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Illumination Color and Intrinsic Surface Properties
——Physics-based Color Analyses from a Single Image

Robby T. Tan† and Katsushi Ikeuchi††

In the real world, the color appearances of objects are generally not consistent. It depends
principally on two factors: illumination spectral power distribution (illumination color) and
intrinsic surface properties. Consequently, to obtain objects’ consistent color descriptors, we
have to deal with those two factors. The former is commonly referred to as color constancy: a
capability to estimate and discount the illumination color, while the latter is identical to the
problem of recovering body color from highlights. This recovery is crucial because highlights
emitted from opaque inhomogeneous objects can cause the surface colors to be inconsistent
with regard to the change of viewing and illuminant directions. We base our color constancy
methods on analyzing highlights or specularities emitted from opaque inhomogeneous objects.
We have successfully derived a linear correlation between image chromaticity and illumination
chromaticity. This linear correlation is clearly described in inverse-intensity chromaticity
space, a novel two-dimensional space we introduce. Through this space, we become able to
effectively estimate illumination chromaticity (illumination color) from both uniformly colored
surfaces and highly textured surfaces in a single integrated framework, thereby making our
method significantly advanced over the existing methods. Meanwhile, for separating reflection
components, we propose an approach that is based on an iterative framework and a specular-
free image. The specular-free image is an image that is free from specularities yet has different
body color from the input image. In general, the approach relies principally on image intensity
and color. All methods of color constancy and reflection-components separation proposed in
this paper are analyzed based on physical phenomena of the real world, making the estimation
more accurate, and have strong basics of analysis. In addition, all methods require only a
single input image. This is not only practical, but also challenging in term of complexity.

1. Introduction

The color appearance of an object is not the
object’s actual color. Several factors, mainly il-
lumination and object surface’s intrinsic prop-
erties, play significant roles in determining the
object color appearance. In our daily life, we
can easily find the roles of illumination color in
many occasions, for instance, an outdoor scene
under a clear sky will look redder in the evening
than in the middle of the day, or an object will
look greener if lit by a green lamp. However,
although the color appearance of an object or a
scene changes as a consequence of illumination
change, we are still, at a certain level of accu-
racy, able to identify their actual color. This ca-
pability is called color constancy. It is inherent
in human perception and one of the important
aspects of object recognition processes.

In machine vision, color constancy is also
a crucial requirement for various applications,
e.g., color-based object recognition, color repro-
duction, image retrieval, reflection components
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separation, image-based rendering, and so on.
Unfortunately, up to now, the mechanism of
human perception color constancy has not been
well understood, making it impossible to be ap-
plied to machine vision. For decades, this has
motivated researchers in machine vision to de-
velop various color constancy algorithms, which
do not necessarily correspond to human biolog-
ical color constancy.

Generally, color constancy is defined as the
capability to recover the actual color of an ob-
ject. It implies that, although the illumina-
tion color changes, we can obtain a consistent
color descriptor of the object. This consistency
is the most fundamental aspect of color con-
stancy. However, while it is correct for diffuse
objects, the consistency is still partially correct
for certain types of objects that exhibit high-
lights. In diffuse objects, if we have discounted
the illumination color and obtained their actual
color, we will have a consistent color descriptor
even if either our viewing position or the illu-
mination direction changes. On the contrary,
for objects exhibiting highlights, although we
have discounted the illumination color, the col-
ors of certain patches of the objects are still
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Fig. 1 The mechanism of reflected light on
inhomogeneous opaque surface.

inconsistent w.r.t. the change of viewing and
illumination directions. The reason is, the lo-
cations of highlights, which are caused by the
presence of specular reflection, are inconsistent
w.r.t. the changes of viewing and illumination
directions. As a consequence, color constancy
alone is insufficient to acquire a consistent color
descriptor of general types of objects. For this
reason, in this paper, instead of dealing solely
with illumination color, we also deal with object
surface intrinsic properties.

Based on its reflection components, basically
intrinsic surface properties can be divided into
two components: diffuse (body) and specular
(interface) reflections. Figure 1 shows a picto-
rial mechanism of reflected light rays. Once a
bundle of light rays enters an inhomogeneous
opaque surface, some of the rays will imme-
diately reflect back into the air, while the re-
mainder will penetrate the body of the object.
Some of these penetrating light rays will go
through the body; others will reflect back onto
the surface and then into the air. The immedi-
ately reflected light rays are called interface or
specular reflection, while those that have pene-
trated and then reflected back into the air are
called body or diffuse reflection. Note that, be-
sides those two reflections, physically there is
another component called specular spike 3),32).
However, since its presence is very minor in in-
homogeneous object, we can ignore it. Thus,
highlights emitted from inhomogeneous objects
are the combination of diffuse and specular re-
flections. Unlike diffuse reflection, the location
of specular reflection depends on viewing and
illumination directions, causing its appearance
to be inconsistent. On the contrary, diffuse re-
flection is independent from viewing position,
and dependent only on illumination direction
in term of its intensity magnitude. This means
that the color descriptor of diffuse reflection,

which is usually a normalized value, is indepen-
dent of both viewing position and illumination
directions. As a consequence, to be able to ob-
tain a consistent color descriptor, we have to de-
compose or separate the reflection components
and then acquire diffuse only reflection. More-
over, once we acquire diffuse only reflection, we
become able to observe the body color beneath
highlights.

1.1 Goals
Considering the importance in various ma-

chine vision applications, therefore, the ulti-
mate purpose of this paper is to describe how
to extract the actual color of diffuse reflection
components. Basically, two processes are re-
quired to achieve our purpose, namely, color
constancy and reflection components separa-
tion. We base our color constancy methods
on analyzing highlights or specularities emitted
from opaque inhomogeneous objects. We have
successfully derived a linear correlation between
image chromaticity and illumination chromatic-
ity. This linear correlation is clearly de-
scribed in inverse-intensity chromaticity space,
a novel two-dimensional space which we intro-
duce. Through this space, we become able to ef-
fectively estimate illumination chromaticity (il-
lumination color) from both uniformly colored
surfaces and highly textured surfaces in a sin-
gle integrated framework, thereby making our
method significantly more advanced than the
existing methods. Moreover, unlike the existing
methods based on specularities, thanks to the
linear correlation, we do not need to segment
surface colors beneath the highlights. Mean-
while, for separating reflection components, we
propose an approach based on intensity and
color differences between highlights and diffuse
reflections.

In general, the flow of our framework can be
depicted in Fig. 2. Top of the Fig. 2 (a) shows
an opaque inhomogeneous object lit by an in-
candescent lamp. By using our proposed color
constancy method, we estimate the illumina-
tion color and then normalize the image, mak-
ing the illumination color becomes pure-white
as shown in Fig. 2 (b). Then, after normalizing
the image, we decompose it into its reflection
components. Figures 2 (c)–(d) shows the de-
composition results: diffuse reflection compo-
nent and specular reflection component, respec-
tively. All approaches of color constancy and
reflection-components separation in this paper
are analyzed based on physical phenomena of
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Fig. 2 The flow of our framework to extract actual
body color of an object. (a) Input image lit with
unknown illumination. (b) Color constancy re-
sult, transforming unknown illumination color
into pure-white illumination. (c) Diffuse only
reflection, which is able to produce a consistent
color descriptor of the object. (d) Specular only
reflection, conceiving important properties such
as surface roughness.

the real world, making the computation more
accurate and have strong basics of analysis. In
addition, for all approaches, we require only a
single image as the input.

1.2 Previous Work
1.2.1 Color Constancy
Finlayson, et al. 11) categorized color con-

stancy methods into two classes: statistics-
based and physics-based methods. Statistics-
based methods utilize the relationship between
color distributions and statistical knowledge
of common lights and surfaces 4),7),9),34),41),43).
One drawback of these methods is that they
require many colors to be observed on the
target surfaces. On the other hand, physics-
based methods 6),8),14),23),24), which base their
algorithms on understanding the physical pro-
cess of reflected light, can successfully deal

with fewer surface colors, even to the extreme
of a single surface color 11),12). In addition,
based on the surface type of the input image,
physics-based methods can be divided into two
groups: diffuse-based and dichromatic-based
methods. Diffuse-based methods assume that
input images have only diffuse reflection, while
dichromatic-based methods assume both dif-
fuse and specular reflections occur in the im-
ages. Geusebroek, et al. 16),17) proposed a phys-
ical basis of color constancy by considering the
spectral and spatial derivatives of the Lamber-
tian image formation model. Andersen, et al. 1)

provided an analysis on image chromaticity un-
der two illumination colors for dichromatic sur-
faces. Since our aim is to develop an algorithm
that is able to handle both a single and multiple
surface colors, in this section, we will concen-
trate our discussion on existing physics-based
methods, particularly dichromatic-based meth-
ods.

Methods in dichromatic-based color con-
stancy rely on the dichromatic reflection model
proposed by Shafer 36). Klinker, et al. 21) intro-
duced a method to estimate illumination color
from a uniformly colored surface, by extracting
a T-shaped color distribution in the RGB space.
However, in real images, it becomes quite diffi-
cult to extract the T-shape due to noise, making
the final estimate unreliable.

Lee 23) introduced a method to estimate il-
lumination chromaticity using highlights of at
least two surface colors. The estimation is ac-
complished by finding an intersection of two
or more dichromatic lines in the chromaticity
space. While this simple approach based on
the physics of reflected light provides a handy
method for color constancy, it suffers from a few
drawbacks. First, to create the dichromatic line
for each surface color from highlights, one needs
to segment the surface colors underneath the
highlights. This color segmentation is difficult
when the target object is highly textured. Sec-
ond, nearly parallel dichromatic lines caused by
similar surface colors can make the intersection
sensitive to noise. Consequently, for real im-
ages, which usually suffered from noise, the es-
timation for similar surface colors becomes un-
stable. Third, the method does not deal with
uniformly colored surfaces. Parallel to this, sev-
eral methods have been proposed in the litera-
ture 6),40),42).

Recently, three methods have been proposed
which extend Lee’s algorithm 23): Lehmann, et
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al. 28) developed a more robust technique to
identify the dichromatic lines in the chromatic-
ity space. The success of this technique depends
on an assumption that, in each highlight re-
gion, the surface color is uniform. As a conse-
quence, the technique fails when dealing with
complex textured surfaces, which usually have
more than one surface color in their highlight
regions. Finlayson, et al. 10), proposed impos-
ing a constraint on the colors of illumination.
This constraint is based on the statistics of nat-
ural illumination colors, and improves the sta-
bility in obtaining the intersection, i.e., it ad-
dresses the second drawback of Lee’s method.
Furthermore, Finlayson, et al. 11) proposed the
use of the Planckian locus as a constraint to
accomplish illumination estimation from uni-
formly colored surfaces. This Planckian con-
straint on the illumination chromaticity makes
the estimation more robust, especially for nat-
ural scene images. However, the method still
has a few drawbacks. First, the position and
the shape of the Planckian locus in the chro-
maticity space make the estimation error prone
for certain surface colors, such as blue or yellow
color. Second, as they include diffuse regions
in obtaining dichromatic lines, the result could
become inaccurate. While the fact that their
method does not require reflection separation is
one of the advantages, the diffuse cluster, due
to noise, usually has a different direction from
the specular cluster; as a result, the dichromatic
line can be shifted from the correct one. Third,
like other previous methods, for multicolored
surfaces, color segmentation is required.

1.2.2 Reflection Components Separa-
tion

Many works also have been developed for sep-
arating reflection components. Wolff, et al. 45)

used a polarizing filter to separate reflection
components from gray images. The main idea
of their method is that, for most incident an-
gles, diffuse reflections tend to be less polar-
ized than the specular reflections. Nayar, et
al. 31) extended this work by considering col-
ors instead of using the polarizing filters alone.
They identified specular pixels and the illumi-
nation color vector in RGB space by using in-
tensity variation produced by a polarizing filter.
A specular pixel, which is partially composed of
a specular reflection component, will have a dif-
ferent intensity if the polarization angle of the
filter is changed. The combination of polarizing
filter and colors is even for textured surfaces;

however, utilizing such an additional filter is im-
practical in some circumstances. Sato, et al. 35)

introduced a four-dimensional space, temporal-
color space, to analyze the diffuse and specular
reflections based on colors and image intensity.
While this method has the ability to separate
the reflection components locally, since each lo-
cation contains information of diffuse and spec-
ular reflections, it requires dense input images
with variation of illuminant directions. Lee, et
al. 26),27) introduced color histogram differenc-
ing to identify specularities. The key idea is
that colors of diffuse pixels are independent of
the changing of viewing positions, while colors
of specular pixels are dependent on it. They
transform the pixels of images taken from dif-
ferent viewing directions into RGB space, and
then identify the specular pixels. Later, Lin, et
al. 29) extended this method by adding multi-
baseline stereo. Criminisi, et al. 5) developed
an Epipolar Plane Image (EPI)- based method
to detect specularities. They found that in
two-dimensional spatio-temporal space, high-
lights’ straight lines have larger gradients than
diffusers’ straight lines. Lin, et al. 30), unlike
previous methods, introduced a method using
sparse images (at least two images) under dif-
ferent illumination positions. They proposed an
analytical method that combines the finite di-
mensional basis functions 33) and a dichromatic
model to form a closed form equation, by as-
suming that the sensor sensitivity is narrow-
band. This method can separate the reflection
component locally.

The aforementioned methods are consider-
ably effective in separating reflection compo-
nents; however, for many applications, using
multiple images is impractical. Shafer 36), who
introduced the dichromatic reflection model,
was one of the early researchers who used a
single colored image. He proposed a separa-
tion method based on parallelogram distribu-
tion of colors in RGB space. Klinker, et al. 21)

then extended this method by introducing a
T-shaped color distribution. This color distri-
bution represents body and illumination color
vectors. By separating these vectors, the re-
flection equation becomes a closed form equa-
tion and directly solvable. Unfortunately, for
many real images, this T shape is hardly ex-
tractable due to noise, etc. Bajscy, et al. 2)

proposed an approach that introduced a three
dimensional space composed of lightness, sat-
uration and hue. In their method, the input
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image has to be neutralized to pure-white illu-
mination using a linear basis functions opera-
tion. For every neutralized pixel, the weighting
factors of the surface reflectance basis functions
are projected into the three-dimensional space,
where specular and diffuse reflections are iden-
tifiable due to the difference of their saturation
values.

1.3 Overview
The rest of this paper is organized as follows:

in Section 2, we discuss the reflection model
used in all methods proposed in this paper. In
Section 3, we will explain the derivation and de-
tail algorithm of the proposed color constancy
method. In Section 4, we will focus the dis-
cussion on the method of separating reflection
components. A number of experimental results
using real images will be shown in Section 5.
Finally, in Section 6, we offer several conclu-
sions.

2. Reflection Model

2.1 Image Formation
Most inhomogeneous objects, such as those

made of plastics, acrylics, etc., exhibit both dif-
fuse and specular reflections. The diffuse reflec-
tion is due to the varying refractive indices in
the objects’ surfaces and bodies, while the spec-
ular reflection is mainly due to the refractive in-
dex difference between objects’ surfaces and the
air. Considering these two reflection compo-
nents, Shafer 36) introduced the dichromatic re-
flection model, which states that reflected lights
of inhomogeneous objects are linear combina-
tions of diffuse and specular reflection compo-
nents. As a result, an image’s pixel of inhomo-
geneous objects taken by a digital color camera
can be described as:

I(x) = wd(x)
∫

Ω

S(λ,x)E(λ)q(λ)dλ (1)

+ws(x)
∫

Ω

E(λ)q(λ)dλ

where I = {Ir, Ig, Ib} is the color vector of im-
age intensity or camera sensor. The spatial pa-
rameter, x = {x, y}, is the two dimensional im-
age coordinates. q = {qr, qg, qb} is the three-
element-vector of sensor sensitivity. wd(x) and
ws(x) are the weighting factors for diffuse and
specular reflection, respectively; their values de-
pend on the geometric structure at location x.
S(x, λ) is the diffuse spectral reflectance func-
tion, while E(λ) is the spectral power distri-
bution function of illumination. E(λ) is in-

dependent of the spatial location (x) because
we assume a uniform illumination color. The
integration is done over the visible spectrum
(Ω). Note that we ignore the camera gain and
camera noise in the above model, and assume
that the model follows the neutral interface re-
flection (NIR) assumption 25), i.e., the color of
specular reflection component equals the color
of the illumination. For the sake of simplicity,
Eq. (1) can be written as:

I(x) = wd(x)B(x) + ws(x)G (2)

where B(x) =
∫
Ω

S(λ,x)E(λ)q(λ)dλ, and G =∫
Ω

E(λ)q(λ)dλ. The first part of the right side
of the equation represents the diffuse reflection
component, while the second part represents
the specular reflection component.

2.2 Chromaticity
Besides the dichromatic reflection model, we

also use chromaticity or normalized rgb, which
is defined as:

σ(x) =
I(x)

Ir(x) + Ig(x) + Ib(x)
(3)

where σ = {σr, σg, σb}. Based on the equation,
for the diffuse only reflection component (ws =
0), the chromaticity will be independent from
the diffuse weighting factor wd. We call this
diffuse chromaticity (Λ) with definition:

Λ(x) =
B(x)

Br(x) + Bg(x) + Bb(x)
(4)

where Λ = {Λr, Λg, Λb}. On the other hand, for
the specular only reflection component (wd =
0), the chromaticity will be independent from
the specular weighting factor (ws), and we call
it specular or illumination chromaticity (Γ):

Γ =
G

Gr + Gg + Gb
(5)

where Γ = {Γr, Γg, Γb}. Consequently, with
regard to Eqs. (4) and (5), Eq. (2) becomes able
to be written in term of chromaticity:

I(x) = md(x)Λ(x) + ms(x)Γ (6)
where

md(x) = wd(x)
[
Br(x) + Bg(x) + Bb(x)

]
ms(x) = ws(x)(Gr + Gg + Gb)

(7)
As a result, we have three types of chromaticity:
image chromaticity (σ), diffuse chromaticity
(Λ) and illumination chromaticity (Γ). The im-
age chromaticity is directly obtained from the
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input image using Eq. (3). In addition, without
loss of generality, we can have (σr + σg + σb) =
(Λr + Λg + Λb) = (Γr + Γg + Γb) = 1.

Based on the dichromatic reflection model
and chromaticities definitions derived above,
we describe our goal: given image intensities
(I(x)) whose illumination chromaticity (Γ) is
estimated by a color constancy method; we in-
tend to decompose them into their reflection
components: md(x)Λ(x) and ms(x)Γ.

3. Color Constancy

3.1 Inverse-Intensity Chromaticity
Space

By substituting each color channel’s image in-
tensity in Eq. (3) with its definition in Eq. (6)
and considering pixel-based operation, the im-
age chromaticity can be written in terms of
dichromatic reflection model:

σ=
mdΛ + msΓ

md[Λr + Λg + Λb] + ms[Γr + Γg + Γb]
(8)

Since (Λr + Λg + Λb) = (Γr + Γg + Γb) = 1, we
can obtain the correlation between ms and md:

ms = md
(Λ− σ)
(σ − Γ)

(9)

Then, by plugging Eq. (9) into Eq. (6), the cor-
relation between image intensity (I) and image
chromaticity (σ) can be described as:

I = md(Λ− Γ)
(

σ

σ − Γ

)
(10)

The last equation shows that the correla-
tion between image intensity (I) and image
chromaticity (σ) is not linear. Consequently,
by projecting a uniformly colored surface into
chromaticity-intensity space, the specular pix-
els will form a curved cluster (non-linear cor-
relation), as illustrated in Fig. 3 (b). On the
other hand, the diffuse pixels will form a
straight vertical line, since their image chro-
maticity (σ) which equals to their diffuse chro-
maticity (Λ) is independent from image inten-
sity (I).

3.2 Image Chromaticity and Illumina-
tion Chromaticity

By introducing p = {pr, pg, pb} which we de-
fine as p = md(Λ − Γ), we can derive from
Eq. (10) that:

I
σ

=
p

σ − Γ
(11)

(a) (b)

Fig. 3 (a) Synthetic image with a single surface color.
(b) Projection of the diffuse and specular pix-
els into the chromaticity-intensity space, with
index c representing g (the green channel).

Since I/σ = ΣIi, where ΣIi = (Ir + Ig + Ib),
then the correlation between image chromatic-
ity and illumination chromaticity becomes:

σ = p
1

ΣIi
+ Γ (12)

This equation is the core of our method. It
shows that by solely calculating the value of p,
we are able to determine the illumination chro-
maticity (Γ), since image chromaticity (σ) and
total image intensity (ΣIi) can be directly ob-
served from the input image. Moreover, based
on the equation we can solve the illumination
estimation independently for each color chan-
nel, which is expressed as:

σc = pc
1

ΣIi
+ Γc (13)

where index c represents one of the three color
channels ({r, g, b}) we want to estimate. The
details are as follows.

If the values of pc are constant and the val-
ues of ΣIi vary throughout the image, the last
equation becomes a linear equation, and the il-
lumination chromaticity (Γc) can be estimated
in a straightforward manner by using general
line fitting algorithms for each color channel.
However, in most images, the values of pc are
not constant, since pc depends on md, Λc and
Γc. For the sake of simplicity, until the end
of this section, we temporarily assume that the
values of Λc are constant, making the values of
pc depend solely on md, as Γc has already been
assumed to be constant.

Equation (7) states that md = wd(Br + Bg +
Bb). According to the Lambert’s Law 22), wd is
determined by the angle between lighting direc-
tion and surface normal, while (Br + Bg + Bb)
is determined by diffuse albedo and intensity of
incident light (L). For a surface with a uni-
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form color, the value of the diffuse albedo is
constant. The angles between surface normals
and light directions depend on the shape of the
object and the light distribution. The angle
will be constant if an object has planar surface
and illumination directions are the same for all
points in the surface. While, if the surface is
not planar or the illumination directions are not
uniform, then the angle will vary. The values
of intensity of incident light (L) are mostly de-
termined by the location of illuminants, which
will be constant if the locations of the illumi-
nants are distant from the surface. For rela-
tively nearby illuminants, the values of L may
vary w.r.t. the surface point. Considering all
these aspects, as a result, in general conditions
the value of md can be either constant or var-
ied. Yet, in most cases the value of md will be
varied because, most shapes of objects in the
real world are not planar and the assumption
on uniform illumination direction, in some con-
ditions, cannot be held.

Consequently, Eq. (13) poses two problems:
first, whether there are a number of specu-
lar pixels that have the same md, and second,
whether these pixels that have the same md also
have different ΣIi. If we consider a single sur-
face color, then the solution of the first problem
depends on wd and L. In microscopic scale of
the real world, the combination of wd and L
could be unique. Fortunately, in the scale of
image intensity, for some set of surface points,
the differences of the combination of wd and L
are small and can be approximated as constant.
We can take this approximation for granted, as
current ordinary digital cameras automatically
do it for us as a part of their accuracy limita-
tion.

The second problem can be resolved by con-
sidering Eq. (6). In this equation, two specular
pixels will have the same md but different I, if
their values of ms are different. Equation (7)
states that ms = w̃s(Gr + Gg + Gb). In Tor-
rance and Sparrow reflection model 44), which
is reasonably accurate to model specularity, w̃s

is expressed as:

w̃s = FG
1

cos θr
exp

(
− α2

2φ2

)
(14)

where F is the Fresnel reflection, G is the ge-
ometrical attenuation factor, θr is the angle of
surface normal and viewing direction, α is the
angle between the surface normal and the bi-

(a) (b)

Fig. 4 (a) Sketch of specular points of uniformly col-
ored surface in inverse-intensity chromaticity
space. (b) Sketch of specular points of two sur-
face different colors.

(a) (b)

Fig. 5 (a) Diffuse and specular points of a syn-
thetic image (Fig. 3 (a)) in inverse-intensity
chromaticity space, with c representing the
green channel. (b) The cluster of specular
points which head for illumination chromatic-
ity value in y-axis.

sector of viewing direction and illumination di-
rection, and φ is the surface roughness. Thus,
if the two specular pixels have the same surface
color lit by distant light source and have the
same md which implies the same p, then ms of
both pixels will be different if their values of θr

and α are different.
Hence, in general conditions, specular pixels

can be grouped into a number of clusters that
have the same values of pc and different ΣIi.
For every group of pixels that share the same
or approximately the same value of md, we can
consider pc as a constant, which makes Eq. (13)
become a linear equation, with pc as its con-
stant gradient. These groups of pixels can be
clearly observed in inverse-intensity chromatic-
ity space, with x-axis representing 1/ΣIi and y-
axis representing σc, as illustrated in Fig. 4 (a).
Several straight lines in the figure correspond
to several groups of different md values (several
number of different pc: p1

c ,. . . , pj
c,. . . , pn

c , where
c is identical to the c of σc). These lines inter-
sect at a single point on the y-axis, which is
identical to the illumination chromaticity (Γc).
Figure 5 (a) shows the projection of all pixels
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(a) (b)

Fig. 6 (a) Synthetic image with multiple surface col-
ors. (b) Specular points in inverse-intensity
chromaticity space, with c representing the
green channel.

of a synthetic image in Fig. 3 (a) into inverse-
intensity chromaticity space. The horizontal
line in the figure represents the diffuse points,
since the image chromaticity of diffuse pixels
will be constant regardless the change of ΣIi.
While, the slant cluster represents the specular
points. If we focus on this cluster by remov-
ing the diffuse points, according to Eq. (13) we
will find that a number of straight lines, which
compose the cluster, head for the value of il-
lumination chromaticity at y-axis, as shown in
Fig. 5 (b).

Now we relax the assumption of uniformly
colored surface to handle multicolored surfaces.
Figure 4 (b) illustrates the projection of two dif-
ferent surface colors into inverse-intensity chro-
maticity space. We can observe two specular
clusters with different values of diffuse chro-
maticity head for the same value on the chro-
maticity axis (Γc). Since we only consider
points that have the same values of pc and Γc,
then even if there are many different clusters
with different values of Λc, as is the case for
multicolored surfaces, we can still safely esti-
mate the illumination chromaticity (Γc). This
means that, for multicolored surfaces, the esti-
mation process is exactly the same to the case
of a uniformly colored surface. Figure 6 (b)
shows the projection of hightlighted regions
of a synthetic image with two surface colors
(Fig. 6 (a)) into inverse-intensity chromaticity
space.

3.3 Computational Method
To estimate every value of illumination chro-

maticity ({Γr, Γg, Γb}) from inverse-intensity
chromaticity space, we use the Hough trans-
form for each color channel. Figure 7 (a) shows
the transformation from inverse-intensity chro-
maticity space into the Hough space, where its
x-axis represents Γc with index c representing
color channel we want to estimate, and its y-

(a) (b)

Fig. 7 (a) Projection of points in Fig. 5 (b) into Hough
space. (b) Sketch of intersected lines in Hough
space.

axis represents pc, with c equals the c of Γc.
Since Γc is a normalized value, the range of its
value is from 0 to 1 (0 < Γc < 1).

Using the Hough transform alone does not
yet give any solution, because the values of pc

are not constant throughout the image, which
makes the intersection point of lines not located
at a single location. Fortunately, even if the
values of pc vary, the values of Γc are constant.
Thus, in principle, all intersections will be con-
centrated at a single value of Γc, with a small
range of pc’s values. These intersections are in-
dicated by a thick solid line in Fig. 7 (a). If we
focus on the intersections in the Hough space as
illustrated in Fig. 7 (b), we should find a larger
number of intersection at a certain value of Γc

compared to other values of Γc. The reason is,
in inverse-intensity chromaticity space, within
the range of Γc (0 < Γc < 1), the number of
groups of points that form a straight line head-
ing for certain value of Γc are more dominant
than the number of groups of points that form
a straight line heading for other values of Γc.

In practice, we count the intersections in the
Hough space based on the number of points
that occupy the same location. The details are
as follows. A line in the Hough space is formed
by a number of points. If this line is not in-
tersected by other lines, then each point will
occupy a certain location uniquely (one point
for each location). However, if two lines in-
tersect, a location where the intersection takes
place will be shared by two points. The number
of points will increase if other lines also inter-
sect with those two lines at the same location.
Thus, to count the intersections, we first dis-
card all points that occupy a location uniquely,
as it means there are no intersections, and then
count the number of points for each value of Γc.

As a consequence, by projecting the total
number of intersections of each Γc into a two-
dimensional space, illumination-chromaticity
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Fig. 8 Intersection-counting distribution of the green
channel. The estimated illumination chro-
maticity is as follows: Γr = 0.535, Γb = 0.303,
Γb = 0.162, the ground-truth values are: Γr =
0.536, Γb = 0.304, Γb = 0.160.

count space, with y-axis representing the count
of intersections and x-axis representing Γc, we
can robustly estimate the actual value of Γc.
Figure 8 (a) shows the distribution of the
count numbers of intersections in the space,
where the distribution forms a Gaussian-like
distribution. The peak of the distribution lies
at the actual value of Γc.

3.4 Implementation
Implementation of the proposed method is

quite simple. Given an image that has high-
lights, we first find the highlight regions by us-
ing thresholding on image intensity and satura-
tion values. Following the method of Lehmann,
et al. 28), we define the threshloding as follows:

Ĩ =
Ir + Ig + Ib

3
> TaĨmax

S̃ = 1− min(Ir, Ig, Ib)
Ĩ

< TbS̃
max (15)

where Ĩmax and S̃max are the largest Ĩ and S̃ in
the whole input image, respectively. Ta and Tb

are the thresholds of image intensity and satu-
ration, respectively. In our implementation, we
set Ta and Tb from 0.4− 0.6.

This thresholding technique cannot always
produce precise highlight regions. Fortunately,
in practice our estimation method does not
need precise highlight region, even if relatively
small regions of diffuse pixels are included, the
algorithm could work robustly. Of course, more
preciseness is better. Then, for each color chan-
nel, we project the highlight pixels into inverse-
intensity chromaticity space. From this space,
we use the conventional Hough transform to
project the clusters into Hough space. Dur-

ing the projection, we count all possible in-
tersections at each value of chromaticity. We
plot these intersection-counting numbers into
the illumination-chromaticity count space. Ide-
ally, from this space, we can choose the tip as
the estimated illumination chromaticity. How-
ever, as noise always exists in real images, the
result can be improved by computing the me-
dian of a certain percentage from the highest
counts. In our implementation, we use 30%
from the highest counted number.

Note that, first, in our current implementa-
tion we estimate three color channels of illu-
mination chromaticity independently. In fact,
since (Γr + Γg + Γb) = 1, we can solely esti-
mate two color channels instead of three color-
channels. Second, the problem of determin-
ing highlight regions is still an open challenging
problem, and our method could fail for specific
domains that do not follow our thresholding de-
scribed in Eq. (15).

4. Reflection Components Separation

4.1 Normalization
In our method, to separate reflection compo-

nents correctly, the color of the specular com-
ponent must be pure white (Γr = Γg = Γb).
Therefore, we have to normalize the input im-
age, since real images rarely have pure white
illumination chromaticity. The normalization
requires the value of Γ (illumination chromatic-
ity), which can be estimated using color con-
stancy algorithms explained in Section 3, or
other methods 11),38). We express the estimated
illumination chromaticity as Γest, with Γest =
{Γest

r , Γest
g , Γest

b }, and the normalized image as:

I′(x) = m′
d(x)Λ′(x) + m′

s(x)
1
3

(16)

where I′(x) = I(x)
Γest = {}, the normalized image

intensity. m′
d = md

[
Λr(x)
Γest

r
+ Λg(x)

Γest
g

+ Λb(x)
Γest

b

]
, Λ′

is the chromaticity of
(
md

Λ(x)
Γest

)
, which we call

the normalized diffuse chromaticity. We assume
Γ

Γest = {1, 1, 1}, as a result the normalized spec-
ular chromaticity (Γ′) equals {1/3, 1/3, 1/3},
and m′

s = 3ms. The above normalization
makes the specular reflection component be-
come a scalar value.

Later, when the separation is done, to ob-
tain the actual reflection components, we need
to renormalize the separated components, sim-



26 IPSJ Transactions on Computer Vision and Image Media June 2005

ply by multiplying them
(
m′

d(x)Λ′(x) and

m′
s(x) 1

3

)
with Γest:

md(x)Λ(x) =
[
m′

d(x)Λ′(x)
]
Γest (17)

ms(x)Γ =
[
m′

s(x)
1
3

]
Γest (18)

4.2 Specular to Diffuse mechanism
To separate the reflection components, we

basically rely on the specular-to-diffuse mech-
anism. This mechanism is derived from maxi-
mum chromaticity and intensity values of dif-
fuse and specular pixels. Following the chro-
maticity definition in Eq. (3) we define maxi-
mum chromaticity as:

σ̃′(x) =
max(I ′r(x), I ′g(x), I ′b(x))
I ′r(x) + I ′g(x) + I ′b(x)

(19)

where {I ′r(x), I ′g(x), I ′b} are obtained from a
normalized image (I′ in Eq. (16)). Identically,
we can express:

σ̃′(x) = max(σ′
r(x), σ′

g(x), σ′
b(x)) (20)

where σ′ is the image chromaticity of the nor-
malized image. Unlike chromaticity (σ′), max-
imum chromaticity (σ̃′) is a scalar value.

For a uniformly colored surface that has been
normalized, in a two-dimensional space: maxi-
mum chromaticity intensity space, where its x-
axes representing σ̃′ and its y-axes representing
Ĩ ′, with Ĩ ′ = max(I ′r, I ′g, I ′b), the diffuse points’
maximum chromaticities of the image are al-
ways larger than the specular points’ maximum
chromaticity, due to the maximum chromatic-
ity definition (19). Mathematically, it can be
proved by comparing the values of maximum
chromaticity (σ̃′) of diffuse and specular pixels
defined in Eq. (16):

σ̃′
diff > σ̃′

spec (21)

Λ̃′

Λ′
r + Λ′

g + Λ′
b

>
m′

dΛ̃
′ + 1

3m′
s

m′
d(Λ′

r + Λ′
g + Λ′

b) + m′
s

(22)

Λ̃′ >
1
3

(23)

where Λ̃′ = max(Λ′
r, Λ

′
g, Λ

′
b), the Λ′

c of Ĩ ′ (with
index c is identical to the color channel of Ĩ ′),
and (Λ′

r + Λ′
g + Λ′

b) = 1. Thus, since the values
of Λ̃′ for chromatic pixels are always larger than
1/3, the last equation holds true.

In addition, using either the chromaticity or

(a) (b)

Fig. 9 (a) Synthetic image. (b) Projection of the syn-
thetic image pixels into the maximum chro-
maticity intensity space.

Fig. 10 Specular-to-diffuse mechanism. The intersec-
tion point is equal to the diffuse component of
the specular pixel. By knowing diffuse chro-
maticity from the diffuse pixel, the intersec-
tion point can be obtained.

the maximum chromaticity definition, the chro-
maticity values of the diffuse points will be
constant, regardless of the variance of m′

d(x).
In contrast, the chromaticity values of specu-
lar points will vary with regard to the vari-
ance of m′

s(x), as shown in Fig. 9 (b). From
these different characteristics of specular and
diffuse points in the maximum chromaticity
intensity space, we devised specular-to-diffuse
mechanism. The details are as follows.

When two normalized pixels, a specular pixel
I′(x1) and a diffuse pixel I′(x2), with the same
Λ′ are projected into the maximum chromatic-
ity intensity space, the location of the diffuse
point will be at the right side of the specu-
lar point since, diffuse’s maximum chromaticity
is larger than specular’s maximum chromatic-
ity. Then, by subtracting every color channel
of the specular pixel’s intensity using a small
scalar number iteratively, and projecting the
subtracted values into the maximum chromatic-
ity intensity space, we will find that the pro-
jected points form a curved line in the space, as
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shown in Fig. 10. This curved line follows the
following equation (see Appendix A for com-
plete derivation):

Ĩ ′(x)=m′
d(x)(Λ̃′(x)−1/3)

(
σ̃′(x)

σ̃′(x)−1/3

)
(24)

The last equation proves that the distribution
of specular points in maximum chromaticity in-
tensity space forms a curved cluster if the values
of m′

d vary (Fig. 9 (b)).
In Fig. 10, we can observe that a certain point

in the curved line intersects with a vertical
line representing the maximum chromaticity of
the diffuse point. At this intersection, m′

s of
the specular pixel equals zero, since the max-
imum chromaticity of the subtracted specular
pixel becomes identical to that of the diffuse
pixel. As a consequence, the intersection point
becomes crucial, since it indicates the diffuse
component of the specular pixel ( m′

d(x1)Λ′).
To obtain this value, we first compute m′

d(x1),
which can be derived from Eq. (24):

m′
d(x1) =

Ĩ ′(x1)[3σ̃′(x1)− 1]
σ̃′(x1)[3Λ̃′(x1)− 1]

(25)

To compute m′
d we need to know the value

of Λ̃′(x1). This value can be obtained from
the diffuse pixel since, if the two pixels have
the same diffuse chromaticity, then Λ̃′(x1) =
Λ̃′(x2) = σ̃′(x2). Upon knowing the value of
m′

d(x1), we can directly obtain the value of
m′

s(x1), since m′
s(x1) = (I ′r(x1) + I ′b(x1) +

I ′g(x1)) − m′
d(x1). As a result, the normal-

ized diffuse reflection component of the specular
pixel becomes able to obtain: m′

d(x1)Λ′(x1) =
I′(x1)− m′

s(x1)
3 .

To correctly compute the diffuse component
(m′

d(x1)Λ′), the mechanism needs a linearity
between the camera output and the flux of in-
coming light intensity. Moreover, in the case of
the above two pixels, the mechanism can suc-
cessfully obtain the reflection components be-
cause the diffuse chromaticity is known. Unfor-
tunately, given a multicolored image as shown
in Fig. 11, the diffuse chromaticity for each
color is unknown; this, in fact, is the main prob-
lem of separating reflection components by us-
ing a single multicolored image.

Although we cannot directly use specular-
to-diffuse mechanism to separate the reflec-
tion components, the mechanism is still usefull,
since it tells us that the diffuse component of a

(a) (b)

Fig. 11 (a) Synthetic image with multicolored sur-
face. (b) Projection of the synthetic image
pixels into the maximum chromaticity inten-
sity space.

(a) (b)

Fig. 12 (a) Shifting all pixels into arbitrary Λ̃′. (b)
Specular-free image.

specular pixel lies somewhere in the curved line
(Eq. (24)). Furthermore, by using the mecha-
nism, we are also able to generate a specular-
free image, which is one of the crucial compo-
nents in our proposed method.

4.3 Specular-Free Image
To generate a specular-free image, we sim-

ply set the diffuse maximum chromaticity (Λ̃′
in Eq. (25)) equal to an arbitrary scalar value
(1/3 < Λ̃′ ≤ 1), for all pixels regardless of
their color. For instance, we set Λ̃′ equal
to 0.5 for image in Fig. 9 (a), which implies
that the distribution of the points in maximum
chromaticity-intensity space becomes a vertical
line as shown in Fig. 12 (a). As a result, we can
obtain an image that does not have specular
reflections (Fig. 12 (b)). Figure 13 (a) shows
a real image of a multicolored scene. By set-
ting Λ̃′ = 0.5 for all pixels, we can obtain an
image that is geometrically identical to the dif-
fuse component of the input image (Fig. 13 (b)).
The difference of both is solely in their surface
colors.

This technique can successfully remove high-
lights mainly because the saturation values of
all pixels are made constant regarding to the
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(a) (b)

Fig. 13 (a) Normalized input image. (b) Specular-free
image by setting Λ̃′ = 0.5. The specular com-
ponents are perfectly removed, but the surface
color is different.

maximum chromaticity, while retaining their
hue 2),6). It is well known that, if the specular
component’s color is pure white, then diffuse
and specular pixels that have the same surface
color will have identical values of hue, with the
hue defined as 18):

H =cos−1

[ 1
2

[
(I ′r − I ′g)+(I ′r−I ′b)

]
[
(I ′r−I ′g)2+(I ′r−I ′b)(I ′g−I ′b)

] 1
2

]

(26)
and difference saturation values, with satura-
tion is defined as 18):

S = 1−
[

3
I ′r + I ′g + I ′b

min(I ′r, I
′
g, I

′
b)

]
(27)

In our dichromatic reflection model (Eq. (16)),
different saturation means different value of m′

s

(the weighting factor of specular component),
and the same hue means the same value of
Λ′ (the normalized diffuse chromaticity). As
consequences, in maximum chromaticity inten-
sity space, for diffuse points with the same Λ′,
both saturation and hue values will be constant
(since their m′

s values equal zero) while, for
specular points with the same Λ′, their sat-
uration values will vary (since their m′

s val-
ues vary), and the hue values will be constant.
Thus, shifting all points in maximum chro-
maticity intensity space into a certain arbitrary
value using a specular-to-diffuse mechanism is
identical to making all points’ saturation values
constant, but retaining their hue values intact.
These constant-saturation values can make the

highlights disappear from the image.
Formally, we describe the specular-free image

as:

I̊(x) = m̊d(x)Λ̊(x) (28)

where I̊ = {I̊r, I̊g, I̊b} is the image intensity of
the specular-free image, Λ̊ = {Λ̊r, Λ̊g, Λ̊b} is
the diffuse chromaticity, and m̊d is the diffuse
weighting factor. In the following, we will prove
that m̊d has the same geometrical profile to m′

d
(the diffuse weighting factor of normalized im-
age).

According to Eq. (16) a normalized diffuse
pixel is described as I′(x) = m′

d(x)Λ′(x). If
we apply the specular-to-diffuse mechanism to
the pixel by substituting the value of Λ̃′ in
Eq. (25) where Λ̃′ = max(Λ′

r, Λ
′
g, Λ

′
b) with an

arbitrary maximum chromaticity whose value
equals max(Λ̊r, Λ̊g, Λ̊b), then the equation be-
comes:

m̊d(x) =
Ĩ ′(x)[3σ̃′(x)− 1]

σ̃′(x)[3 max(Λ̊r, Λ̊g, Λ̊b)− 1]
(29)

Since Ĩ ′(x) = m′
d(x)Λ̃′(x), and for diffuse

pixels Λ̃′(x) = σ̃′(x), by defining Λ̃new =
max(Λ̊r, Λ̊g, Λ̊b), we can obtain:

m̊d(x) = m′
d(x)

3Λ̃′(x)− 1
3Λ̃new − 1

(30)

Λ̃new is independent of the spatial parameter
(x), since we use the same value Λ̃new for all
pixels regardless of their colors. Note that the
same value of Λ̃new does not necessarily im-
ply the same value Λ̊. As a result, for diffuse
pixels with the same diffuse chromaticity (the
same surface color), 3Λ̃′(x)−1

3Λ̃new−1
will be constant,

thereby enabling us to describe the image in-
tensity of specular-free image as:

I̊(x) = m′
d(x)k(x)Λ̊(x) (31)

where k(x) = 3Λ̃′(x)−1

3Λ̃new−1
. For pixels with the

same diffuse chromaticity (Λ′), k is a constant
scalar value. For the proof for specular pix-
els, see Appendix B. Therefore, since m̊d(x) =
m′

d(x)k, the diffuse geometrical profile of the
specular-free image is identical to the geomet-
rical profile of both the normalized image (16)
and the input image (6).

Generating a specular-free image using
specular-to-diffuse mechanism is a one-pixel-
based operation that requires only a single col-
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Fig. 14 Basic Flow of the proposed method.

ored image without any segmentation process.
As a result, it is simple and could be useful for
many applications in computer vision that do
not need actual surface color but suffer from
highlights. Note that caution should be taken
in using a specular-free image, particularly for
applications that require evaluating color dis-
continuities since, in the case of two adjacent
colors that have the same hue but different sat-
uration, color discontinuities of the two colors
will disappear.

5. Separation Method

Flowchart in Fig. 14 illustrates the basic idea
of our proposed method. First, given a nor-
malized image, a specular-free image is gener-
ated. Based on these two images (the normal-
ized image and the specular free image), the
‘diffuse verification’ verifies whether the nor-
malized image has diffuse only pixels. If it has
diffuse only, then the processes terminate. Oth-
erwise, the ‘specularity reduction’ will decrease
the intensity of the specular pixels of the nor-
malized image. After that, the diffuse verifi-
cation verifies once again whether the normal-
ized image has diffuse-only pixels. These two
processes are done iteratively until there is no
specularity in the normalized image. All pro-
cesses require only two adjacent pixels to ac-
complish their task; and, this local operation
is indispensable in dealing with highly textured
surfaces. The following subsections will show
the detail of the two processes.

5.1 Diffuse Pixels Verification
5.1.1 Intensity Logarithmic Differenti-

ation
Given one colored pixel, to determine

whether it is diffuse or specular pixel is com-
pletely an ill posed problem. Since in a lin-
ear equation such as Eq. (16), only from a sin-
gle I′, whether m′

s is equal to zero is undeter-
minable. In this section, instead of a single
pixel, we will show that two-neighboring pixels
can be the minimum requirement to determine

whether both of them are diffuse pixels.
We base our technique on intensity logarith-

mic differentiation of the normalized image and
the specular free image. Considering a dif-
fuse pixel which is not located at color dis-
continuities in Fig. 13 (a), we can describe it
as: I′(x1) = m′

d(x1)Λ′. The spatial parame-
ter (x1) is removed from Λ′, since the pixel is
not located at color discontinuities. If we apply
logarithmic and then differentiation operation
on this pixel, the equation becomes:

log(I′(x1))=log(m′
d(x1))+log(Λ′) (32)

d

dx
log(I′(x1)) =

d

dx
log(m′

d(x1)) (33)

For the same pixel’s location (x1), we can ob-
tain a corresponding pixel in the specular-free
image. We describe it as: I̊(x1) = m′

d(x1)kΛ̊,
where k and Λ̊ are independent from spatial
parameter. Thus, using the same operations,
logarithmic and differentiation, we can obtain:

log(̊I(x1))=log(m′
d(x1))+log(k)+log(Λ̊)

(34)
d

dx
log(̊I(x1)) =

d

dx
log(m′

d(x1)) (35)

The last equation has the same result to
Eq. (33). It means that the differential loga-
rithmic of the diffuse pixels of the normalized
image (Eq. (33)) and the differential logarith-
mic of the corresponding pixels in the specular
free image (Eq. (35)) are exactly identical.

As a result, based on the intensity logarithmic
differentiation operation, we become able to de-
termine whether two-neighboring pixels are dif-
fuse pixels:

∆(x)=d log(I′(x))− d log(̊I(x)) (36)

∆(x)




= 0 : diffuse
�= 0 : specular

: or color discontinuity
(37)

As shown in Eq. (37), for pixels located at
color discontinuities, there is still an ambiguity
between specular and color discontinuity pix-
els. Since using two neighboring pixels that
have different surface color, the difference of the
logarithmic differentiation does not equal zero,
although the pixels are diffuse pixels. Theoret-
ically, by extending the number of pixels into
at least four neighboring pixels, it is possible
to distinguish them. However, in real images,
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camera noise and surface noise (surface vari-
ance) 19),39) make such identification become
error-prone; consequently, to deal with the color
discontinuity problem, we need another more
robust analysis which will be described in the
next subsection.

5.1.2 Color Discontinuity
A number of methods have been proposed

to solve the color discontinuity problem, which
is also known as the problem of material
changes 15),20). Unlike those methods, we use
a simple chromaticity-based method to handle
the problem. We use the below decision rule:[

∆r > thR and

∆g > thG
]{

1 : color discontinuity
0 : otherwise

(38)

where thR and thG are the small scalar num-
bers. ∆r(x) = σ′

r(x)− σ′
r(x− 1) and ∆g(x) =

σ′
g(x) − σ′

g(x− 1), with σ′
r = I′

r

I′
r+I′

g+I′
b

and

σ′
g = I′

g

I′
r+I′

g+I′
b
. This simple technique is sim-

ilar to the method proposed by Funt, et al. 13).
For two neighboring pixels, this simple chro-

maticity thresholding is sufficient since when
two neighboring pixels have the same surface
color, their chromaticity difference is small,
even for specular pixels. This is one of the
advantages of our local, two-neighboring-pixels
operation. Moreover, the above thresholding
can also solve the problem of two adjacent ob-
jects that have the same hue but different satu-
ration, as long as the saturation difference is not
less than that of the thresholds. Fortunately, in
practice, even if the saturation difference is less
than the thresholds, it does not affect the result
much; since it implies that the objects have al-
most the same color, so that it is unnecessary
to distinguish them. In addition, we have no
problem when the above thresholding wrongly
deems the shadow boundary to be a color dis-
continuity, since we have nothing to do with
shadow.

5.2 Specularity Reduction
Specularity reduction is the second process

of the two main processes we have proposed.
The purpose of this process is to decrease the
intensity of the specular pixels until we obtain
diffuse only reflections. All operations in this
process are still based only on two-neighboring
pixels. Figure 15 (a) shows three pixels: a,

(a) (b) (c)

Fig. 15 (a) Three points in an image. (b) The three
points in spatial-intensity space. (c) The
three points in maximum chromaticity inten-
sity space.

(a) (b) (c)

(d) (e) (f)

Fig. 16 Basic idea of the iterative framework using
local two-pixels operation. Top row, spatial-
intensity space: (a) Initial condition. (b) First
looping. (c) Final condition; Bottom row,
chromaticity intensity space: (d) Initial con-
dition. (e) First looping. (f) Final condition.

b, and c. For the sake of simplicity, for the
moment we assume a uniformly colored sur-
face and those the three pixels are adjacent
spatially to each other. Pixel a is the high-
light’s brightest pixels, and pixel c is a diffuse
pixel, and pixel b is a specular pixels located
between pixels a and c. In spatial-image inten-
sity space, the image intensity of pixel a will be
the largest value followed by pixels b and c, as
shown in Fig. 15 (b). If we transform the pix-
els into maximum chromaticity-intensity space,
we will obtain a point distribution illustrated in
Fig. 15 (c).

Figure 16 illustrates the basic idea of our
specularity reduction. In considering a two-
pixel operation, the iteration begins with com-
paring the maximum chromaticity of point a
and point b in Fig. 16 (d). From the maximum
chromaticity definition in Eq. (19), we know
that the smaller the m′

s is, the bigger the maxi-
mum chromaticity value. In other words, point
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b is more diffuse than point a. Thus, by shift-
ing point a using the specular-to-diffuse mecha-
nism w.r.t the maximum chromaticity of point
b, the more diffuse pixel a can be obtained,
i.e., the intensity of pixel a becomes decreased
and its chromaticity becomes identical to point
b’s, as illustrated in Figs. 16 (b) and (e), respec-
tively. Using the same process in the second
iteration, the maximum chromaticities of point
b and point c are compared and then shifted.
When the maximum chromaticity of point b
equals the maximum chromaticity of point c,
the intensity of pixel b becomes equal to its dif-
fuse component. The same operation is done for
all pixels iteratively until their maximum chro-
maticity becomes the same (Fig. 16 (f)), which
as a result, produces the diffuse components of
the three pixels (Fig. 16 (c)).

However, the above termination condition,
looping until the maximum chromaticities of
all pixels are the same, is feasible only for a
uniformly colored surface. In multicolored sur-
faces, such a termination condition will pro-
duce incorrect separation results. Therefore,
to determine the termination we use the dif-
fuse verification process explained in Subsection
5.1. We have learned that the process can iden-
tify whether an image has diffuse only pixels,
even for a multicolored image. Algorithm 6.1
shows the pseudo-code of the iteration method
for both uniform and multicolored surfaces.

6. Implementation

Algorithm 6.1 shows the pseudo-code of the
iterative algorithm. It begins with executing
function delta(N, S, ε), which computes the dif-
ference of the intensity logarithmic differenti-
ation of the normalized image (N) and the
specular-free image (S). In discrete operations,
the logarithmic differentiation is done using:
d log(I ′tot(x)) = log(ΣI ′i(x + 1)) − log(ΣI ′i(x)),
where ΣI ′i = (I ′r + I ′g + I ′b). Then, the function
computes ∆ = d log(I ′tot(x)) − d log(I̊tot(x)),
and labels the pixels of the normalized image:
for pixels that have ∆ more than ε (≈ 0), they
are labeled ‘specular’, otherwise, they are la-
beled ‘diffuse’.

Algorithm 6.1: Iteration(N, S, ε)

comment: N = the normalized image

comment: S = the specular-free image

(1) ∆ = delta(N, S, ε);
(2) while any(∆(x) > ε)


for x← 0 to sizeof(N)-1


(3) if x.f lag == diffuse
then next(x);

(4) if IsDiscontinuity(x,x + 1) == true

then




x.f lag = discontinuity;
(x + 1).f lag = discontinuity;
next(x);

(5) if σ̃′(x) == σ̃′(x + 1)

then




x.f lag = noise;
(x + 1).f lag = noise;
next(x);

(6) M(x) = Specular2Diffuse(I′(x),
I′(x + 1));

next(x);
N = M ;
(7) ∆ = delta(N, S, ε);

return (N)
comment: N = normalized diffuse component

In Step 2 until Step 4, if there are any pixels
labeled ‘specular’, for each of them, the algo-
rithm examines whether the pixel and its neigh-
bor are color discontinuity pixels. If so, then
they are labeled ‘discontinuity’; otherwise, then
at least one of them must be a specular pixel. In
Step 5, before we apply the specular-to-diffuse
mechanism to both pixels, additional checking
is necessary, i.e., whether both pixels’ maxi-
mum chromaticity is the same. If they are the
same, then the pixels are labeled ‘noise’. The
reason that they are noise and not specular pix-
els is because two-neighboring specular pixels
never have the same maximum chromaticity.

In Step 6, using the specular-to-diffuse mech-
anism the intensity and maximum chromaticity
value of the pixel that have smaller σ̃′ is shifted
w.r.t. the pixel with bigger σ̃′. This is ap-
plied to all pixels, and produces a more diffuse
normalized image. By setting N equal to this
image (M), function delta(N, S, ε) is executed
once again in Step 7. This time, pixels labeled
’discontinuity’ and ’noise’ are ignored (not in-
cluded in the process). Finally, if there is still
any ∆ larger than ε, then the iteration con-
tinues; if not, the separation terminates, which
consequently yields a diffuse component of the
normalized image.
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In our implementation, we define ε = 0.
For color discontinuity thresholds (thR and
thG), we set them with the same number rang-
ing from 0.05 to 0.1. The numbers are cho-
sen by considering camera noise, illumination
color variance, ambient light (some consider-
ably small interreflections) and surface color
variance (although human perception deems
that the color surface is uniform, there is, in
fact, still color variance due to dust, imperfect
painting, etc. 39)).

Algorithm 6.2: ControlledThreshold
(N, S)

comment: N = the normalized-image

comment: S = the specular-free image

RemoveAchromaticP ixels(N);
stepTH = InitialThreshold;
while stepTH > ε


∆ = delta(N, S, ε);
if any(∆(x) > stepTH)
then Iteration(N, S, stepTH);

stepTH = stepTH − δ;
ResetAllLabels();

Renormalization(N);
return (N);
comment: N=actual diffuse component

For a more stable and robust algorithm we
add an algorithm that controls the decrease of
the threshold of ∆ step-by-step, as described in
Algorithm 6.2. In function Iteration(N, S, ε),
stepTh will replace ε, which in our implemen-
tation its initial value is equal to 0.5. Ideally,
the initial value should be set as large as pos-
sible; yet, by considering the time computation
the number is chosen. To obtain more accurate
results, the smaller subtracting number (δ) is
preferable and, in our implementation, we set
it equal to 0.01. To anticipate regions having
achromatic pixels (I ′r = I ′g = I ′b), which are
inevitable in the real images, we remove them
by using simple thresholding in maximum chro-
maticity; achromatic pixels of normalized image
have maximum chromaticity near 1/3.

7. Experimental Results

7.1 Experimental Conditions
We have conducted several experiments on

real images, which were taken using a SONY
DXC-9000, a progressive 3 CCD digital camera,
by setting its gamma correction off. To ensure

(a) (b)

(c) (d)

Fig. 17 (a) Real input image with a single surface
color. (b) Projection of the red channel of
the specular pixels into inverse-intensity chro-
maticity space. (c) Projection of the green
channel of the specular pixels into inverse-
intensity chromaticity space. (d) Projection
of the blue channel of the specular pixels into
inverse-intensity chromaticity space.

that the outputs of the camera are linear to the
flux of incident light, we used a spectrometer:
Photo Research PR-650. We examined the al-
gorithm using four types of input, i.e., uniform
colored surfaces, multicolored surfaces, highly
textured surfaces, and a scene multiple objects.
We used convex objects to avoid interreflection,
and excluded saturated pixels from the compu-
tation. For evaluation, we compared the results
with the average values of image chromatic-
ity of a white reference image (Photo Research
Reflectance Standard model SRS-3), captured
by the same camera. The standard deviations
of these average values under various illumi-
nant positions and colors were approximately
0.01 ∼ 0.03.

7.2 Color Constancy
7.2.1 Result on a Uniformly Colored

Surface
Figure 17 (a) shows a real image of a head

model that has a uniformly colored surface and
relatively low specularity, illuminated by Solux
Halogen with temperature 4,700 K. Under the
illumination, the image chromaticity of the
white reference taken by our camera has chro-
maticity value: Γr = 0.371, Γg = 0.318, Γb =
0.310.

Figure 17 (b) shows the specular points of the
red channel of chromaticity in inverse-intensity
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(a) (b)

(c)

Fig. 18 (a) Intersection-counting distribution for red
channel of illumination chromaticity for im-
age in Fig. 17. (b) Intersection-counting dis-
tribution for green-channel. (c) Intersection-
counting distribution for blue channel.

chromaticity space. Even though there is some
noise, generally, all points form several straight
lines heading for a certain point in the chro-
maticity axis. The same phenomenon can also
be observed in Figs. 17 (c) and (d). Figure 18
shows the intersection-counting distribution in
the illumination-chromaticity count space. The
peaks of the distribution denote the illumina-
tion chromaticity. The result of the estimation
was: Γr = 0.378, Γg = 0.324, Γb = 0.287.

7.2.2 Result on a Multi-colored
Surface

Figure 19 (a) shows a plastic toy with a mul-
ticolored surface. The illumination is Solux
Halogen covered with a green filter. The im-
age chromaticity of the white reference un-
der this illuminant taken by our camera was
Γr = 0.298, Γg = 0.458, Γb = 0.244.

Figures 19 (b), (c), (d) show the specular
points of multiple surface colors in inverse-
intensity chromaticity space. From Fig. 20, we
can observe that, even for several surface col-
ors, the peak of intersection counts was still at
a single value of Γc. The result of the estima-
tion was Γr = 0.319, Γg = 0.439, Γb = 0.212.

(a) (b)

(c) (d)

Fig. 19 (a) Real input image with multiple surface
colors. (b) Projection of the red channel of
the specular pixels into inverse-intensity chro-
maticity space. (c) Projection of the green
channel of the specular pixels into inverse-
intensity chromaticity space. (d) Projection
of the blue channel of the specular pixels into
inverse-intensity chromaticity space.

(a) (b)

(c)

Fig. 20 (a) Intersection-counting distribution for the
red channel of illumination chromaticity for
image in Fig. 19. (b) Intersection-counting
distribution for the green channel. (c)
Intersection-counting distribution for the blue
channel.
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7.2.3 Result on Highly Textured
Surface

Figure 21 (a) shows a magazine cover with
a complex multicolored surface, which was lit
by a fluorescent light covered with a green fil-
ter. The image chromaticity of the white refer-
ence under this illuminant taken by our camera
has a chromaticity value of Γr = 0.283, Γg =
0.481, Γb = 0.236. The result of the estima-
tion was Γr = 0.315, Γg = 0.515, Γb = 0.207, as
shown in Fig. 22.

7.2.4 Result on Multiple Objects
Figure 23 (a) shows a scene with multiple

objects, which was lit by a fluorescent light
taken in uncontrolled environment. The im-
age chromaticity of the white reference under
this illuminant taken by our camera has a chro-
maticity value of Γr = 0.337, Γg = 0.341, Γb =
0.312. The result of the estimation was Γr =
0.321, Γg = 0.346, Γb = 0.309, as shown in
Fig. 24.

7.2.5 Evaluation
To evaluate the robustness of our method, we

have also conducted experiments on 6 different
objects: 2 objects with a single surface color, 1
object with multiple surface colors, and 3 ob-
jects with highly textured surfaces. The col-
ors of illuminants were grouped into 5 different
colors: Solux Halogen lamp with temperature
4,700K, incandescent lamp with temperature
around 2,800 K, Solux Halogen lamp covered
with green, blue and purple filters. The illumi-
nants were arranged at various positions. The
total of images in our experiment was 43 im-
ages. From these images, we calculated the er-
rors of the estimation by comparing them with
the image chromaticity of the white reference,
which are shown in Table 1. The errors are
considerably small, as the standard deviations
of the reference image chromaticity are around
0.01 ∼ 0.03.

7.3 Reflection Components Separa-
tion

We evaluate the separation results by com-
paring the results of two polarizing filters. We
place one of the two filters in front of camera
and the other in front of the light source. The-
oretically, if we change the polarization angle
of one of the two filters into a certain angle,
we can obtain diffuse only reflection. In our
experiment, we changed the polarization an-
gle of the filter placed in front of the camera.
Figures 25 (a), (b) and (c) show, respectively,
the input image, the diffuse reflection compo-

(a) (b)

(c) (d)

Fig. 21 (a) Real input image of complex textured sur-
face. (b) Projection of the red channel of
the specular pixels into inverse-intensity chro-
maticity space. (c) Projection of the green
channel of the specular pixels into inverse-
intensity chromaticity space. (d) Projection
of the blue channel of the specular pixels into
inverse-intensity chromaticity space.

(a) (b)

(c)

Fig. 22 (a) Intersection-counting distribution for the
red channel of illumination chromaticity for
image in Fig. 21. (b) Intersection-counting
distribution for the green channel. (c)
Intersection-counting distribution for the blue
channel.
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(a) (b)

(c) (d)

Fig. 23 (a) Real input image of a scene with multi-
ple objects. (b) Result of projecting the spec-
ular pixels into inverse-intensity chromaticity
space, with c representing the red channel. (c)
Result of projecting the specular pixels, with
c representing the green channel. (d) Result
of projecting the specular pixels, with c repre-
senting the blue channel.

(a) (b)

(c)

Fig. 24 (a) Intersection-counting distribution for the
red channel of illumination chromaticity for
image in Fig. 21. (b) Intersection-counting
distribution for the green channel. (c)
Intersection-counting distribution for the blue
channel.

Table 1 The performance of the estimation method
with regard to the image chromaticity of the
white reference.

red green blue
average of error 0.0172 0.0141 0.0201
std. dev. of error 0.01 0.01 0.01

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 25 Top: (a) Textured input image (b) ground
truth (c) estimation. Middle: specular-
ground truth comparison: (d) R-channel (e)
G-channel (f) B-channel. Bottom: error:(d)
R-channel (e) G-channel (f) B-channel.

nent obtained using the two polarizing filters
(ground truth) and reflection components esti-
mated using our method. Figures 25 (d), (e)
and (f) show the difference of image intensity
values of the input image (Fig. 25 (a)) and the
ground truth (Fig. 25 (b)), in red, green and
blue channels, respectively. The ranges of blue
pixels in the figures are 0 ∼ 5. Green pixels
are 6 ∼ 15, red pixels are 16 ∼ 35, while yel-
low pixels represent larger than 35. In high-
lighted regions, we can observe a large differ-
ence of the intensity values in all color channels.
Also, in certain places near occluding bound-
aries, yellow and red pixels also appear; this
is caused by the difference of intensity distri-
bution when the polarization angle is changed.
Figures 25 (g), (h) and (i) show the difference
of image intensity values of the estimated re-
flection component (Fig. 25 (c)) and the ground
truth (Fig. 25 (b)) in red, green and blue, re-
spectively. In former highlighted regions, the
colors became blue, indicating that the estima-
tion result was considerably accurate. Red and
green pixels occurring in many places in the
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(a) (b)

(c) (d)

Fig. 26 (a) A complex textured surface lit with flu-
orescent lights. (b) The specular-free image
was created by setting Λ̃′ = 0.5. (c) Diffuse
reflection component. (d) Specular reflection
component.

comparison are due to two main factors: in-
accurate illumination chromaticity estimation,
and the second type of noise (dark noise) that
occurs as the result of using polarizing filters.
Despite these factors, the estimation results
are considerably accurate, since the maximum
value of second type of noise of the camera
(Sony DXC-9000) is around 10. Note that, in
this evaluation, we do not evaluate pixels whose
image intensity below camera is dark (black
pixels in the evaluation represent unevaluated
parts).

For a complex textured surface, Fig. 26 (a)
shows an image of a textured surface under fluo-
rescent lights in uncontrolled environment. The
specular-free image, which was generated by
setting Λ̃new equal to 0.5 is shown in Fig. 26 (b).
Figures 26 (c) and (d) show the separated com-
ponents of the object. The top part of Fig. 27
shows a complex scene lit with fluorescent lights
in an uncontrolled environment. The specular-
free image result is shown in the bottom part of
Fig. 27. Figure 28 show the diffuse and specu-
lar reflections. In the estimated diffuse compo-
nent (the top part of Fig. 28) and the specular-
free image (the bottom part of Fig. 27), regions
which are originally white become dark. The
reason is that the specular-to-diffuse mecha-
nism fails to handle achromatic pixels.

8. Conclusion

We have introduced a novel method for il-
lumination chromaticity estimation. The pro-

Fig. 27 Top: a complex multicolored scene lit with
fluorescent lights. Bottom: the specular-free
image by setting Λ̃ = 0.5.

posed method can handle both uniform and
non-uniform surface color objects. Given crude
highlight regions, the method can estimate il-
lumination color without requiring color seg-
mentation. It is also applicable for multiple
objects with various colored surfaces, as long
as there are no interreflections. In this paper,
we also introduced inverse-intensity chromatic-
ity space to analyze the relationship between
illumination chromaticity and image chromatic-
ity. There are a few advantages of the method.
First, the capability to cope with either single
surface color or multiple surface colors. Sec-
ond, color segmentation inside highlight regions
and intrinsic camera characteristics are not re-
quired. Third, the method does not use strong
constraints on illumination, which several exist-
ing color constancy methods use, such as black-
body radiator.

We also have proposed a novel method to
separate diffuse and specular reflection compo-
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Fig. 28 Top: the diffuse reflection component.
Bottom: the specular reflection component.

nents. The main insight of the method is on
the chromaticity-based iteration with regard to
the logarithmic differentiation of the specular-
free image. Using the method, the separation
problem in textured surfaces with complex mul-
ticolored scene can be resolved without requir-
ing explicit color segmentation. It is possible
because we base our method on local operation
by utilizing the specular-free image. There are
three crucial factors, and thus the main con-
tributions of our method, i.e., the specular-to-
diffuse mechanism, the specular-free image, and
the logarithmic differentiation-based iteration
framework.

The experimental results of our color con-
stancy and reflection components separation on
complex textured images show that the pro-
posed methods are accurate and robust.
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Appendix A

Derivation of the correlation between illumi-
nation chromaticity and image chromaticity.

σ̃′(x)=
m′

d(x)Λ̃′(x)+ 1
3m′

s(x)
m′

d(x)[Λ′
r(x)+Λ′

g(x)+Λ′
b(x)]+m′

s(x)
(39)

where [Λ′
r + Λ′

g + Λ′
b] = 1. For local (pixel

based) operation the location (x) can be re-
moved. Then:

m′
s = m′

d

(Λ̃′ − σ̃′)
(σ̃′ − 1/3)

(40)

Substituting m′
s in the definition of Ĩ (Eq. (16))

with m′
s in the last equation:

Ĩ ′ = m′
d(Λ̃

′ − 1/3)
(

σ̃′

σ̃′ − 1/3

)
(41)

Appendix B

A diffuse pixel from a normalized image can
be described as: I′(x) = m′

d(x)Λ′(x). In Sec-
tion 4.3, we have shown that using specular-to-
diffuse mechanism by substituting Λ̃′ with an
arbitrary value (Λ̃new) whose value is between
1/3 ∼ 1, we can obtain:

I̊(x) = m̊d(x)Λ̊(x) = m′
d(x)k(x)Λ̊(x)

(42)

where, for pixels with the same diffuse chro-
maticity, k is a constant scalar value. Thus,
we can obtain that the geometrical profile of
specular-free image is identical to that of dif-
fuse reflection component. The proof for spec-
ular pixels is as follows:

A specular pixel with identical diffuse geo-
metrical profile to the above diffuse pixel is de-
scribed as: I′(x) = m′

d(x)Λ′(x)+ m′
s(x)
3 . By ap-

plying specular-to-diffuse mechanism (Eq. (30))
to the specular pixel with the same value of
Λ̃new, we can obtain:
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m̊d(x) =
Ĩ ′(x)[3σ̃′(x)− 1]
σ̃′(x)[3Λ̃new − 1]

(43)

where Ĩ ′(x) = m′
d(x)Λ̃′(x) + m′

s(x)
3 , and Λ̃new

is the arbitrary maximum chromaticity. Un-
like diffuse pixels, for specular pixels, σ̃′ �= Λ̃′.
Then, the last equation becomes:

m̊d(x) =
[
m′

d(x)Λ̃′(x) +
m′

s(x)
3

]
[3σ̃′(x)− 1]

σ̃′(x)[3Λ̃new − 1]
(44)

Since we argued that in specular-free image
specular reflection disappear (m̊s = 0), then
m̊d of the specular pixel should equal to m̊d of
the diffuse pixel:

m̊diff
d = m̊spec

d (45)

m′
d

[3Λ̃′(x)− 1
3Λ̃new − 1

]
=

[
m′

d(x)Λ̃′(x) +
m′

s(x)
3

]
[3σ̃′(x)−1]

σ̃′(x)[3Λ̃new−1]
(46)

m′
d(x)

[
3Λ̃′(x)−1

]
σ̃′(x)

= m′
d(x)Λ̃′(x)

[
3σ̃′(x)− 1

]
+

m′
s(x)
3

[
3σ̃′(x)− 1

]
(47)

m′
d(x)

[
Λ̃′(x)− σ̃′(x)

]
=m′

s(x)
[
σ̃′(x)− 1/3

]
(48)

m′
s(x) = m′

d(x)
(Λ̃′(x)− σ̃′(x))
(σ̃′(x)− 1/3)

(49)

the last equation is identical to Eq. (40) in Ap-
pendix A, which proves that m̊diff

d = m̊spec
d

holds true. Therefore, all pixels in a specular-
free image have no specular reflection compo-
nent and its geometrical profile is identical to
the diffuse component of the input image.
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