7G - 05

フィードバックレコード数の最適なマージネットワークを用いた マージツリー

齊藤 誠十 吉瀬 謙二 ††

†東京工業大学 工学部情報工学科 ††東京工業大学 情報理工学院

†saitoh@arch.cs.titech.ac.jp ††kise@c.titech.ac.jp

1 はじめに

ソートは重要な計算カーネルであり、その高速処理を可能にするため、FPGAを用いたソーティングアクセラレータが研究されている。このアクセラレータは、多数のソートされたレコード列を 1 つにマージするモジュールであるマージツリーを用いて、マージベースの処理を行うものが主流である。また、マージツリーには、2 つのソートされたレコード列を 1 つにマージするモジュールであるマージロジックを繋げることで構成されたものがあり、現在最高性能クラスのソーティングアクセラレータで採用されている [1]. そして我々は過去に、ソーティングアクセラレータのさらなる高性能化のため、既存のマージネットワーク [1][2] に最適化を施し、マージネットワーク単体の高性能化を図った [3].

ここでレコードとは、ソートを行う対象を指している。レコードは、大小比較に使用する値であるキーと、キーに付随する値、回路の制御に使う値の 3 種類の値を 1 つずつ含む、以降、レコードのビット幅、キーのビット幅をそれぞれ記号 R,K で表し、キーに付随する値は 32bit、制御に使う値は 2bit とする。従って、R は R=K+34 で求められる。制御に使う値とは、Finish bit と Valid bit である。Finish bit は、あるマージ対象のレコード列のキューが尽きた後にそのキューから取り出されるレコードでアサートされ、Valid bit は、レコードが有効である時にアサートされる。これらはキーの MSB に隣接する形で配置される。

本稿では,[3]で最適化されたマージネットワークについて, それ単体では確認されている性能の向上が,マージツリーで も現れるかを検証する.そのため,まずマージツリーとマー ジロジック,マージネットワークの説明と,それぞれの実装 方法の提案を行う.また,これに基づいて最適化前後のマー ジネットワークを使ったマージツリーを実装し,その論理合 成結果を通して必要な資源量と動作周波数,及びスループットを評価する.

2 提案手法

マージツリー,マージロジック,マージネットワークの説明と実装方法の提案を行う.マージネットワークについては,[3]で行われた最適化の説明を併せて行う.

2.1 マージツリー

マージツリーとは,ソート済みの複数のレコード列を入力し,それらをマージした 1 つのレコード列を出力するモジュールである.1 つのツリーを通すことによってマージできるレコード列の数を,記号 W で表す.

本稿では、マージツリーを図1のブロック図の通りに、節2.2で説明するマージロジックをツリー状に接続したものとして実装する。図1は、W=8のマージツリーであるため、マージツリーに入力される8つのレコード列が、左端の4つのマージロジックの in1,in2 にそれぞれ入力される。マージロジックは in1,in2 のレコード列をマージしたものを out か

An Efficient Merge Tree Using Merge Networks With Optimized Feedback Records

Makoto SAITOH †, and Kenji KISE ††

†Department of Computer Science, Tokyo Institute of Technology ††School of Computing, Tokyo Institute of Technology

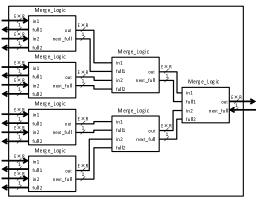


図 1: W=8 のマージツリーのブロック図

ら出力し、そしてこの出力がまた次に繋がれたマージロジックに入力されるため、左から右に向かってレコード列が8つから4つ、2つ、1つへとマージされる。このツリーが1サイクルにマージできるレコード数は、図1右端の、ツリーの根となるマージロジックが1サイクルにマージできるレコード数と同じである。また、マージツリーに入力される全てのレコードは、Valid bit がアサートされているものとする.

2.2 マージロジック

マージロジックとは、2つのソート済みのレコード列を 1 つのレコード列にマージするモジュールである。マージロジックは 1 サイクルに複数のレコードのマージが可能であり、この、1 サイクルにマージできるレコードの数を以降は記号 Eで表す。

本稿では、マージロジックを図 2のブロック図の通りに実装する.図 2中 (a) では、マージロジックに入力される 2つのソート済みレコード列が、そのまま FIFO の in に入力されている。また、FIFO の push には、マージロジックに入力されるレコード列の先頭と末尾の Valid bit の論理和を取ったものが入力されており、有効なレコードが 1 つでもある場合に FIFO にレコード列がエンキューされるようになっている。図 2中 (b) では、一定の規則に従って E 個のレコードが片方の FIFO からデキューされ、節 2.3 で説明するマージネットワークに入力される。この時、マージネットワークは、1 つにマージされたレコード列を出力する [3] ため、それを用いてマージロジックの出力とする。

マージロジックは、2つある FIFO が片方でも空である場合、そのサイクルではマージが行えない。しかしこの場合でも、空の FIFO は予想できない値のレコードを有効なレコードとして出力してしまう可能性があるため、これを無効なレコードとして処理できるようにしなければならない。この解決方法として、Mask Valid は、2つある FIFO の片方でも空である場合に Valid Bit をデアサートする。Valid Bit をデアサートすることで、任意のレコードをバブルとして機能させることができるためである。Valid Bit がデアサートされたレコードは、マージネットワークから可能な限り早く出力される性質を持つ。また、その出力は次に接続されたマージロジックの入力もしくはマージツリーの出力となるが、前述

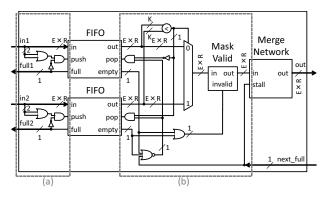


図 2: マージロジックのブロック図

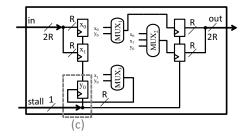


図 3: E=2 のマージネットワークのブロック図

の通りマージロジックの FIFO にはエンキューされず、マージツリーの出力でも同様に出力を無視できるため、バブルとして機能する.

2.3 マージネットワーク

マージネットワークを初めて提案したのは [1] であり,その後,[1] を高速化した [2] と,更に [2] を最適化した [3] が提案されているため,計 3 種類のマージネットワークが存在する.この節では,[3] の説明を行う.

マージネットワークとは,マージロジックに入力された ソート済みの2つのレコード列をマージロジックと協調す ることで1つのレコード列にマージする,マージロジック のカーネルとなるモジュールである. 本稿ではマージネット ワークを, [3] で提案されたものにマージツリーで使うため の制御線を加えた、図3の通りに実装する.図では一例とし て E=2 の構成を示している. マージネットワークには, 図3 中(c)に示す、レコードを格納する特別なレジスタ、フィー ドバックレジスタが E-1 レコード分存在する. そしてこのフィードバックレジスタのレコードと、入力されるレコード を合わせた計 2E-1 個のレコードをソートし、小さい E 個を 出力,大きい E-1 個をフィードバックレジスタにフィード バックする,という動作を毎サイクル行う. [1]と [2] では, ここで E 個のレコードのフィードバックが行われていたが, 必要な E-1 個のレコードのみをフィードバックするように最 適化されている [3]. この最適化により, [3] は [2] と比較し て,マージネットワーク単体の実装の資源量削減と動作周波 数の向上を達成している.

また、マージネットワークでは、Finish bit と Valid bit とキーを接続したものを単にキーとして扱う。これにより、Valid bit がアサートされているレコードは先に出力され、Finish bit がアサートされているレコードは後に出力されるため、マージの動作に合致する動作を自然に実行することができる。

3 評価

表 1: 各パラメータと論理合成結果. E:1 サイクルにマージ するレコード数, W:ウェイ数, K:キー幅, O:最適化

			動作				
			周波数		Logic		
(E,W)	K	О	(MHz)	Slice	LUTs	FFs	SRLs
(4,4)	16	0	305	1314	2834	1858	654
(4,4)	16	1	315	1238	2420	1713	654
(4,4)	32	0	280	1724	3965	2422	840
(4,4)	32	1	290	1573	3373	2238	852
(4,4)	64	0	260	2611	6262	3618	1318
(4,4)	64	1	265	2530	5277	3326	1316
(8,8)	16	0	190	8511	23252	8672	3324
(8,8)	16	1	190	8052	21241	8254	3387
(8,8)	32	0	170	11630	33391	11350	4284
(8,8)	32	1	185	10575	29987	10883	4303
(8,8)	64	0	155	17821	52181	16856	6650
(8,8)	64	1	155	16896	47336	16148	6676

作周波数の 2 つである. XC7VX485T FPGA をターゲットとして、Vivado2016.4 で各実装を論理合成した結果で評価を行う.

表 1 に論理合成の結果を示す.必要な資源量については、Slice, LogicLUTs, FFs のそれぞれについて,O=0 の結果よりもO=1 の結果の方が減っていることが確認できる.SRLs についてはO=0 とO=1 の結果で殆ど差が無いが,これは SRL がマージロジックの FIFO に使われており,使用量がマージネットワークの最適化に依らないためであると考えられる.以上より,マージネットワークがフィードバックするレコード数の最適化によって,それを使ったマージツリーにおいて必要な資源量を削減できることが確認できる.動作周波数については,(E,W) が (4,4) か (8,8) の際には,O=1 の結果をO=0 の結果と比べると,向上するか,もしくは変化していないことが分かる.

最後に、先行研究と性能を比較するため、マージツリーのスループットを求める。スループットは、EとWと動作周波数fを使い、R=66、つまり K=32 の時、 $E\times W\times f\times 8$ Byte/secと表せる。今回のマージツリーでは、W=8,K=32 の条件下で得られる最大スループットが W=8,K=32,E=8,O=1 の構成時の 11.84GByte/sec に達している。これは、現在最高性能クラスの先行研究 [4] において W=8,K=32 の構成時のスループットである、10.19GByte/sec を超えている。

4 結論

ソーティングアクセラレータの性能向上のために [3] で最適化されたマージネットワークを用いて、マージツリーの実装と評価を行った。その結果、最適化されたマージネットワークを使ったマージツリーは、最適化されていないマージネットワークを使ったものと比べて必要な資源量 (Slice 数)が削減され、動作周波数は向上することが確認できた。また、W=8,K=32 の構成時に、[4] よりも高いスループットが出ることを確認した。以上より、[3] で提案された最適化は、マージツリーの性能を向上させることができると分かった。

参考文献

- [1] Jared Casper and Kunle Olukotun. Hardware Acceleration of Database Operations. In *Proceedings of the 2014 ACM/SIGDA International Symposium on Field-programmable Gate Arrays*, FPGA '14, pages 151–160, 2014.
- [2] Susumu Mashimo, Thiem Van Chu, and Kenji Kise. Cost-Effective and High-Throughput Merge Network Architecture for the Fastest FPGA Sorting Accelerator. In *Interna*tional Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies, HEART '16, pages 7–12, 2016.
- [3] 齊藤 誠, 眞下 達, Thiem Van Chu, 吉瀬 謙二. FPGA ソーティングアクセラレータのためのマージネットワークの改良. In 信学技報, RECONF '16, pages 13–18, 2016.
- [4] Wei Song, Dirk Koch, Mikel Luján, and Jim Garside. Parallel Hardware Merge Sorter. In IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), FCCM '16, pages 95–102, 2016.