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Abstract Road traffic congestion is still a serious problem in many countries, creating huge economic and envi-
ronmental impacts. Delivering fine-grained information on road traffic conditions to vehicles is a straightforward
solution to the congestion problem. However, researchers have recently pointed out that a central cloud is problem-
atic for realtime information delivery to drivers because of the non-negligible latency between vehicles and central
cloud servers, which is caused by the network distance and communication traffic load between them. This report
therefore presents a novel system architecture for predictive road-traffic information delivery in which computing
resources at the network edge and the central cloud are cooperatively used to analyze sensing data collected by
vehicles on the road. In this report, we also present the mathematical problem formulation of the proposed system
architecture for ensuring that the system could successfully deliver road-traffic information at realtime without over-
flowed computational and network loads. The numerical examination using a real dataset and a realistic network
emulator validates our system.
(This work is under review by an IEEE conference. This report has been published without review
process.)
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Background

• Road traffic congestion causes economy-wide 
costs across UK, France, Germany, & USA

• $200.7 billion in 2013
• $293.1 billion by 2030

• Delivery of “predictive” road-traffic information 
to drivers (human or robotic)

• Data collection: roadside cameras, VANET, mobile 
crowd sourcing (MCS)

• Traffic prediction: machine learning by central cloud
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Real-time delivery is infeasible because of latency in 
network between vehicles and central cloud 

Proposed solution

• Interoperation between two computational 
entities:

1. Central cloud: long latency / generous 
computational resources

2. Edge (or fog): short latency / limited 
computational resources

• Design of cloud-edge interoperation system for 
real-time delivery of predictive road-traffic 
information

• Problem formulation for ensuring its feasibility
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Goals

General model of proposed system
• Sensor devices, access networks, edge servers, core 

network, cloud server, and users
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Model for problem formulation
• Edge servers:

• convert images received from sensors to structured text data at sampling rate Re
• forward unconverted images to cloud server at sampling rate Rc

• Cloud server:
• converts images received from edge to structured text data
• uses structured text data at sampling rate R = Re + Rc for prediction by machine 

learning
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Example of time-slot sequence
L1

L2

L3

L4

L5

L6

L7

L8

L9
t-D-9 t-D-8  t-D-7  t-D-6  t-D-5  t-D-4  t-D-3  t-D-2  t-D-1  t-D ……… t-2       t-1       t

L1

L2

L3

L4

L5

L6

L7

L8

L9
t-D-8  t-D-7  t-D-6  t-D-5  t-D-4  t-D-3  t-D-2  t-D-1  t-D t-D+1 ……… t-1        t       t+1 6

converted 
at edge

converted 
at cloud

Used for 
road-traffic 
prediction 
by machine 
learning at 
t



Problem formulation
• Edge processing should not overflow

• Cloud processing and core-network throughput should not become 
bottleneck

• D in previous slide should be determined so that processing and 
forwarding data are completed before t

• D should be minimized for accurate prediction; as D increases, 
past data with lower time-correlation is used for prediction
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Evaluation of prediction accuracy, Ap

• Road-traffic dataset [10]
• Portland-Vancouver Metropolitan region
• 210 locations
• Jan 1st to 2nd, 2016

• Machine learning method
• Deep neural network (DNN) [11,12]

8

Prediction accuracy results (1)
• As no. of epochs in learning process of DNN 

increases, prediction accuracy is improved
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(a) D = 2 (b) D = 3

Prediction accuracy results (2)
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(c) D = 4

• Prediction accuracy is not sensitive to R and D

Evaluation of throughput, q
• Emulator: Common Open Research Emulator 

(CORE) [13]

• Network topology: Rocketfuel dataset [14]
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Parameters for network evaluation
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Network latency results (1)

13

(No. of edge servers, No. of locations per edge server)

Transferring time is stable
Network not overflowed

Transferring time keeps increasing:
Network overflowed

(a) Rc = 3/3                               (b) Rc = 2/3                              (c) Rc = 1/3

Network latency results (2)
• As no. of locations increases, overflowed easily
• Rc should be set minimum (=1/3) to suppress 

increase of latency
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(a) Rc = 3/3                               (b) Rc = 2/3                              (c) Rc = 1/3

Distribution of network latencies

• Only `not-overflowed’ cases are plotted

• Latencies are within three minutes at longest
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Discussion of optimal sampling rate setting

a. Processing for identifying vehicles from camera image [4] consumes 
time even using multiple processers; Re should be set to 1/3.

b. Central cloud has generous computational resources; Rc can be 3/3.
c. Time for transferring image data easily increases because of

overloaded data traffic on core network; Rc should be set to 1/3.
d. Time for prediction is ignorable as long as learning process has been

completed in advance.
e. Prediction accuracy is not sensitive to R and D.
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(a) (b)

(c) (d)

(e)

R should be set to 1/3: (Rc=1/3,Re=0) or (Rc=0,Re=1/3)

Conclusion & Future work

• Background: road traffic congestion cause huge 
economic & environmental impacts

• Solution: realtime delivery of predictive road-traffic 
information

• Proposed: cloud-edge interoperation system

• Results:
1. Problem formulation for ensuring system feasibility
2. Numerical results of prediction accuracy using DNN
3. Numerical results of network latency using emulator & real 

network topology
4. Suggestion of optimal sampling rate setting at cloud &edge

• Future work: 
i. Evaluation using other datasets
ii. System implementation & experiment
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