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Abstract Road traffic congestion is still a serious problem in many countries, creating huge economic and envi-
ronmental impacts. Delivering fine-grained information on road traffic conditions to vehicles is a straightforward
solution to the congestion problem. However, researchers have recently pointed out that a central cloud is problem-
atic for realtime information delivery to drivers because of the non-negligible latency between vehicles and central
cloud servers, which is caused by the network distance and communication traffic load between them. This report
therefore presents a novel system architecture for predictive road-traffic information delivery in which computing
resources at the network edge and the central cloud are cooperatively used to analyze sensing data collected by
vehicles on the road. In this report, we also present the mathematical problem formulation of the proposed system
architecture for ensuring that the system could successfully deliver road-traffic information at realtime without over-
flowed computational and network loads. The numerical examination using a real dataset and a realistic network
emulator validates our system.

(This work is under review by an IEEE conference. This report has been published without review
process.)
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Background

» Road traffic congestion causes economy-wide
costs across UK, France, Germany, & USA
» $200.7 billion in 2013
» $293.1 billion by 2030

« Delivery of “predictive” road-traffic information
to drivers (human or robotic)

« Data collection: roadside cameras, VANET, mobile
crowd sourcing (MCS)

« Traffic prediction: machine learning by central cloud

Real-time delivery is infeasible because of latency in
network between vehicles and central cloud

Proposed solution

* Interoperation between two computational
entities:

1. Central cloud: long latency / generous
computational resources

2. Edge (or fog): short latency / limited
computational resources

Goals

« Design of cloud-edge interoperation system for
real-time delivery of predictive road-traffic
information

 Problem formulation for ensuring its feasibility

General model of proposed system

« Sensor devices, access networks, edge servers, core
network, cloud server, and users
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Model for problem formulation

» Edge servers:
« convert images received from sensors to structured text data at sampling rate R,
« forward unconverted images to cloud server at sampling rate R,
+ Cloud server:
« converts images received from edge to structured text data
« uses structured text data at sampling rate R = R, + R, for prediction by machine

learning
Edge server
Image Image
Visual
9| Sampler H Forwarder

gooo boo

Data
analysis

Data
| forwarding

1 Access
User I network
<=

H \CCes
H @_‘ forwarding
Access
a0 — L
O —p M
B =07
—>

= (e

Cloud server

Visual  |Image
Edge server
sensors Core network

Converter

Visual  |Image
sensors Edge server

Predictor

Visual [mage
sensors Edge server

Bl
kS
IS

Users

Parameter definitions

Re Sampling rate at edge servers

Pe Image processing speed in no. of images per slot
at edge servers

N Total no. of edge servers

Ny, No. of locations of visual sensors belonging to
each edge server

R Sampling rate at cloud server

P, Image processing speed in no. of images per slot
at cloud server

2] Transferring throughput of core network in no.
of images per slot

R Data rate used for prediction (= Re + Re¢)

tp Time consumed for prediction in slot
A Backward parameter for prediction
Ap Prediction accuracy

A;, Required prediction accuracy

Example of time-slot sequence
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Problem formulation

« Edge processing should not overflow

P, > NiR., 10

« Cloud processing and core-network throughput should not become
bottleneck

min(Pe. #) > NLNR,. 2

* Ain previous slide should be determined so that processing and
forwarding data are completed before ¢

A > max(NpRe/Pe,1/60 + N NR./ P,
NLNeR: [0+ 1/P;) +tp, (3)
* A should be minimized for accurate prediction; as A increases,
past data with lower time-correlation is used for prediction
min A 4)

esile

s.tAp > Ap,

Evaluation of prediction accuracy, A,

» Road-traffic dataset [10]
« Portland-Vancouver Metropolitan region
» 210 locations
» Jan 1st to 2nd, 2016

* Machine learning method
» Deep neural network (DNN) [11,12]

R=Re + Rc 1/3 [ 273 [ 33
Structure input layer, hidden layer x 3, output layer
Input units 630 [ 1260 [ 1890
Hidden units 945 | 1890 | 2835
Output units 210

Activate function ReLU function

Loss function MSE

Optimizer Adam

Batch size 100

Prediction accuracy results (1)

* As no. of epochs in learning process of DNN
increases, prediction accuracy is improved
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Prediction accuracy results (2)

« Prediction accuracy is not sensitive to R and A
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Evaluation of throughput, &

» Emulator: Common Open Research Emulator
(CORE) 1131

» Network topology: Rocketfuel dataset [14]

Parameters for network evaluation

Network
[Topology | Rocketfuel dataset ASTOIS |
(AT&T) [14]
Location of cloud server Washington, DC
Locations of edge servers Portland,
Max. no. of hops between edge and | 5
cloud servers

Min. no. of hops between edge and | 3
cloud servers
No. of nodes in core network 13
No. of Tinks in core network 27
Tatency between edge semvers and | 30ms
access gateway of core network

traffic
Arrival distribution | Exponential O\ = 0.2)
[« distribution | L I (u =20, 0=05)
Transferred files
Transferred file size GOMB
| Data arrival rate_ 173,723, or 313
Total no. of locations 100, 200, or
Total no. of edge servers 1,2, 4, 0r8
File transfer protocol SCP (Secure Copy)
nvironment
OS [ Ubuntu 14.04 64bit
CPU | 230 GHz % 12

Memory [ 994 GB
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Network latency results (1)

(No. of edge servers, No. of locations per edge server)
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Network latency results (2)

* As no. of locations increases, overflowed easily

* R, should be set minimum (=1/3) to suppress
increase of Iatency
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(©)R,=1/3

(a)R.=3/3 (b) R,=2/3

Distribution of network latencies

* Only “not-overflowed’ cases are plotted
* Latencies are within three minutes at longest
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Discussion of optimal sampling rate setting
@ ()
| 1
A > max(NyRe/Po,1/8 + NpN.Re/Ps,
NN R[6 +1/P.) +t,, 3)
‘ © C)
min A 4
R.,R.

,
p > Ap,

(e)
a. Processing for identifying vehicles from camera image [4] consumes
time even using multiple processers; R, should be set to 1/3.
Central cloud has generous computational resources; R, can be 3/3.

Time for transferring image data easily increases because of
overloaded data traffic on core network; R, should be set to 1/3.

d. Time for prediction is ignorable as long as learning process has been
completed in advance.
e. Prediction accuracy is not sensitive to R and A.

R should be set to 1/3: (R= ®

Conclusion & Future work

» Background: road traffic congestion cause huge
economic & environmental impacts

« Solution: realtime delivery of predictive road-traffic
information
» Proposed: cloud-edge interoperation system

* Results:
1. Problem formulation for ensuring system feasibility

2. Numerical results of prediction accuracy using DNN
3. Numerical results of network latency using emulator & real

network topology
4. Suggestion of optimal sampling rate setting at cloud &edge

* Future work:
i.  Evaluation using other datasets
ii. System implementation & experiment "

References
1. The future economic and environmental costs of gridiock in 2030, An assessment of the direct and indirect
economic and environmental costs of idling in road traffic congestion to households in the UK, France, Germany
and the USA Report for INRIX, Cebr, July 2014.
2. R.Yu, Y. Zhang, S. Gjessing, W. Xia, K. Yang, Toward cloud-based vehicular networks with efficient resource
management, IEEE Network, 27(5), pp.48-55, Oct 2013.
3. J.Wan, J. Liu, Z. Shao, A. V. Vasilakos, M. Imran, K. Zhou, Mobile crowd sensing for traffic prediction in internet of
vehicles, Sensors, 16(1), p.88, Jan 2016.
Y.Wen, Y. Lu, J. Yan, Z. Zhou, K. M. Deneen, P. Shi, An Algorithm for License Plate Recognition Applied to
Intelligent Transportation System, IEEE Ti on Intelligent Tr Systems, Vol.12, No.3, Sept 2011
A. Lakas, M. Shaqgfa, Geocache: sharing and exchanging road traffic information using peer-to-peer vehicular
communication, IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1-7, May 2011.
¥.Lu Y. Duan, W. Kang, Z. L, . . Wang, Trafic flow precition wih big date 2 deep leaming approach, IEEE
on Intelligent Tr ion Systems, 16(2), pp.865-873, April 2015.
7. K Sasaki, N. Suzuki, S. Makido, A. Nakao, Vehicle control system coordinated between cloud and mobile edge
computing, 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Sepl 2016.
R. Deng, R Lu c Lai, T. H. Luan, Towards power consumption-delay tradeoff by workload allocation in cloud-fog
Conference on Ct (ICC), pp. 3909-3914, Jun 2015.
9. M. Aazam, E. N. Huh, Fog computing and smart gateway based communication for cloud of things, IEEE
International Conference on Future Internet of Things and Cloud (FiCloud), pp.464-470, Aug 2014.

4.

5.

6.

8.

10. PORTAL, https://portal.its.pdx.edu/home.

11.M. W. Gardner, S. R. Dorling, Artificial neural networks (the multilayer perceptron)
atmospheric sciences. Atmospheric environment, 32(14), pp.2627-2636, Aug 1998.

12.Chainer MNIST example, https://github.

13.J. Ahrenholz, C. Danilov, T. R. Henderson, J. H. Kim, CORE: A real-time network emulator, IEEE Military
Communications Conference (MILCOM), pp.1-7, Nov 2008.

14.N. Spring, M. Ratul, and T. Anderson, The causes of path inflation, ASIGCOMM '03 Proc. the 2003 conference on
and protocols for computer communications, Aug 2003,
18

- areview of applications in the

_mnist.py




	MoNA201706
	MoNAdraft


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     範囲: 現在のページ
     トリム: 無し
     シフト: 移動 下 by 15.59 ポイント
     ノーマライズ(オプション): オリジナル
      

        
     32
     1
     0
     No
     134
     265
     Fixed
     Down
     15.5906
     0.0000
            
                
         Both
         2
         CurrentPage
         3
              

       CurrentAVDoc
          

     None
     35.4331
     Left
      

        
     QITE_QuiteImposingPlus3
     QI+ 3.0b
     QI+ 3
     1
      

        
     0
     4
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     範囲: 現在のページ
     トリム: 無し
     シフト: 移動 下 by 1.42 ポイント
     ノーマライズ(オプション): オリジナル
      

        
     32
     1
     0
     No
     134
     265
     Fixed
     Down
     1.4173
     0.0000
            
                
         Both
         2
         CurrentPage
         3
              

       CurrentAVDoc
          

     None
     35.4331
     Left
      

        
     QITE_QuiteImposingPlus3
     QI+ 3.0b
     QI+ 3
     1
      

        
     0
     4
     0
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     範囲: 現在のページ
     マスク座標:  横方向, 縦方向オフセット 61.53, 752.22 幅 472.58 高さ 41.24 ポイント
     マスク座標:  横方向, 縦方向オフセット 510.55, 22.40 幅 48.44 高さ 27.49 ポイント
     オリジナル: 左下
      

        
     1
     0
     BL
    
            
                
         Both
         3
         CurrentPage
         7
              

       CurrentAVDoc
          

     61.5275 752.2169 472.5839 41.2365 510.5477 22.3955 48.4366 27.491 
      

        
     QITE_QuiteImposingPlus3
     QI+ 3.0b
     QI+ 3
     1
      

        
     0
     4
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





