
IPSJ SIG Technical Report

A low overhead trace and compression system for

Automotive RTOS

Jairo Lopez1,a) Taku Shimosawa1,b) Kazuyoshi Serizawa2,c) Tomohito Ebina2,d)

HiroshiMine1,e)

Abstract: In the realm of automotive operating systems, there is a strong need to be able to detect, handle and store

ECU executions for the automobile to work under stricter functional safety standards. However automotive ECUs run

real time operating systems (RTOS) under hard real time constraints with the absolutely bare minimum of computa-

tional resources. In order to detect and store ECU executions we designed and implemented a tracer for AUTOSAR

compatible RTOS which has a low overhead, saving the start and end of task/ISR and the relative time of execution.

On top of this tracer we then built a pattern identification based algorithm that also offers us a lossless compression

ratio of 1.27 : 1. Our implementation gives us a worst case overhead of 500 nanoseconds for the tracer and 4600

nanoseconds for the tracer running with the pattern identification method, demonstrating the feasibility of introducing

this design into hard real time constrained automotive ECUs.

Keywords: AUTOSAR, automotive, ECU, tracer, RTOS, compression

1. Introduction

Transportation is the artery of human society’s economy. A

large part of transportation is condensed in commercial motor ve-

hicles, such as trucks, buses and light machinery, and passenger

cars. The number of transportation vehicles in operation world-

wide has surpassed 1.2 billion [1] and is expected to rise to more

than 2 billion within the next 20 years [2].

Within these motor vehicles is the use of Electronic Control

Units (ECUs). These embedded systems control critical parts of

automobiles such as the steering, engines, brakes, doors and all of

the smaller electronic systems that have become a common sta-

ple in automotive design. The number of ECUs has increased to

the point that a modern car will have more than 70 ECUs con-

trolling various parts of the automobile [3]. Until very recently,

these ECUs functioned using no operating system or a function-

ally limited operating system. The increased handling of inter-

connections of a greater number of ECUs, the multiplexing of

a greater number of tasks and interrupts per ECU and having to

deal with each ECU’s maintenance and operation, has made de-

signs not using operating systems inefficient.

Attempts were made by automotive industries to create their

own operating systems but with increasing need to integrate dif-

ferent maker’s ECUs and third party software in one vehicle ef-

fortlessly, it became apparent that inter-company cooperation was

1 Hitachi, Ltd. Research and Development
2 Hitachi Automotive Systems, Ltd.
a) jairo.lopez.uh@hitachi.com
b) taku.shimosawa.uf@hitachi.com
c) kazuyoshi.serizawa.fz@hitachi-automotive.co.jp
d) tomohito.ebina.yo@hitachi-automotive.co.jp
e) hiroshi.mine.vd@hitachi.com

required. The negotiation efforts culminated in the creation of an

open standard for automotive operating systems named AUTo-

motive Open System ARchitecture (AUTOSAR) [4].

The continued development of AUTOSAR coincides with

three other major developments in automotive and ECU technolo-

gies. The first major development is the increased requirement for

functional safety standards in automobiles under ISO 26262 [5],

with which AUTOSAR aims to comply. The second major de-

velopment is that with the increasing number of ECUs required

in a modern automobile, coupled with the technological advances

in the reduction of cost for complex microcontroller production,

ECUs have started to appear that use operating systems to manage

multiple integrated cores, aiming to reduce power consumption

as well as the total number of ECUs needed for a vehicle. The

third major development is the increasing desire to connect mul-

tiple ECUs via high bandwidth networking technologies, such as

Ethernet, to other ECUs within the same vehicle as well as com-

ponents that exist outside the vehicle’s physical frame [6]. As

more automobiles increasingly offload critical decision making

to ECUs, these three factors will continue to play a critical role in

the development of next generation ECUs.

These embedded systems were complex and will, with the pre-

viously mentioned factors, continue to increase in complexity.

This complexity leads to difficulty in analyzing the systems, par-

ticularly when the causes for failures are to be identified. Iden-

tification of these causes for failure are important because these

embedded systems are often used in critical systems, where fail-

ures may directly lead to property damage or human injury. No

where is this more apparent than in automobiles, where internal

systems such as ADAS (Advanced Driving Assistant Systems)

or autonomous driving continue to proliferate and will interact

1ⓒ 2017 Information Processing Society of Japan

Vol.2017-OS-140 No.8
2017/5/16



IPSJ SIG Technical Report

directly with human beings. A failure in these systems directly

threaten the lives of human beings.

What is important to note is that the more complex a system be-

comes, the more dependent the system becomes on the software

within the system. This also means that software becomes the

major factor that can trigger failures in such systems. A software

tracer is one of the most effective ways to investigate and iden-

tify the causes of software failures. Within the automotive realm,

AUTOSAR is the defacto standard for the enabling the introduc-

tion of more complex software into ECUs. AUTOSAR, however,

does not currently specify a logging feature for OS-level events

and we believe that a OS tracing system could benefit the AU-

TOSAR platform, particularly because automotive systems work

with many independently constructed third party components.

There are several issues in creating a OS tracer for AU-

TOSAR. First, automotive embedded systems are poor in re-

sources. The commonly used microcontrollers have typically less

than a megabyte of memory and one or a few CPU cores with only

hundreds of mega-hertz of operating frequency. Despite these

limitation of resources, logs recorded by the tracer must be suffi-

cient for failure analysis. Second, AUTOSAR is standards speci-

fication with no reference implementation. This means that multi-

ple implementations of AUTOSAR compliant operating systems

exist, with a wide variety of interpretations of the standard. Third,

automotive real time operating systems (RTOS) are hard real time

systems meaning that whatever is introduced into the software ar-

chitecture for the system must not create unintended delays for

critical tasks.

This paper explains the steps taken to design and implement a

OS tracer for an AUTOSAR compliant Base Software (BSW) to

obtain a low overhead tracer that could be used for failure analy-

sis.

2. Requirements

In this section, we investigate the requirements of the tracer for

the target system, i.e. ECUs in automobiles. First, we discuss the

requirements imposed by the limitation of the hardware, and soft-

ware. Then, we discuss the requirements deduced by the usage of

the tracer, fault and performance analysis.

2.1 Trace functions

The main function of the tracer is to record BSW events in

the main buffer(s). Since events continue to occur as long as the

BSW is running, and the size of the buffer is finite, the tracer

should keep only the latest records and discard older events.

The types of events which we considered the tracer should

record were:

• Task switches (starts and ends of tasks)

• Interrupt switches (starts and ends of interrupt service rou-

tines (IRSs))

Therefore, the tracer should:

• (RQ-00) Have a buffer to save the events.

• (RQ-01) Record the events to a buffer in a First-In First-Out

(FIFO) way.

• (RQ-02) Be able to record the execution of tasks and ISRs.

2.2 Hardware limitations

Automotive ECUs are generally under strong cost pressures,

making their hardware be as moderate as possible for the required

task; for example, the operating frequency of CPUs in the field

can be less than a few hundreds of megahertz, with the available

RAM being less than a megabyte. There is also a limitation that

it is difficult to assume a single target CPU architecture because

there is a wide variety of automotive CPU architectures for each

automotive component. Atomic operations, which are necessary

for tracer operations and will be more carefully explained in the

following section, vary in each architecture. For example, in-

structions to suppress interrupts, existence of atomic instructions

on memory and memory ordering are all CPU architecture depen-

dent operations. Considering the above, additional requirements

for the tracer are follows:

• (RQ-03) Use as little memory as possible.

• (RQ-04) Support various CPU architectures.

2.3 Software limitations

Tracing mechanisms record events as they occur. Therefore,

the introduction of tracing functions inherently add some over-

head to the software in which it is implemented. Automotive

ECUs control mechanical components in response to sensor in-

puts which can require response times in the hundreds of mi-

croseconds in order to maintain safe and constant operation.

From the point of view of software, the response time is the in-

terval between the time when an hardware interrupt is invoked

by sensors or other external devices and the time when the cor-

responding interrupt handler is actually executed. The overhead

of the tracer may worsen the response time because it logs at the

beginning of the interrupt handler. In addition, AUTOSAR OSes

themselves add overhead compared to the legacy platform soft-

ware, due to the rigorous checks, such as permission, in order to

conform to the standard [7]. Thus, the tracer should

• (RQ-05) Make its overhead as small as possible.

• (RQ-06) Assure that the overhead is acceptable with regard

to performance requirements.

2.4 Fault and Performance Analysis

The main purpose of any OS tracer is fault analysis and perfor-

mance analysis. This means that the recorded events should be

enough to accomplish this purpose.

For fault analysis, sufficiency can be met by recording all

events during an execution for later analysis. Taking into ac-

count our hardware limitations, seen in section 2.2, we know it

is difficult to record all events. Even when being able to limit our

records to tasks and ISRs, the memory limitations can cause us

issues, which we will further discuss in section 3.4. In addition,

recorded events should contain sufficient information to identify

the events, such as being able to record task IDs. More impor-

tantly, in order to analyze faults occurred after shipment and in

the field, it is necessary to save the log in some persistent mem-

ory. This sort of feature is generally called a “snapshot”.

For performance analysis, it is necessary to record precisely

when an event happened. In the next section we discuss how pre-

cise a timestamp should be, but it generally should be enough

2ⓒ 2017 Information Processing Society of Japan

Vol.2017-OS-140 No.8
2017/5/16



IPSJ SIG Technical Report

to distinguish two consecutive events without exceeding avail-

able software and hardware limitations. The number of events

available for both types of analyses is also an important fac-

tor. The buffer should be able to keep a sufficient number of

events to analyze the fault causes and performance. Obviously,

in the both cases, the log should be able to be converted to some

human-readable format, and be visualized for the help of analy-

sis. Hence, the tracer should:

• (RQ-07) Record enough information to distinguish events.

• (RQ-08) Record the timestamp for each event with a suffi-

cient precision to the buffer.

• (RQ-09) Take snapshot of the log and save it in the persistent

storage.

• (RQ-10) Have a sufficient size of buffers for fault and per-

formance analyses.

• (RQ-11) Have a feature of converting logs in a human-

readble way.

3. Quantitative Requirements

In the previous section we discussed the requirements for an

OS tracer in a qualitative manner. For this paper, we will de-

scribe a key set of detailed requirements for the OS tracer and

how we solved them in order to get a functioning tracer imple-

mentation. The quatitative requirements we will discuss in this

paper are shown in the list below:

• (RQ-05, RQ-06) The overhead

• (RQ-03, RQ-10) The size of the buffer

3.1 Overhead

When measuring the overhead, we exclude indirect effects,

such as increase of cache misses, because it is very hard to both

estimate and measure these effects. We also consider that the ef-

fects of cache misses are relatively small in embedded CPUs. The

maximum allowable overhead is very difficult to define, so we set

the target overhead as the increase of the CPU usage. Having

done this, there still isn’t a clear requirement in the target ECUs,

so we assume that the target should be 3%, which is what is usu-

ally seen in similar level enterprise tracing systems. Taking this

goal into account, we calculate the CPU usage in between the

most critical ISRs for an ECU. Knowing that the most critical in-

terrupts in an engine ECU, for example, are spaced in intervals of

180000 nanoseconds, we can understand that the writing of trace

points, along with whatever we need to calculate, should not sur-

pass 5400 nanoseconds.

3.2 Size of the buffer

The size of the buffer is determined by the size of a log entry

and the number of the entries in the buffer. We discuss about the

number of the entries first, and then the size of each entry.

3.2.1 Number of the entries

The number of the entries in a buffer, i.e. the number of logs

that can be saved for analysis, is constrained by the analysis tar-

get.

For fault analysis, the events between when the fault cause hap-

pened and when the fault is detected should be preserved.

For performance analysis, if there is some period applications

executed repeatedly, then the events during the longest period

should be preserved. In reality, the task with the longest exe-

cution interval can be near a second. A buffer that could save

events for a second would exceed target ECU capacity. Also such

type of tasks usually have lower priorities and are unlikely to be

the focus of performance issues. Performance analysis is usually

executed during development, so it is possible that the size of the

buffer can be specifically varied for the analysis purposes.

Consequently, we decide not to limit the amount of data in the

ECU buffer, but instead wish to minimize the space used by one

log entry and making the main buffer be set as flexibly as possi-

ble.

3.3 Log size entry

In ECUs, memory is a precious commodity, limiting the size

for the buffer to only a few kilobytes. In order to minimize the

size of a log entry size and maximize the amount of trace data

points, we understand that a log entry size should be below 4

bytes.

In order to further increase the amount of data we can save, we

propose an extra solution in section 3.4.

3.4 Compression

In its simplest form, compression is basically the replacing of

particular known data for data that is smaller and can be mapped

back, with a certain precision, to the original data. If the precision

is absolute, in other words, if the uncompressed object is exactly

the same as the original object, then the compression is defined

as lossless. If the uncompressed object is similar to the original

object, then the compression is considered lossy. What one must

clearly define before choosing a compression algorithm, is what

what the system can consider the same as the original object.

In literature there are a lot of compression methods, a lot of

which are derived in some form from the idea of Huffman cod-

ing [8]. Most of these methods require statistical knowledge of

the values in the original object to obtain better patterns to re-

place to obtain higher compression ratios. This generally requires

more CPU time and more memory. Particularly in ECUs, with

their limited resources and hard real-time constraints, a trade-of

between compression ratio and compression calculation time is

necessary. Since our initial idea was to pinpoint anomalous data,

we knew we could replace or remove information that was con-

sidered normal ECU execution if we obtained patterns to match

against. However, when considering ECU fault analysis, it is

common that anomalous events have root causes in previous ex-

ecutions, even if these are not completely out of the initial con-

straint windows. Thus for ECUs, the loss of any trace data is

unacceptable, forcing all implementable compression algorithms

to be lossless. Regarding compression ratios, we opt for the com-

pression method that resulted in the lowest amount of CPU in-

struction usage.

4. Implementation

We have implemented and tested a prototype tracer for our AU-

TOSAR compliant ETAS RTA-OS [9] for the single-core Rene-

sas RH850 architecture [10] based on the design described in the

3ⓒ 2017 Information Processing Society of Japan

Vol.2017-OS-140 No.8
2017/5/16



IPSJ SIG Technical Report

previous section. This section presents several considerations for

this tracer implementation.

4.1 Overall structure

The tracer is compososed by the lodding component embedded

in the ECU software. The logging component has APIs that are

called by AUTOSAR and the BSW when they are to log events to

the designated storage. The APIs are called either explicitly from

some software in the BSW or automatically from hook functions

of AUTOSAR OS (see section for detail) when task switches and

ISRs are invoked. When the log APIs are called, the logger in

the tracer collects the information from the OS or the arguments

of the called API, creates a log entry, and puts the entry into the

log buffer. If a new log entry is to be written during the copy,

the tracer simply discards the entry if there is a single buffer in

the volatile memory, or puts the entry into another buffer if there

are any. Upon the end of the copy, it unfreezes the buffer in the

volatile memory, permitting later extraction of the data for analy-

sis.

4.2 Events and APIs

Based on the requirements, the minimum set of events to be

logged by the tracer are tasks and ISRs. In the tracer, all the

events are identified by their IDs, each of which corresponds to a

single task, ISR, or a user-defined event. There is a single names-

pace of event IDs in the tracer.

4.3 Embedding the tracer

To be able to log all the tasks and ISRs, the log APIs should be

called when events are invoked. Embedding the calls to the func-

tions by hand does not scale. Therefore, the calls should be made

in the OS level. Note that the discussion here is only applicable to

AUTOSAR tasks and Category 2 ISRs. Category 1 ISRs are ex-

cluded from the discussion because these ISRs are not managed

by AUTOSAR OSes.

AUTOSAR defines several hook functions in OS which are in-

voked when the corresponding events happen. The BSW devel-

oper can define a hook function, and configure the OS to call it.

In the AUTOSAR standard only PreTaskHook and PostTaskHook

are available. These functions are called when a task is about to

start and stop, respectively. While the standard does not offer any

way to hook invocation of ISRs, several AUTOSAR vendors pro-

vide propietary methods to achieve this, for example, by adding

non-standard hook functions or providing callback facility inde-

pendent of hook functions. We assumed that ISR-related trace

APIs would be called by such vendor-specific facilities.

4.4 Log size entry

In our attempt to minimize the size of a log size entry, we de-

cided on a 2-byte format are summarized in table 1. The informa-

tion that should be contained in an entry is an Event Identification

(EID) and a timestamp. In addition, a pre/post flag is required

for task and ISR events, because the start and stop of the target

task/ISR has to be distinguished.

Table 1 Chronological log entry format

2 byte format

Timestamp 8 bits

Event Identification (EID) 7 bits

Pre/Post bit 1 bit

4.5 Log Buffer

There are one or multiple buffers in volatile memory in the log-

ging component. Each buffer in volatile memory is used as a ring

buffer to achieve FIFO. If there are multiple buffers, the buffers

are used in a round-robin fashion. Each buffer also has a pointer

to indicate the head of the ring buffer, which can be used as an

indicator for logging new events. In order to attempt to minimize

the maximum size of the log buffer while attempting to obtain the

minimum amount of desired events, we include a compression

algorithm that is described in detail in the following section.

4.6 Compression and the Adaptive Radix Tree (ART)

When testing out the tracer implementation, we noticed that

there were cyclical patterns in the data that we were obtaining.

We believe that using a simple mapping between commonly seen

patterns and a replacement character, we could slightly compress

the information we were obtaining. Since the compression algo-

rithm had to be implemented in an ECU and we couldn’t afford

to take more memory away from the RTOS, we searched for a

simple dictionary method to map between a defined set of events

and a map. Noticing that there were patterns that could be said

to depend on other patterns we look into the possibility of repre-

senting that information in a tree data structure that could hold a

higher number of information in one node. This type of node was

initially know as a PATRICIA tree.

The original PATRICIA tree, now commonly referred to as a

radix tree, was first described by Donald R. Morrison [11]. The

structure is a space-optimized prefix tree in which only child

nodes are merged with its parent. The data structure is extremely

fast for data which can be expressed as strings, having found ex-

tensive use in text retrieval and network IP routing.

Fig. 1 Radix tree and ART space optimization

4ⓒ 2017 Information Processing Society of Japan

Vol.2017-OS-140 No.8
2017/5/16



IPSJ SIG Technical Report

The adaptive radix tree (ART) [12] is a variant of the radix

tree that was proposed for databases that reside in main memory.

A normal radix tree has one major drawback which is the con-

stant node size. The ART softens this requirement, permitting

nodes of multiple sizes. Figure 1 shows the space optimization

for ARTs when compared to radix trees. This modification in

the radix tree creation maintains the speed of a radix tree and

improves its memory usage. Under performance tests, the ART

outperforms red-black trees and GPT radix tree variants.

The pattern information, which could create with EID start and

stop records, we were seeing, were of variable lengths but could

be grouped. Since this grouped pattern information would even-

tually need to be placed in ECU memory, the ART was a natural

data structure choice. The common implementation of the ART

involves the capability of the tree to be dynamically created in

order to modify the tree node sizes as they become required. In

ECUs, everything is statically allocated, so it becomes necessary

to have a way to map the dynamically created ART to something

that we could place statically into the ECU memory. We opted

for a serialization method that maintained the ART definitions

and permitted statically allocating the space required for the ART

in the ECU.

4.7 ART Serialization

Initially the start and stop records are organized into arrays.

Each particular array is considered a pattern. In order to obtain

faster pattern recognition, each pattern is assigned a correspond-

ing value. Since we support Pre/Post and EID recognition, we are

limited in supporting a limited number of patterns, as the corre-

sponding value must fit into the 8 bits not being used by a Pre/Post

EID. Once organized, the information is inserted into an ART that

can be created dynamically, for example on a common computer.

Once all the information is inserted into the ART, the serializa-

tion process is run. The serialization process simplifies the ART

nodes by only serializing from the ART leaves to the root of the

tree, obtaining an unsigned 8 bit array as a result. The resulting

serialization format of ART leaves can be seen in Figure 2 and the

resulting serialization format of ART nodes can be seen in Figure

3.

Fig. 2 Serialized ART leaf

Fig. 3 Serialized ART node

The format becomes extremely important, because in the ECU,

the anomaly detection has to be done on top of this format. Of

extreme interest was the search for the next node after having

searched through the whole node radix size. A simple binary

search on the task IDs in the children nodes area of the serialized

ART node format seemed sufficient.

4.8 ART based compression

Using the serialized ART, as soon as an event occurs, a sequen-

tial search that has historical memory is run against the ART. This

means that for one event, only one check in the ART is realized.

Once a set of events occur that can be mapped to a corresponding

value, this corresponding value is then used to write the informa-

tion to the main buffer. The idea behind replacing known patterns

is that the data in the main trace buffer that has not been replaced

becomes a point of interest when searching for possible faults. An

added bonus of replacing the information in the main trace buffer

is that a simple mapping compression is realized. The complete

search and mapping can be seen in figure 4.

Fig. 4 Sequential pattern search

What is interesting about this sequential search, as is shown in

figure 4 is that the method is capable of simple compression via

character replacement. Due to sequential search inherently be-

ing a computation intensive task, we opt to not run the sequential

search until after all critical ISRs are executed so as to not create

possible issues with interrupt handling deadlines.

5. Evaluation

We evaluate the implementation of our tracer with the ART

based compression and considering all the requirements ex-

plained in the previos sections.

5.1 Method for measurement

We measured the overhead of our implementation using an on-

board RH850 timer (OSTM). We also use this hardware timer to

generate timestamps for the trace logs. The only issue with using

this timer is that reading a timer value takes about 250 nanosec-

onds, and so cannot be used for measurement of a short amount

of time. All our results are presented without the addition of the

OSTM read time delay.

Due to the tracer being implemented by the use of OS level

hooks and callbacks, we measure the overhead of the Pre/Post

Task and ISR hooks and callback for only the trace method and

for the tracer method using the ART based compression algo-

rithm.

5ⓒ 2017 Information Processing Society of Japan

Vol.2017-OS-140 No.8
2017/5/16



IPSJ SIG Technical Report

5.2 RTOS load

On our test RTOS, we only configured one 1 milliseconds

OSTM timer interrupt, a 1 millisecond RTOS task and a 10 mil-

lisecond RTOS task. The tasks configured, did not have any

dummy load.

5.3 ART patterns

For the evaluation, we only used two simple patterns which

derived directly from the RTOS load configuration from the pre-

vious section.

The first pattern was, Pre OSTM timer interrupt, Post OSTM

timer interrupt, Pre 1 millisecond task and Post 1 millisecond

task. The second pattern was Pre OSTM timer interrupt, Post

OSTM timer interrupt, Pre 1 millisecond task, Post 1 millisecond

task, Pre 10 millisecond task and Post 10 millisecond task.

The serialized ART from these patterns were placed into the

RH850’s Code Flash for all tests.

6. Results

This section present the results of measure our implemented

methods using the OSTM timer. Section 6.1 displays the results

of running only the tracer, section 6.2 displays the results of run-

ning the tracer with the ART based compression method and sec-

tion 6.3 shows the compression ratio obtained using the compres-

sion method.

6.1 Tracer

The results for the execution of the tracer by itself are shown

in table 2.

What is very important to notice in our results is that the tracer

obtained completely stable results for the configuration given.

This makes it possible to use this sort of configuration in an auto-

motive ECU, as long as the overhead is taken into consideration

for more critical task or interrupt deadlines.

Table 2 Overhead for the tracer for each hook in nanoseconds

Function Minimum Mean Standard deviation Maximum

PreTask 500 500 0 500

PostTask 500 500 0 500

PreISR 525 525 0 525

PostISR 525 525 0 525

6.2 Tracer with ART based compression

The results for the execution of the tracer with the ART based

compression described in section 4.8 are shown in table 3

The results make it apparent that the introduction of the ART

based compression has a big effect on the overhead. With the pat-

terns that we decided to use, it is clear that the most calculation

intensive hook is the PostISR, both because of the compression

and because, as is noticeable in the PreISR results, the sequential

search is not being executed for the PreISR hook.

Although the overhead for the other hooks are stable, the

amount of overhead could create inconveniences if there are ex-

tremely important ISR to be executed. However, even with the

most CPU intensive hook, the overhead does not exceed 4600

nanoseconds.

Table 3 Overhead for the tracer with compression algorithm for each hook

in nanoseconds

Function Minimum Mean Standard deviation Maximum

PreTask 1050 1175 100 1300

PostTask 1000 1175 125 1325

PreISR 600 650 25 675

PostISR 2050 3225 1125 4575

6.3 Compression ratio

We define compression ratio by the formula shown in equation

(1). The results for the algorithm are shown in table 4.

Compression ratio
Uncompressed data size

Compressed size
(1)

We believe that the compression ratio we obtained using the

ART based compression is adequate given the constraints given.

This level of compression would permit more flexibility in desig-

nating buffer sizes for memory constrained devices.

Table 4 Compression ratio obtained by using ART based compression

Compression algorithm Compression ratio

ART based compression 1.27 : 1

7. Conclusion

In this research, we aimed to make it easier to debug faults and

provide a solution performance issues by implementing tracing

features on AUTOSAR OSes.

We have provided the following results:

• We have investigated the requirements for an OS tracer

considering the microcontroller boards used by AUTOSAR

OSes.

• We have quantified 2 requirements.

• We have implemented and evaluated the 2 requirements that

we quantified.

• We have established that the minimum overhead for the

tracer on a ETAS RTA-OS using a RH850 microcontroller

is around 500 nanoseconds.

• Using a simple compression method based on an Adaptive

Radix Tree, we can obtain a compression ratio of 1.27 : 1

while having the tracer and compression method only take

around 4600 nanoseconds.

• Using the compression method, we are able more flexibly set

the trace buffers to maintain a desired amount of data.

References

[1] Stacy C. Davis, Susan E. Williams and Robert G. Boundy, Transporta-
tion Energy Data Book; Edition 35, Office of Energy Efficiency and
Renewable Energy, U.S Department of Energy, 2016

[2] Daniel Sperling and Deborah Gordon, Two Billion Cars: Driving To-
ward Sustainability, Oxford University Press, 2010

[3] Christof Ebert and Capers Jones, Embedded Software: Facts, Figures
and Future, IEEE Computer Society Press, 2009

[4] AUTOSAR Partnership, AUTOSAR Basic Information, Short Ver-
sion, 2014,
http://www.autosar.org/fileadmin/files/basic_

information/AUTOSARBasicInformationShortVersion_

EN.pdf Accessed: 2017-02-15

[5] Technical Committee ISO/TC 22, Road vehicles, Subcommitte SC 3,
Electronic, ISO 26262-1 Road vehicles - Functional Safety -, Interna-
tional Organization for Standardization, 2011

[6] Charles M. Kozierok, Colt Correa, Robert B. Boatright and Jeffrey

6ⓒ 2017 Information Processing Society of Japan

Vol.2017-OS-140 No.8
2017/5/16



IPSJ SIG Technical Report

Quesnelle, Automotive Ethernet: The Definitive Guide, Intrepid Con-
trol Systems, USA, 2014

[7] Daehyun Kum, Gwang-Min Park, Seonghun Lee, and Wooyoung
Jung, AUTOSAR migration from existing automotive software. In In-
ternational Conference on Control, Automation and Systems, 2008,
ICCAS 2008, pages 558–562, Oct 2008.

[8] David A. Huffman, A Method for the Construction of Minimum Re-
dundancy Codes, Proceedings of the IRE IEEE, USA, 1952

[9] ETAS Group, ETAS RTA-OS,
https://www.etas.com/en/products/rta_os.php Accessed:
2017-02-18

[10] Renesas Electronics Corporation, RH850 Family (Automotive only),
https://www.renesas.com/en-us/products/

microcontrollers-microprocessors/rh850.html Accessed:
2017-02-16

[11] Donald R. Morrison, PATRICIA - Practical Algorithm to Retrieve In-
formation Coded in Alphanumeric, Journal of the ACM, Volume 15
Issue 4, pages 514-534, 1968

[12] Viktor Leis, Alfons Kemper and Thomas Neumann, The Adaptive
Radix Tree: ARTful Indexing for Main-Memory Databases, In ICDE,
pages 38-49, 2013

7ⓒ 2017 Information Processing Society of Japan

Vol.2017-OS-140 No.8
2017/5/16


