithm, and before
switching computing between the matrix and
scalar units. The third term of the execution
time represents the overhead of data alignment
needed for the processing on the matrix unit.

The MMA operations executed on the ma-
trix unit will have the following times. As-
suming each multiply-add-roll time-step takes
τ clock cycles, the time of a b×b MMA is bτ
cycles 16) (see also next section). Other matrix-
formulated operations such as matrix skewing
and transposition discussed in Subsection 3.2
will be quantified as the matrix multiply-add
operation. The matrix unit operates on b×b
blocks of matrices, and we assume the matri-
ces are stored in memory in a b×b block data
layout 17),18). Moving a b×b block between
memory and the matrix registers or the scalar
data cache takes tbls clock cycles. Since we as-
sume a decoupled load/store unit, whenever a

load/store operation is overlapped with com-
puting or data alignment, the maximum execu-
tion time is taken.

In order to predict the execution time of the
high-level language constructs used in our algo-
rithms, we applied a prediction method sim-
ilar to the one introduced in Ref. 22) as fol-
lows. The predicted execution time of the as-
signment statement variable=expression is the
time of calculating the expression plus the time
of loading its variables if they are not in reg-
isters. For example, the statement y=z+1 has
the execution time 2tls+tadd clock cycles, where
tls is the number of cycles to load/store a scalar
value from cache to registers and tadd is the time
of an addition in clock cycles. However, if z and
y are in registers and will be used for next com-
putations the time will be tadd cycles.

The execution time of the if-then statement
has two possible values depending on its logical
condition. Hence, a time interval [T1,T2] will
represent the lower and upper bounds of execu-
tion time. We will mean by adding an execution
time T0 to an interval [T1,T2] that T0 is added
to both bounds. The same convention applies
also to multiplying a time by an interval. For
example, the execution time of the statement ‘if
(c) then s1’ is the interval [tcd+(tjp,ts1)], where
tcd is the time to check the condition c, tjp is
the number of cycles to jump around s1 to the
end of the if statement, and ts1 is the number
of cycles to calculate the statement s1.

The execution time of the for-loop statement
equals the total number of the loop iterations
multiplied by the sum of the execution times
of the statements within the loop body and the
loop overhead time, tloop, in clock cycles.

3. Level-3 BLAS

Level-3 BLAS are targeted to the basic oper-
ations of O(n3) such as matrix-matrix multipli-
cation, rank-k update and the solution of tri-
angular systems of equations 23). The most im-
portant of these operations is the general MMA
(GEMM) C←αC+βop(A)·op(B) where op(X)
is the matrix X or its transpose and α and β
are scalars. In this section, we present our im-
plementation of the GEMM operation on our
proposed matrix processor.

3.1 Matrix Multiply-add Operation
Consider the MMA operation C←C+A·B

where A=[a(i, k)], B=[b(k, j)], and C=[c(i, j)]
are b×b dense matrices. The goal is to find op-
timal data distributions of the three matrices
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Fig. 2 Three data allocations to perform the b×b MMA operation
C←C+A·B on the b×b torus matrix unit, b=4.

to compute matrix C on the b×b torus matrix
unit in the minimum number of steps.

We showed in prior works 15),16) that the in-
dex space of the b×b MMA operation can be
represented as a 3D b×b×b torus where mod-
ular scheduling is used to describe the distribu-
tion of the active index points at each schedul-
ing step. All optimal modular scheduling func-
tions are determined 15). At each scheduling
step, b2 points are active from the total b3

points of the index space. To increase the ef-
ficiency of computing, we used the linear pro-
jection method to map the scheduled compu-
tations at each step to the 2D processor space
where a b×b torus array processor (or matrix
unit) is used to perform the matrix multiply-
add operation in the minimal time, b time-
steps of multiply-add-roll. For each optimal 3D
scheduling function, three 2D data distributions
are obtained by projection along i, j, and k axes
(see Ref. 15), 16) for all possible projections).
All the optimal 2D distributions are classified
into three categories. In one category matrix
C elements remain stationary during process-
ing while the other two matrices are rolled.
This category results from projection along the
k-axis and the well-known Cannon’s distribu-
tion 24) belongs to this category. The other two
categories keep either A or B stationary (i.e.,
projection along j or i-axis, respectively) while
rotating the other two matrices.

In this paper, we will use one optimal 2D
data distribution from each category. The three
selected optimal data allocations are shown
in Fig. 2. In Allocation 1, the rows of A
and the columns of B are initially skewed us-
ing circular shifts. Then at each step, all
PEs perform simultaneously the multiply-add
c(i, j)=c(i, j)+a(i, k)·b(k, j) while the elements
a(i, k) and b(k, j) are rolled westward and
northward, respectively, to neighbor PEs. Af-

ter b=4 multiply-add-roll time-steps, matrix C
is computed and data returns to the initial state
shown in the figure. In Allocation 2, after align-
ing B and C by skewing, matrix A remains
while matrices B and C are rolled northward
and westward, respectively, at each step of com-
puting. In Allocation 3, matrices A and C are
skewed as shown in the figure. During comput-
ing, matrix B remains while matrices A and
C are rolled westward and northward, respec-
tively.

3.2 Alignment
Given the three matrices A, B, and C in

the canonical (conventional) layout, some align-
ment overhead is required before using the three
optimal allocations in Fig. 2. In addition, ma-
trices B and A need transposition in Alloca-
tions 2 and 3, respectively. Our aim is to
hide this overhead. We do so by formulat-
ing both the skewing and transposition oper-
ations as b×b matrix multiply-add operations
so that they can be overlapped with data load-
ing/storing, as we will show in the algorithms.

The Skew Operation. To skew the
rows/columns of an b×b matrix horizon-
tally/vertically, the ith row/column, i =
0,1,. . . ,b-1, is rolled i times using circular shifts.
We formulate the skewing operation as an
MMA operation on the 2D torus matrix unit
where C is initially set to zero and either A or
B is set to some predefined 0-1 matrix register.
For example, to skew the columns of the b×b
matrix B to the North, we perform the MMA
operation C← C+RN·B, where C is initially set
to zero. During computing, the matrix register
RN, which has ones on the leftmost column and
zeros elsewhere, is rolled westward while matrix
C is rolled northward. After b=4 multiply-add-
roll time-steps, C is replaced with the required
result. To skew the rows of matrix A to the
West, we perform C←C+A·RW, where C is ini-
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tially set to zero and the matrix register RW,
which has ones on the topmost row and zeros
elsewhere, is rolled northward while matrix C
is rolled westward.

The two registers RN and RW can also
be used to return, respectively, a northward
skewed matrix X and a westward skewed ma-
trix Y to their canonical forms.

The Transpose Operation. To transpose
a b×b matrix X on the torus matrix unit,
three MMA operations are performed in se-
quence. First, matrix X is skewed to the
North by performing C←C+RN·X, C is ini-
tially zero, as explained above. Second, the
MMA X←X+RI·C, X is initially zeroed, is
performed. During computing, the matrix reg-
ister RI, which hold the identity matrix, is kept
stationary while matrices X and C are rolled
westward and northward, respectively. Now,
matrix X holds the westward skewed form of
matrix XT . To get XT in canonical form, ma-
trix X is skewed eastward by performing an ap-
propriate MMA operation.

For aligning matrix B in Allocation 2, we
need to only apply the first two steps of the
aforementioned transpose algorithm and this
takes 2b multiply-add-roll time-steps. A sim-
ilar procedure can be done to align matrix A
in Allocation 3. For more details on the align-
ment operations on the torus matrix unit refer
to Ref. 25).

3.3 GEMM Implementation on the
Matrix Unit

Using the alignment operations discussed
above, the four variants of the GEMM opera-
tion, C ←C+A·B, C←C+AT ·B, C←C+A·BT ,
and C←C+AT ·BT , can be performed on the
torus matrix unit. In Ref. 16) we described the
four variants for different initial data layouts of
A and B inside the torus matrix unit. However,
the sizes of matrices were the same size as the
matrix unit, b.

In this paper, we design a blocked fine-
grained algorithm to implement the main vari-
ant C←C+A·B, where A is an n1×n3 matrix,
B is an n3×n2 matrix, and n1, n2, n3�b, on
the matrix unit. The other three variants can
be treated in a similar way.

Assume that the three matrices are parti-
tioned and stored by square blocks as the ma-
trix unit size, b, and that d blocks from A, B or
C can be loaded into the matrix register file and
reused many times. Then, we have two different
ways to calculate the blocks of C on the matrix

unit. One way is to update d blocks from C us-
ing d blocks from A (or B) and one block from
B (or A). Updating the C blocks in this way
is called blocked saxpy MMA 11). The second
way is to compute one block of C using a dot-
product of one block row of A and one block col-
umn of B. This is called a blocked dot-product
MMA 11). Choosing which way to implement
depends mainly on the sizes of involved matri-
ces. We will describe our implementation of a
fine-grained blocked saxpy algorithm when dis-
cussing the LU factorization. Here we show our
implementation of a fine-grained blocked dot-
product algorithm on the matrix unit assuming
for simplicity that one block row of A or one
block column of B can be loaded into the ma-
trix register file and reused. This assumption
will be changed when discussing the saxpy ver-
sion in Subsection 4.3.

Assume the b×b blocks are stored in the
column-major order. Initially, the matrix
blocks are stored into the main memory. Be-
fore computing on the matrix unit, the needed
blocks should be loaded into matrix registers
by the load/store unit. Results after comput-
ing must be stored back to memory before it
can be used on the scalar unit. We include
these initial and final data movement opera-
tions in our timing model. Algorithm 1 below
describes our implementation of a jik-version of
the blocked dot-product of the GEMM kernel
C ←C+A·B on the matrix unit. We applied
Allocation 2, where K1=�n1/b�, K2=�n2/b�,
and K3=�n3/b�.

Since the matrix unit and the load/store unit
overlap execution, we applied a loop splitting
technique called loop peeling 26) to correctly in-
sert the load/store instructions within the algo-
rithm. In this technique, a loop is divided into
three sections: a prologue with the first itera-
tion (and may be the second iteration too), a
main body, and an epilogue with the last iter-
ation. The statements, which are marked with
the symbols ‘�’ or ‘∗’ at the beginning of the al-
gorithm lines, will overlap execution as in lines
4 and 5, and lines 7 and 8 of Algorithm 1.
Algorithm 1.
01. for j=1 to K2

02. Load B1,j {tbls}
03. for k=2 to K3

{(K3-1)· (tloop+max(tbls,bτ)+bτ)}
04.� Load Bk,j {tbls}
05.� Transpose & Skew Bk−1,j northward {2bτ}
06. end for
07.∗ Transpose & Skew BK3−1,j northward {2bτ}
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% Prologue
08.∗ Load C1,j {tbls}
09.� Load A1,1 {tbls}
10.� Skew C1,j westward {bτ}
11. for k=1 to K3 − 1

{(K3-1)· (tloop+max(tbls,bτ)}
12.� Compute C1,j+=A1,k·Bk,j {bτ}
13.� Load A1,k+1 {tbls}
14. end for
15.� Compute C1,j+=A1,K3 ·BK3,j {bτ}
16.� Load C2,j {tbls}

% Main Body
17. for i=2 to K1-1

{(K1-2)(tloop+2max(tbls,bτ)+time of line 11)}
18.� Store Ci−1,j {tbls}
19.� Load Ai,1 {tbls}
20.� Skew Ci,j westward {bτ}
21. repeat lines 11-14 where X1,.=Xi,.

22.� Compute Ci,j+=Ai,K3 ·BK3,j {bτ}
23.� Load Ci+1,j {tbls}
24. end for

% Epilogue
25.� Store CK1−1,j {tbls}
26.� Load AK1,1 {tbls}
27.� Skew CK1,j westward {bτ}
28. repeat lines 11-14 where X1,.=XK1,.

{time of line 11}
29.� Compute CK1,j+=AK1,K1 ·BK1,j {bτ}
30.� Store CK1,j {tbls}
31. end for

Note that, w±=1 means w=w±1. In lines 5
and 7, transposing the given block and skewing
it northward requires performing two MMA op-
erations as discussed before where, one of them
will be overlapped with the loading at lines 4
and 8. As we see in Algorithm 1 expected ex-
ecution times of each statement are calculated.
Also, we can see that the alignment overhead is
almost hidden with the load/store operations.
In Section 5, we will evaluate the performance
of the GEMM operation with different param-
eter values .

4. LU Factorization

In solving the linear system of equations
Ax=b where A is a real dense n×n matrix and
both x and b are real vectors of length n, first
the factorization of matrix A into a unit lower
triangular matrix L and an upper triangular
matrix U is done. Then, the two triangular
systems Ly=b and Ux=y are solved to find x.

In this paper, we consider the Gaussian Elim-
ination with Partial Pivoting (GEPP) to de-
compose matrix A into PA=LU where P is an
n×n rows permutation matrix. Using partial

pivoting guarantees the stability of the solution
of the system but complicates the implementa-
tion, see Ref. 27) for more details. Algorithm 2
is the standard GEPP algorithm assuming A is
non-singular 11),27). We used MATLAB colon
notation to describe ranges of array indices. In
this notation an entire for-loop is written in
compact form as in line 6, while line 7 expresses
two nested for-loops. After the completion of
Algorithm 2, the lower triangular part of A will
be overwritten by matrix L with unit diagonals
(which are not stored in the diagonals of A),
and the upper triangular part will be overwrit-
ten by matrix U .
Algorithm 2.
01. for k=1 to n-1
02. find and record γ, |a(γ, k)|=maxk≤j≤n |a(j, k)|
03. if γ>k
04. swap a(k, 1 : n), a(γ, 1 : n)
05. end if
06. a(k + 1 : n, k)=a(k + 1 : n, k)/a(k, k)
07. a(k + 1 : n, k + 1 : n)-=

a(k + 1 : n, k)·a(k, k + 1 : n)
08. end for

The amount of work (floating-point opera-
tions, FLOPs) in the standard GEPP algorithm
is 2n3/3+O(n2)≈2n3/3 11) where one FLOP
means a scalar floating-point addition, subtrac-
tion, multiplication and/or division operation.
The O(n2) term includes the cost of pivot-
ing which can be neglected compared with the
O(n3) arithmetic cost of the algorithm. How-
ever, the pivoting cost may not be negligible
when the data are not sequentially stored in
memory.

4.1 Blocked LU Factorization
In Algorithm 2, line 6 represents a vector-

scaling operation (i.e., Level-1 BLAS) while
line 7 is a rank-one update of the trailing sub-
matrix (Level-2 BLAS). In order to increase the
amount of FLOPs per memory reference, i.e.,
the degree of data reuse, matrix-matrix multi-
plication (Level-3 BLAS) should be used.

There are three variants of the blocked LU
factorization known as the i,j,k variants rela-
tive to the outermost loop index 10),28). The
k variant or the so-called right-looking algo-
rithm 10) is generally described as follows. The
n×n matrix A is segmented into four blocks
where A11 is an nb×nb block (nb is the block-
ing size) and A22 is an (n−nb)×(n−nb) block.
First, the unblocked GEPP algorithm is ap-
plied to the current block column of A. This
means we compute P1·A1:2,1=L1:2,1·U11 where
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L11 and U11 are nb×nb lower and upper trian-
gle matrices, respectively, and P1 is a permuta-
tion matrix representing the effects of pivoting.
Second, the permutation P1 is also applied to
the right (and to the left when factorizing the
next block columns) of the current block col-
umn of A to produce Â1:2,2. Third, the triangle
system with multiple right-hand-sides (RHS)
L11·U12=Â12 is solved for U12. In practice, the
sub-matrices of L and U are stored on the cor-
responding blocks of A to save space and there-
fore, Â12 ← U12 and Â21←L21. Fourth, ma-
trix Â22 is updated using the matrix multiply-
subtract operation Â22←Â22-Â21×Â12. Next,
Â22 is segmented into blocks and the above
steps are repeated to factorize all matrix A.

We will implement the above k variant al-
gorithm assuming that matrix A is stored as
b×b blocks into memory. We selected this vari-
ant since it can be scheduled to run on both
the matrix and scalar units provided that they
don’t overlap execution. Suppose that a partial
factorization of A has been obtained so that
the first �-1 block columns of L and the first �-1
block rows of U have been evaluated and stored
into A (see Fig. 3). Algorithm 3 describes the
blocked GEPP algorithm assuming for simplic-
ity that n=b·m.
Algorithm 3.
1. for �=1 to m-1
2. Factor P�·A�:m,�=L�:m,�·U�,�

3. Pivot A�:m,�+1:m=P�·A�:m,�+1:m

4. Pivot A�:m,1:�−1=P�·A�:m,1:�−1, % � > 1
5. Solve L�,�·A�,�+1:m=A�,�+1:m

6. Update A�+1:m,�+1:m-=A�+1:m,�·A�,�+1:m

7. end for
8. Factor Pm·Am,m=Lm,m·Um,m

Fig. 3 Matrix A after �-1 iterations of Algorithm 3;
the dark grey area is already factorized. The
Factor primitive is applied to the white dotted
area, the Solve primitive is applied to the light
grey area, the Update primitive is applied to
the white area.

9. Pivot Am,1:m−1=Pm·Am,1:m−1

In line 2 the unblocked factorization is ap-
plied to a rectangular matrix of size (n-(�-
1)·b)×b. In this case, Algorithm 2 should be
adjusted so that the last value of the columns
index k is b-1, and the last value of the rows
index will be n as it is. Then, after k=b-1, one
more iteration at k=b is applied without the
updating in line 7 of Algorithm 2.

In solving the m-� lower triangle systems each
with b RHS in line 5, we changed the column
version of the forward substitution algorithm
given in Ref. 11) so that it can handle b multi-
ple RHS. Algorithm 4 describes the Solve prim-
itive applied to block A�,k at Fig. 3. Note that
L�,� is the lower triangular part of A�,� but with
diagonal elements equals to one.
Algorithm 4.
1. fori=1 to b-1
2. a(i, :)=a(i, :)/l(i, i)
3. a(i + 1 : b, :)-=l(i + 1 : b, i)·a(i, :)
4. end for
5. a(b, :)=a(b, :)/l(b, b)

In general Algorithm 4 can be applied to any
lower triangle system with multiple RHS. How-
ever, when the triangular matrix has unit values
(as in Algorithm 3), we can omit lines 2 and 5
in Algorithm 3 since division by the constant
value ‘one’ gives the same result. We will de-
scribe our implementation of all primitives of
Algorithm 3 in Subsection 4.3.

4.2 Level-3 BLAS Fraction
In this subsection, we will calculate the cost

of Algorithm 3 in terms of the arithmetic oper-
ations. Then we will analyze the impact of the
percentage of the matrix-matrix multiplication
(i.e., the Update primitive) on the performance
of the blocked Gaussian elimination algorithm.
For simplicity, we will not consider the overhead
of pivoting, however, in Subsection 4.3 we will
predict its execution time.

Table 1 demonstrates the amount of arith-
metic operations in the primitives of Algo-
rithm 3. In line 2 of Algorithm 3, the Fac-
tor primitive is applied to a rectangular sub-
matrix whereas in line 8 the last square diag-

Table 1 The arithmetic cost of Algorithm 3.

primitive #FMA #mult. #div.

Factor b−1
4

n2− 3b2+3b−2
12

n 1
2
n2+ 4b2−3

6
n n

Solve b−1
4

n2 − b2−b
4

n - -

Update 1
3
n3 − b

2
n2 + b2

6
n - -
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onal block of matrix A is factorized applying
Algorithm 2 directly. As we see, the overall
FLOPs count (2×#FMA+#mult.+#div.) of
the Factor primitive on Algorithm 2 is O(n2)
because the operations can be implemented us-
ing Level-2 and Level-1 BLAS. The primitive
Solve in line 4 solves a b×b triangle system
with (m− �)·b multiple RHS. The overall com-
plexity of this primitive is O(n2) arithmetic op-
erations because it can be implemented using
Level-2 and Level-1 BLAS (see Algorithm 4).
The third primitive Update is the GEMM op-
eration C←C-A·B. The amount of FLOPs con-
tributed by this primitive is O(n3). From Ta-
ble 1 we can see that the Update primitive is
the most intensive computational part. There-
fore, it is expected that any enhancement to this
primitive will enhance the total performance of
the LU decomposition algorithm.

Table 1 also shows the amount of the fused
multiply-add/subtract (FMA) included in each
primitive. We can see that the Solve and Up-
date primitives are entirely composed of FMAs
where each FMA equals two FLOPs. More
than half the FLOPs of the Factor primitive
are FMA and this percentage increases as b in-
creases. This large percentage of FMA on Al-
gorithm 3 suggests that using an FMA instruc-
tion will have a significant advantage over using
a floating-point multiply followed by a floating-
point add. This is because using separate mul-
tiply and add instructions costs 1.7 times more
than an FMA 29).

Now, we perform a simplified timing anal-
ysis of Algorithm 3 disregarding the pivoting
process since it has less work than the updat-
ing of the trailing sub-matrix. We also assume
that an FMA operation (c=c+a×b) takes μ cy-
cles which will also be the same time for mul-
tiplication (c=1+a×b), addition/subtraction
(c=a±b×1) operations. Since multiplication is
faster than division, the number of divisions in
line 6 of Algorithm 2 can be reduced by com-
puting the reciprocal of the pivot element sep-
arately and then multiplying the result by the
elements of matrix A at line 6.

The time of executing Algorithm 3 on the
matrix processor is the total time of the three
primitives. The time to execute a b×b matrix
multiply-add operation on the b×b torus ma-
trix unit is b·τ clock cycles (without the over-
head of data alignment). Therefore, the ex-
pected execution time of the Update primitive
on the matrix unit is approximately:

(
1
3n3 − b

2n2 + b2

6 n
)
· 1

b2 τ. (1)

The approximate execution time of Algo-
rithm 3 (ignoring pivoting) on the matrix pro-
cessor is:(

b
2n2 + b2−2

6 n
)
· μ + n · λ +

(
1
3n3 − b

2n2 + b2

6 n
)
· 1

b2 τ. (2)

Now, the speed of computing Algorithm 3 on
the matrix processor measured in the amount
of FLOPs/cycle can be calculated as the ra-
tio of the amount of FLOPs in the sequential
algorithm, 2n3/3, and the parallel time of Al-
gorithm 3 given in Eq. (2). The speed depends
mainly on τ and if operations of the matrix unit
can be scheduled so that we get one multiply-
add-roll each clock cycle, then the maximum
speed of computing asymptotically becomes the
speed of matrix-matrix multiplication (or the
Update primitive), i.e., 2b2 FLOPs/cycle.

In the next section we will implement the four
primitives of Algorithm 3 on the scalar and ma-
trix units in order to predict the overall execu-
tion time of Algorithm 3 and hence evaluate the
merits of adding the matrix unit as an acceler-
ator for matrix kernels.

4.3 Primitives Implementation
In this subsection we design our algorithms

to implement the four primitives, Factor, Pivot,
Solve and Update, of the blocked LU factoriza-
tion algorithm (Algorithm 3) on the proposed
matrix processor. The idea behind our design
is that the matrices are stored as b×b blocks
rather than row- or column-major formats, and
any block loaded into registers and data cache
must be maximally reused before returning to
memory. We scheduled each iteration of Algo-
rithm 3’s main loop so that the three primi-
tives Factor, Pivot, and Solve are executed on
the scalar core and then switching to the ma-
trix unit to execute the Update primitive. Note
that, before switching computing, partial re-
sults should return to memory.

To compute on the scalar core, the required
blocks are moved by the load/store unit from
memory to the data cache one b×b block at
a time. Then, during processing, the scalar
data is loaded into scalar registers and stored
back to the data cache. We assume the data
cache is controlled by software so that a pre-
load operation causes the load/store unit to
pre-fetch one block from main memory to the
data cache. Pre-fetching data ahead of its use
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reduces the stall time which happens when data
is not in cache. The pre-fetch operations are
hand-inserted into the algorithms in order to
pre-fetch the data before it is actually needed.
In addition, we applied a post-store operation
to control the replacement of blocks in the data
cache. Note that, if some of the statements
which are overlapped with the pre-load and
post-store instructions should be serialized, we
put the symbol ‘◦’ at the beginning of their cor-
responding lines as in lines 2 and 3 of Algorithm
5. (The global constant c is the reciprocal of b.)

The Factor Primitive. Algorithm 5 below
is the implementation of Algorithm 2 (GEPP)
to factorize the �th block column of matrix A
(dotted area in Fig. 3) on the scalar core. In
Algorithm 5, the processed block column is di-
vided into two parts. The first one is the block
A�,� and the second is the rest of the blocks. We
apply the pre-fetching technique to the second
part to correctly insert the pre-load and post-
store instructions. Each iteration of the main
loop at line 4 takes two passes on the blocks.
The first pass finds the pivot row in the block
column while the second computes the multi-
pliers (elements of matrix L) and stores them
in the current column. Then the trailing sub-
matrix of the �th block column of A is updated.
Note that altered blocks are written back to
memory at the end of Algorithm 5.
Algorithm 5.
01.� Pre-load A�,� {tbls}
02.�◦ s=b·(� − 1)+1 {2 μ}
03.�◦e=b·� {μ}
04. for j=s to e-1

% Find the pivot element in column j
05. amax = abs(a(j, j)) {tls+tabs}
06. pivot(j)=0 {tmv}

% Prologue
07.� Pre-load A�+1,� {tbls}
08.� for kk=j+1 to e

{(e-j)·(tls+tabs+tcd+tloop+(tjp, 2tmv))}
09. t=abs(a(kk, j)) {tls+tabs}
10. if t > amax {tcd+(tjp, 2tmv)}
11. amax=t {tmv}
12. pivot(j)=j {tmv}
13. end if
14. end for
15.∗ Pre-load A�+2,� {tbls}
16.∗ for kk=b·� + 1 to b·(�+1)

{b·(tls+tabs+tcd+tloop+(tjp, 2tmv))}
17. repeat lines 9-13
18. end for

% Main Body
19. for i=�+2 to m-1

{(m-�-2)·(tloop+max(tbls, time of line 16))}

20.� Post-store Ai−1,� {tbls}
21.� Pre-load Ai+1,� {tbls}
22.� for kk=b·(i-1)+1 to b·i {time of line 16}
23. repeat lines 9-13
24. end for
25. end for

% Epilogue
26.∗ Post-store Am−1,� {tbls}
27.∗ Pre-load Apivot(j)·c+1,� {tbls}
28.∗ for kk=b·(m-1)+1 to b·m {time of line 16}
29. repeat lines 9-13
30. end for

% Swap the jth row and the pivot row
31.� Post-store Am,� {tbls}
32.� if pivot(j) >0

{tcd+(tjp, b·(tloop+4tls+3tmv))}
33. for k=s to e {b·(tloop+4tls+3tmv)}
34. t=a(j, k) {tls + tmv}
35. a(j, k)=a(pivot(j), k) {2tls+tmv}
36. a(pivot(j), k)=t {tmv+tls}
37. end for
38. end if

% Compute the multipliers and update
% the trailing sub-matrix

39.∗ Post-store Apivot(j)·c+1,� {tbls}
40.∗ Pre-load A�+1,� {tbls}
41.∗◦ piv=1/a(j, j) {tls+λ}
42.∗◦ for ii=j+1 to e {(e-j)2(tloop+3tls+μ)+

(e-j)(tloop+2tls+μ+tmv)}
43. a(ii, j)=piv·a(ii, j) {tls+μ}
44. t=a(ii, j) {tmv+tls}
45. for kk=j+1 to e {(e-j)(tloop+3tls+μ)}
46. a(ii, kk)-=t·a(j, kk) {3tls+μ}
47. end for
48. end for
49.� Pre-load A�+2,� {tbls}
50.� repeat lines 42-48 where ii=b·�+1 to b·(�+1)

{b(e-j)(tloop+3tls+μ)+b(tloop+2tls+μ+tmv)}
51. for i = �+2 to m-1

{(m-�-2)·(tloop+max(tbls, time of line 50))}
52.� Post-store Ai−1,� {tbls}
53.� Pre-load Ai+1,� {tbls}
54.� repeat lines 42-48 where ii=b·(i-1)+1 to b·i

{time of line 50}
55. end for
56.� Post-store Am−1,� {tbls}
57.� repeat lines 42-48 where ii=b·(m-1)+1 to b·m

{time of line 50}
58. Post-store Am,� {tbls}
59. end for
60. repeat lines 4-58 where j=e,

except the for-loops starting with j+1
61. Post-store A�,� {tbls}

The Pivot Primitive. After factoring the
current block column of A, the pivoting effect
should be applied to all the left and right col-
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umn blocks, too. Algorithm 6 below describes
the pivoting of a number of adjacent block
columns of matrix A on the scalar unit. Note
that, the execution time of line 10 is the same
as the lines 33–37 of Algorithm 5.
Algorithm 6.
01. for k=k1 to k2
02.� Pre-load A�,k {tbls}
03.�◦ s1=b·(k-1)+1 {2μ}
04.�◦ e1=b·k {μ}
05.�◦ piv=pivot(s1)·c+1 {μ}
06.∗ Pre-load Apiv,k {tbls}
07.∗ piv1=pivot(s1+1)·c+1 {2 μ}
08.∗ Pre-load Apiv1,k {tbls}
09.� if pivot(s1) > 0

{tcd+(tjp, b · (tloop+4tls+3tmv))}
10. swap rows s1 and pivot(s1)

{b·(tloop+4tls+3tmv)}
11. end if
12. for i=s1+1 to e1-1

{(b-1)·(tloop+4 μ+(tcd+(tjp,tbls))+
time of line 9)}

13. piv1=pivot(i − 1)·c+1 {2 μ}
14. piv2=pivot(i + 1)·c+1 {2 μ}
15. if piv1 <> piv2
16.� Post-store Apiv1,k {tbls}
17.� Pre-load Apiv2,k {tbls}
18. end if
19. repeat lines 9-11 where s1 = i

{time of line 9}
20. end for
19. piv=pivot(e1 − 1)·c+1 {2 μ}
20.� Post-store Apiv,k {tbls}
21.� repeat lines 9-11 where s1=e1

{time of line 9}
22. Post-store Apiv2,k {tbls}
23. Post-store A�,k {tbls}
24. end for

The Solve Primitive. In Algorithm 4, we
have described the solution of a b×b triangular
system with b multiple RHS. However, in line
5 of Algorithm 3, we need to solve the same
system but with b×(m− �)·b multiple RHS. In
Algorithm 7 below, we describe how the latter
triangular system is implemented on the scalar
unit of the matrix processor. See Fig. 3 for the
workspace of the algorithm.
Algorithm 7.
01.� Pre-load A�,� {tbls}
02.�◦ s1=s+b {μ}
03.�◦ e1=e+b {μ}
04. Pre-load A�,�+1 {tbls}
05. for i=s to e-1 {∑e−1

i=s
(tloop+time of line 6)}

06. for ii=i+1 to e
{(e-i)·(tloop+tmv+tls+b·(tloop+3tls+μ))}

07. t=a(ii, i) {tmv+tls}
08. for j=s1 to e1 {b·(tloop+3tls+μ)}
09. a(ii, j)-=t·a(i, j) {3tls+μ}
10. end for
11. end for
12. end for
13. Pre-load A�,�+2 {tbls}
14. for k=�+2 to m-1 {(m-�-2)·(tloop+2·μ+

max(tbls, time of line 5))}
15. s1=s1+b {μ}
16. e1=e1+b {μ}
17.� Post-store A�,k−1 {tbls}
18.� Pre-load A�,k+1 {tbls}
19.� repeat lines 5-12 {time of line 5}
20. end for
21. s1=s1+b {μ}
22. e1=e1+b {μ}
23.� Post-store A�,m−1 {tbls}
24.� repeat lines 5-12 {time of line 5}
25. Post-store A�,m {tbls}

The Update Primitive. This primitive will
be executed on the matrix unit. Algorithm 8
below is our implementation of a fine-grained
blocked saxpy version of Algorithm 1. We used
Allocation 1 to find the blocks of C. To re-
duce the loading time of blocks from main mem-
ory to the matrix registers, we assume at least
d blocks from A are loaded and reused many
times. In this case, the updating of the trailing
sub-matrix at each iteration of � may be divided
into two parts if the number of its block rows is
not an exact multiple of d. We apply Algorithm
8 to update the main part. To update the re-
maining part (where the number of block rows
are not multiple of d), we also apply Algorithm
8 but the loop index i will start from �+(	(m-
�)/d
)·d+1 to m and step equals to ‘one’ while
i+d-1 is replaced with m. It should be noted
that when � approaches m, m-� becomes less
than d. In this case, d must be reset to the
value m-� to correctly apply Algorithm 8.
Algorithm 8.
01. for i=�+1 to �+�(m-�)/d�·d step d
02. Load Ai,� {tbls}
03. for j=i+1 to i+d-1
04.� Skew Aj−1,� westward {bτ}
05.� Load Aj,� {tbls}
06. end for
07.� Skew Ai+d−1,� westward {bτ}
08.� Load A�,�+1 {tbls}
09. for k=�+1 to m-1

% Prologue
10.� Skew A�,k northward {bτ}
11.� Load Ai,k {tbls}
12.∗ Ai,k-=Ai,�·A�,k {bτ}
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13.∗ Load Ai+1,k {tbls}
% Main Body

14. for j=i+1 to i+d-2
15.� Aj,k-=Aj,�·A�,k {bτ}
16.� Load Aj+1,k {tbls}
17.� Store Aj−1,k {tbls}
18. end for

% Epilogue
19.� Ai+d−1,k-=Ai+d−1,�·A�,k {bτ}
20.� Store Ai+d−2,k {tbls}
21.∗ Store Ai+d−1,k {tbls}
22.∗ Load A�,�+1 {tbls}
23. end for
24. repeat lines 10-21 where k=m
25. end for

Modifications. We should mention that be-
cause of using software pre-fetching techniques
in designing the previous algorithms, some mi-
nor modifications should be done to the algo-
rithms for proper working at iterations m-1 and
m of Algorithm 3. This is due to the limited
number of blocks which doesn’t allow applying
the pre-fetching. We mention here the changes
to the algorithms.

To apply Algorithm 5 at iteration �=m-1, line
7 can be moved outside the main loop. Lines
15, 19–31, 39–40, 49, and 51–58 shouldn’t be
applied. At the end of the algorithm the block
A�+1,� should be post-stored to memory. At
iteration �=m of Algorithm 5, i.e., the factoring
of block Am,m, the algorithm is applied without
the lines 7, 15–31, 39–40, and 49–60.

In algorithm 6, at each iteration k, the two
blocks A�,� and A�,�+1 are pre-loaded. Then,
the middle loop at line 12 runs from s1 to e1
for rows interchange. After that, the two blocks
are post-stored. A similar change is done when
�=m, but the middle loop runs from s1 to e1-1.

At iteration �=m-1 of Algorithm 3, only one
triangular system with b RHS is solved. In this
case, Algorithm 7 is applied without the lines
13–24. Also, in Algorithm 8, only the block up-
date Am,m-=Am,m−1·Am−1,m is needed which
requires three block loads and one store. The
skewing of Am,m−1 and Am−1,m is overlapped
with two of the three block loads.

5. Performance Evaluation

In Section 2, we have developed a predictable
execution time model for the proposed matrix
processor. In this model, we have decomposed
the total execution time of an algorithm into
the sum of: computing time, load/store time,

and overhead time. In Sections 3 and 4, we
have predicted the execution times of the state-
ments of the designed algorithms so that the
total execution times can be easily calculated.
In this section, we analyze the performance
of the GEMM operation and the blocked LU
factorization with partial pivoting on the pro-
posed matrix processor. Also, we analyse the
effect of changing the memory bandwidth on
the GEMM operation, which is the basic oper-
ation in the LU factorization algorithm.

We measure the performance of Level-3
BLAS and the blocked LU factorization on the
proposed matrix processor by the speed of com-
puting in FLOPs/cycle. For the parameters re-
lated to architectural implementation, we as-
sume the time of the operations tls, tmv, tjp, tcd,
and tabs is one clock cycle. Since most compu-
tations of the algorithms are FMA, we assume
the floating-point functional units are fully-
pipelined and the compiler is able to schedule
the independent operations using loop unrolling
and software pipelining techniques. Hence, the
throughput of the floating-point FMA, μ, and
the multiply-add-roll, τ , time-step is assumed
one FMA (or two FLOPs) each cycle and one
multiply-add-roll operation each cycle, respec-
tively. However, this is not the case with the
floating-point division since its amount in the
algorithms is small and we assume its execu-
tion time, λ, is twenty clock cycles.

Level-3 BLAS (GEMM). We discuss the
case that all matrices A, B, and C are n × n.
This means K1=K2=K3=�n/b� in Algorithm
1. For other cases, we can select between ap-
plying Allocations 2 and 3 in Algorithm 1 or
applying Allocation 1 in Algorithm 8.

An important parameter for the efficiency
of the matrix processor is the time of load-
ing/storing a b×b matrix block, tbls. Assum-
ing the load/store unit can access ω contiguous
elements in one clock cycle, then tbls is equal
to b2/ω clock cycles. Figure 4 (a) shows the
performance of the GEMM operation for dif-
ferent matrix sizes n and different block sizes
b, where ω=b and the number of blocks that
can be loaded and reused, d, is equal to m. It
is clear from the figure that the speed of com-
puting increases as b increases. Meantime, as n
increases the maximum speed 2b2 FLOPs/cycle
is approached. This means that the alignment
overhead associated with the b×b MMA oper-
ations is almost hidden. The main reason for
that is the overlap between the skewing oper-
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Fig. 4 Performance of the GEMM operation C←C+A·B on the b×b matrix unit.

ations and the loading of data. However, de-
creasing d will degrade the performance rela-
tively as we expect.

Figure 4 (b) shows the effect of changing ω on
the performance of the n×n GEMM operation
on the torus matrix unit, b=8. We see from
the figure that the speed approaches the max-
imum value when ω≥b. Otherwise, the speed
decreases till 2b FLOPs/cycle when the blocks
are sequentially loaded/stored, i.e., ω=1.

LU Factorization. In the primitives such
as Factor and Pivot, there are two bounds of
the execution time depending on the values of
matrix A. The lower execution time will be
the case when no swapping of the matrix rows
occurs. This means all lower bound execu-
tion time of all if-then statements are taken.
This lower bound of execution time is the up-
per bound of the speed of computing. Also,
the upper bound of the execution time (when
all comparisons to find the pivot hold) is the
lower bound of the speed of computing. Fig-
ures 5 (b,d) and 6 (b,d) show the lower bounds
of speed while (a,c) in both figures show the
upper bounds. We see in Figs. 5 and 6 that for
relatively large size matrix, n=32 K, the differ-
ence between the speed bounds is small. How-
ever, a noticeable difference exists for small size
matrices, for example when n=1K which is due
to the pivoting overhead.

Both Figs. 5 and 6 show the increase of the
speed of computing by increasing the matrix
size, n, for different values of b. This is due
to the increase in matrix multiplication por-
tion as n increases. For the selected values of n
(≤32K), the most appropriate values of b seem
to be b=4 and b=8. b=4 is better in terms of
the percentage of the maximum speed attained,

i.e., the efficiency of the matrix processor. How-
ever, b=8 can be chosen if we favor speed with
moderate efficiency. At small values of n, we
see that the speed and efficiency are not high
because the time of the Factor and Solve prim-
itives became apparent. In addition, our model
assumes a scalar unit with two FLOPs/cycle
and no overlap between computing and regis-
ters load/store. Since the two primitives are
mainly Level-1 and Level-2 BLAS, we expect
that using a scalar unit with a SIMD extension
will enhance the performance of the blocked LU
factorization at small matrix sizes.

In Figs. 5 and 6, the effect of the loop over-
head, tloop, is shown. In Fig. 5, d is fixed at the
best case d=m while in Fig. 6 it is fixed on the
least number we assumed, d=8. Both figures
show that a large percentage of speed is gained
by decreasing tloop from 15 cycles going down to
zero cycles, the case of complete loop unrolling.
In addition, the two figures show that increas-
ing the value of d enhances the speed due to
increasing the amount of data reuse.

6. Conclusions

Augmenting scalar cores with specialized co-
processors for enhancing compute-intensive ker-
nels have gained the attention of chip manufac-
turers due to approaching the physical limits of
increasing clock frequency. We have proposed
a matrix processor model consisting of a scalar
unit and a SIMD matrix unit of b×b simple
cores tightly connected in a 2D torus topology
to process b×b MMA operations. The matrix
unit is scalable since there are no global con-
nections between PEs. An execution model for
the proposed matrix processor is developed. We
presented three optimal data distributions to
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Fig. 5 Performance of the blocked LU factorization with different matrix sizes
and block sizes where d=m. The numbers on top of bars at n=32K
are the percentages of the maximum speed attained.

execute the MMA operation in the minimum
time. We formulated the alignment operations
including matrix transpose as MMA operations
and could overlap them with the load/store op-
erations to hide their overhead.

We have designed a fine-grained blocked algo-
rithm for the GEMM operation (Level-3 BLAS)
as an application or kernel that is run com-
pletely on the matrix unit. Our analytical re-
sults showed that the maximum speed of com-
puting is attained. Increasing the matrix unit
size, b, increases the speed of computing. We
have also designed a blocked right-looking al-
gorithm for the LU factorization with partial
pivoting, which represents an example of an ap-
plication that needs to run on both scalar and
matrix units. Only the matrix updating prim-
itive of the algorithm is scheduled to execute
on the matrix unit while the other primitives
run on the scalar unit. We didn’t consider ex-
ecution overlap between the matrix and scalar
units.

Since the percentage of the MMA increases as

the matrix size increases, around 50–90% of the
maximum computing speed is attained by vary-
ing the model parameters. Getting high perfor-
mance requires increasing the amount of data
reuse, i.e., the number of blocks, d, that can
be loaded into registers and reused before re-
placement. Moreover, decreasing the loop over-
head (using loop unrolling techniques) greatly
enhances the performance.

In our algorithms, we have used software
pre-fetching techniques and software-controlled
data cache replacement policy in order to hide
memory latency by exploiting the decoupling
between the load/store unit and the process-
ing (scalar and matrix) units. Although this
may complicate programming and increases
program sizes, it may be useful in hiding mem-
ory latency and using smaller cache sizes (since
only three b×b blocks may exist at the same
time inside the data cache as shown in the al-
gorithms).

In our future works, we will consider imple-
menting and evaluating other factorization al-
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Fig. 6 Performance of the blocked LU factorization with d=8.

gorithms on the proposed matrix processor in-
cluding Cholesky, QR, and singular value de-
compositions.
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