
Electronic Preprint for Journal of Information Processing Vol.24 No.6

Regular Paper

Theory and Implementation of an Adaptive Middleware
for Ubiquitous Computing Systems

Jingtao Sun1,a) Ichiro Satoh1,2,b)

Received: December 21, 2015, Accepted: July 5, 2016

Abstract: An adaptive middleware system for ubiquitous computing environments, which are dynamic by nature, is
proposed. The system introduces the relocation of software components to define functions between computers as a
basic mechanism for adaptation on ubiquitous computing. It also defines a language for specifying adaptation poli-
cies. Since the language is defined on a theoretical foundation, it enables us to reason about and predict adaptations
beforehand. It is also useful to detect conflicts or divergences that may be caused by the adaptations. It supports
general-purpose software components and the relocation of the components according to policies described in the
language. We describe the design and implementation of the system and present two practical applications.

Keywords: adaption, disaggregated computing, software component, migration

1. Introduction

Ubiquitous computing systems are used as infrastructures in
the real world and provide a variety of applications for multiple
users who have their unique requirements. However, ubiquitous
computers tend to have limited computational resources and they
cannot always maintain and execute all the required applications
for all the users. The system should be adapted only to the re-
quirements of running applications and present users and not to
idle applications and absent users in order to save computational
resources. These systems are dynamic by nature compared to
distributed systems on clustering servers, including cloud com-
puting systems. This is because computers may be added to or
removed from them and networks between computers may often
be connected or disconnected, even while the computers are run-
ning. Ubiquitous computing systems should therefore be adapted
to such changes.

Several researchers have attempted to introduce adaptations
into ubiquitous computing systems. Ubiquitous computing sys-
tems need to support availability, dependability, and reliability
because they are often used for mission-critical purposes. How-
ever, the adaptations themselves may result in failure or uncer-
tainty in the sense that their effects may seriously affect the sys-
tems. The systems need to reduce the degree of uncertainty re-
sulting from their adaptations. Also when multiple adaptations
are activated, there may be conflicts between them. Adaptations
may need to be activated infinitely, if their conditions are satis-
fied after they have been performed. Applications consisting of
software components that may be running on different computers

1 Department of Informatics, The Graduate University for Advanced Stud-
ies, Chiyoda, Tokyo 101–8430, Japan

2 National Institute of Informatics, Chiyoda, Tokyo 101–8430, Japan
a) sun@nii.ac.jp
b) ichiro@nii.ac.jp

should be resilient so that the systems can adapt themselves to
various changes at runtime.

This paper presents an adaptive middleware system for ubiq-
uitous computing. There are two key ideas behind the proposed
system. The first is to introduce the relocation of software com-
ponents as a basic adaptation mechanism. Our adaptation does
not change application-specific software components so that it
reduces the degree of uncertainty associated with it; rather it du-
plicates and migrates software components, which may be run-
ning, to remote computers in accordance with changes in system
environments and application requirements. When changes in a
distributed system occur, e.g., in the requirements of the applica-
tions and the structures of the system, the software components
that it consists of are automatically relocated to different comput-
ers according to policies defining their adaptations. The second
idea is to formalize our adaptations on a theoretical foundation
defined as a process calculus. This would enable us to specify the
adaptations and analyze their effects, e.g., where and what func-
tions are provided after adaptation. Our middleware system can
specify and interpret policies for adaptations on the basis of the
foundation outside software components.

2. Related Work

This section outlines related work. There have been many at-
tempts to introduce the notion of adaptation into ubiquitous com-
puting systems [5], [11], [25]. Existing adaptation approaches for
distributed systems can be classified into three types, discovery-
based, connection-based, and software-level approaches.

The first approach has been explored as adaptive discovery
mechanisms for services and resources. For example, Jaeger et
al. [9] introduced the notion of self-adaptation to an object request
broker such as CORBA. When clients want services, their broker
selects services in accordance with contexts. Cheng et al. [4] pre-
sented an adaptive selection mechanism for servers by enabling

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

selection policies. EASY [18] enabled services to be discovered
according to the specifications of functional and non-functional
properties of the services in ubiquitous/pervasive computing en-
vironments. This approach cannot adapt coordinations between
multiple services.

The second approach allows communication between software
components with connectors or unified interfaces to be recon-
nected/disconnected in accordance with changes. Garlan et al. [7]
presented a framework called Rainbow that provided a language
for specifying self-adaptation. Although the framework was not
solely aimed at distributed and ubiquitous computing systems, it
supported adaptive connections between operators of components
that might be running on different computers. Lymberopoulos
et al. [14] proposed specifications for adaptations based on their
policy specification language, called Ponder [6], but these were
aimed at specifying management and security policies rather than
application-specific processing and therefore did not support the
mobility of components. These approaches assume that certain
software components are statically provided at computers before-
hand. Therefore, they cannot deploy components at computers
that do not have components, when the computers are newly con-
nected to a distributed system, or when other computers become
busy.

The third approach enables software to be dynamically modi-
fied in accordance with changes. Genetic programming enables
software to be evolved by randomly mutating and crossing over
programs under specified evaluation metrics. Ubiquitous comput-
ing systems have no resources to execute and evaluate large num-
bers of generated programs. Computational reflection aspect-
oriented programming (AOP) enables software to be open to dy-
namically defining itself without compromising portability or ex-
posing parts unnecessarily, where the software implementing a
crosscutting concern, called an aspect, is developed separately
from other parts of the system and woven with the business logic
at compile- or run-time. Many researchers have introduced AOP
into adaptive distributed systems. For example, McKinley et
al. [15] proposed a middleware system with compositional adap-
tation by using AOP. They can modify parts of programs running
on single computers but do not support distributed systems them-
selves. Satoh et al. [22] proposed a bio-inspired adaptation by
introducing the notion of cellular-differentiation into distributed
systems to change available functions in accordance with the fre-
quency of invoking the functions from the external system; how-
ever the adaptation cannot migrate any functions between com-
puters.

A few researchers have attempted to adapt the relocations of
program codes or components. EXEHDA [12] and SATIN [26]
dynamically deployed application codes at computers in accor-
dance with the movement of users, but they lack any mechanisms
for specifying user-defined adaptations and cannot migrate com-
ponents that have already been executed. Suda et al. [23] pro-
posed a bio-inspired middleware system for disseminating net-
work services in dynamic and large-scale networks where there
were large numbers of decentralized data and services. The sys-
tem enabled agents to be replicated, moved, and deleted like
ours, but their purpose was to introduce biological metaphor

into distributed systems rather than adaptive approaches. The
FarGo system introduced a mechanism for distributed applica-
tions dynamically laid out in a decentralized manner [8]. The
system could not specify any conditions for their policies, unlike
ours. Satoh [20] proposed other relocation policies for relocating
components based on policies that other components moved to.
These existing attempts at relocating program codes or compo-
nents have no mechanism to specify policies for their relocations
outside components.

The language proposed in this paper is defined on the ba-
sis of process calculi for distributed systems [17]. Several re-
searchers have attempted to extend the notion of adaptation into
process calculi. For example, Bravetti et al. [1] proposed a the-
ory for adaptive processes based on higher-order process calculi.
It treated an adaptation process as the replacement/substitution
of processes by other processes. Brogi et al. proposed a process
calculus with the notion of dynamic adaptors between compo-
nents [2]. However, existing process calculi for adaptations did
not support the mobility of processes. Melliti el al. [16] pro-
posed a labelled transition system for specifying autonomic ser-
vice composition in a ubiquitous computing setting. These at-
tempts did not support specifying the relocation of components
and lack any implementation of their calculi. There have been
several attempts to define formal models for the mobility of pro-
cesses or agents, e.g., Ref. [19]. However, these attempts aimed
at specifying application-specific behaviors of mobile processes
or agents, whereas our approach focuses on adaptation policies.

3. Approach

This section outlines the requirements of the proposed system
and the basic ideas underlying it.

3.1 Requirements
Adaptations in ubiquitous computing systems have unique re-

quirements that those in distributed systems may not have. We
assume that applications in such systems consist of one or more
software components that may be running on different computers.
• Self-adaptation: Like distributed systems, ubiquitous com-

puting systems essentially have no global view due to com-
munication latency between computers. They need to adapt
themselves to various changes in ubiquitous computing sys-
tems without any centralized management systems.

• Separation of concerns: Adaptations should be able to be
reused independently of applications, and vice versa. Adap-
tations should be defined outside application-specific com-
ponents or the underlying systems.

• Predictability and availability: Adaptations can dynami-
cally modify ubiquitous computing systems but may result in
uncertainty or failure, so their effects should be predictable
beforehand. Also, our system should enable applications to
remain available after their adaptations.

• Detection of conflicts and divergences: Although individ-
ual adaptations may be appropriate, they may cause serious
problems, e.g., conflict and divergence, when they are ac-
tivated simultaneously. For example, one adaptation may
deny the effects of one or more the other activated adapta-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

Fig. 1 Adaptation as relocation of software component.

tions. Adaptations may be activated infinitely if their condi-
tions are satisfied after they have been performed. We should
detect conflicts and divergences in multiple adaptations as
much as possible.

• Limited resources: Ubiquitous computers often have only
limited resources, e.g., processor power, amount of memo-
ries. Our adaptations should be able to save computational
resources and be performed with few resources.

3.2 Adaptation for Ubiquitous Computing
To satisfy the above requirements, we introduce the reloca-

tion of software components as a basic mechanism for adapting
ubiquitous computing systems (Fig. 1). The architectures of dis-
tributed systems, including ubiquitous computing systems, de-
pend on the location of software for defining functions as well
as the functions provided by the software. For example, client-
server (C/S) and peer-to-peer (P2P) are often used for the same
applications, e.g., file sharing. The function provided by each
peer in a P2P architecture corresponds to the combination of func-
tions provided on the client and server sides in a C/S architecture,
although P2P may have a mechanism for discovering other peers.
Therefore, our system changes the locations of software compo-
nents for defining application-specific functions rather than coor-
dinating between the components. Our adaptation can make ap-
plications resilient without losing availability because the reloca-
tions of software components do not lose the potential functions
of components. This seems to be simple and conservative but
even so would be enough to support most adaptive applications
in ubiquitous computing systems.

There have been several techniques to relocate software com-
ponents between computers, e.g, mobile agents, code mobility,
and remote evaluation [21]. The first enables software compo-
nents to continue to their processing at destinations after their
migration, the second needs to restarts program codes after de-
ploying the codes at the destinations, and the third can change the
the location of software only during the execution of the software.
Therefore, the proposed approach is based on the first.

To separate adaptations from the software components that de-
fine application logic, we introduce a language for specifying
adaptation policies outside the components. The language is con-
structed on the basis of a theoretical foundation to predict the
effects of adaptations. The language consists of condition and
destination parts, with the former written in a first-order predicate
logic-like notation and the latter in a process calculus and to spec-
ify the deployment and duplication of components. Although in-
dividual adaptations may be appropriate, they may cause serious
problems, e.g., conflict and divergence, in ubiquitous computing

systems. The language helps to detect conflicts and divergences
in multiple adaptations.

4. Adaptation Policy Specification Language

This section defines our policy specification language for
relocation-based adaptation based on a process calculus for com-
municating systems [17]. The operational semantics of the lan-
guage is given in the Appendix. We first define several notations:
• Let I be a set of the identifiers of components with condi-

tions, ranged over by A, B,
• Let N be a set of location names, ranged over by n, n1,

n2,
• Let X be a set of location variable or function, ranged over

by x, . . . , and Loc(A) returns the current location of compo-
nent, called A.

• Let L be N ∪ X, ranged over by �, �1,
• Let M be a set of the signatures of methods, which are

defined in components and can be invoked from policies,
ranged over by m,m1,

Our framework enables users to specify user-defined policies for
adaptation by means of the expressions defined below.

Definition 4.1 SetD of located process expressions, ranged
over by D, D1, D2, . . ., is the smallest set containing the following
expressions:

D,D1,D2 ::= �[E | P] (Located component)

| D1 ‖ D2 (Distributed components)

E,E1,E2 ::= C thenG (Conditional action)

| E1 +E2 (Alternative selection)

| E1 ; E2 (Sequential composition)

| 0 (Termination)

G ::= moveTo(�) (Migration)

| copyAt(�) (Duplicatoin & migration)

| remove (Elimination)

| callback(m) (Action)

P,P1,P2 ::= P1 , P2 (Composition)

| A (Component)

| ε (No component)
where C is a condition defined in Definition 4.2. E ; 0 is often
abbreviated as E. ��
We describe several constructors’ intuitive meanings in the lan-
guage. �[E | A] means that a component A located at � is exe-
cuted as an expression specified as E. D1 ‖ D2 represents dis-
tributed components D1 and D2 executed in parallel. E1 +E2 may
behave as E1 or E2 and E1 ; E2 is executed as E2 after E1. For ex-
ample, �1[C then moveTo(�2) | A] means that if condition C is
positive, a component A located at computer �1 is relocated to
�2, where moveTo(�2) is a migration to �2. �1[copyAt(�2) | A]
means that a component A located at computer �1 make a copy
of A at computer �2, �1[remove | A] means that a component
A terminates, and �1[callback(m) | A[means a component
A invokes a callback method m *1. �[C1 then copyAt(�2) +

*1 The callback(m) primitive may make polices dependent on compo-
nents. Nevertheless, the language supports the primitive for practice.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

C2 then callback(m) ; remove | A , B] means that if condition
C1 is positive then two components A and B are the policy that
makes copies of A and B and deploys the copies at �2. If condi-
tion C2 is positive, the policy invokes a callback method named
as m, in A and B and then terminates A and B. Otherwise, A and B

stay at their current computer. The adaptions specified in the lan-
guage can be predicted in the sense that the operational semantics
of the language can emulate the effects of the adaptions.

Next, we define our conditional functions as propositional
logic predicates *2.

Definition 4.2 The set of conditions, C, is the smallest set
containing the following expressions:

C,C1,C2 ::= φ | ¬C | C1 ∧ C2 | C1 ∨ C2 | true | false
where φ is a logical predicate symbol and returns either true or
false with more than a zero parameter. ��
The φ in Definition 4.2 represents a user-defined function in com-
ponents or a system’s built-in function. The former is provided
as a method from the component that its policy is assigned to. It
should be application-specific and defined by users, and the cur-
rent implementation provided several built-in functions:

Definition 4.3 Each predicate can have zero or more param-
eters and return either true or false.
• exist(A, �) (exist : P × L → true or false) returns true if

the same or compatible component(s) of component A exists
at location �, otherwise it returns false *3.

• delay(time) (delay : T → true or false) blocks the fol-
lowing execution for the time interval and then returns true,
where T is an infinite set of relative time values.

• receive(m, �, A) (receive : M× L × P → true or false)
returns true if the component that the policy is assigned to
receives a message labelled as m from component A. ��

User-defined functions are implemented inside components or the
runtime system. User-defined functions defined in components
can be accessed inside the components. We will now present typ-
ical adaptation policies. The destinations of component reloca-
tions may not be specified beforehand. X can contain a function,
written as destination(Spec), that returns the name of a location
that can satisfy the condition written as Spec.

Example 4.4 Basic adaptations illustrated in Fig. 2.
• Attraction: The following policy is assigned to component

A at computer �. If a computer, called @another, has the
same or compatible component of component A, the policy
instructs A to migrate to @another, and then follows E.

�[exist(A,@another) then moveTo(@another) ; E | A]

• Spreading: The following policy is assigned to component
A, at computer �. If a computer, called @another, does not
have the same component A, the policy makes a copy of
component A and deploys the copy at the @another com-
puter and then behaves as E, where A′ is the copy.

�[¬exist(A,@another) then copyAt(@another) ; E | A]

*2 The current implementation itself supports a first-order logic predicates,
but the paper uses predicates as propositional logic ones.

*3 In the current implementation of the proposed system, compatible com-
ponents of a component are defined through the subclasses of the com-
ponent by using Java’s inheritance mechanism.

Fig. 2 Basic policies for adaptations.

• Repulsion: The policy is assigned to component A. If there
are the same or compatible components of A at computer �,
the policy instructs component A to migrate to another com-
puter, called @another, and then follows E.

�[exist(A, �) then moveTo(@another) ; E | A]

• Evaporation: The policy is assigned to component A. If
there are one or more components A at the current computer,
the policy eliminates redundant component A at the com-
puter specified at �.

�[exist(A, �) then remove ; 0 | A]

• Time-To-Live: After a certain time has passed, the policy
terminates component A.

�[delay(t) then remove ; 0 | A]

There is a variety of changes with which a ubiquitous com-
puting system needs to cope. Such a system may have multiple
adaptations to such changes. These adaptations may be in con-
flict with others, even when each of them is appropriate. For ex-
ample, an adaptation invoked at a computer may seriously affect
other systems. Although an adaptation itself is useful to improve
its target system’s performance, it may be counter to the reliabil-
ity of the system. We can formally analyze several properties of
adaptation through the components described in our language.

Property 4.5 The adaptation of a component described as
�[C1 thenE1 + · · · +Cn thenEn | A], is locally conflict, if more
than two of C1,. . . Cn are positive at a location. This is global

conflict if and only if more than two of C1,. . . Cn can be positive
at every location.
Local conflicts at certain locations can be detected by evaluating
the overlaps of conditions of two or more policies at the locations,
whereas global conflicts can be detected by the overlaps of con-
ditions of two or more policies at arbitrary locations. When de-
tecting local or global conflicts by using Property 4.5, we should
modify adaptation policies. Conflicts in policies may cause un-
certainty. For example, if the conditions of two policies are over-
lapped, we cannot expect which policies can be activated when
the overlapped conditions are satisfied.

There may be no guarantee that activated adaptations can be
stopped. Suppose an adaptation is invoked and executed at a

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

change because the change satisfies the condition of the adap-
tation. After the adaptation is executed, the condition is still sat-
isfied so that the adaptation is invoked again. When the condition
of the effectiveness of an adaptation is inappropriate, the adapta-
tion may go into an infinite loop; it becomes divergent.

Property 4.6 A component described as �[C then E | A] is
locally divergent if C is still positive after executing E.
If a component is divergent, its adaptation may be endless. Such
an adaptation should be modified so that it is not divergent. We
can confirm whether an adaptation is divergent or not by evalu-
ating C condition at every step of E. We can also find divergent
adaptation between more than two components by using the lan-
guage because adaptations written in the language can be inter-
preted as possible itineraries.

5. Design and Implementation

Our middleware system consists of two parts, a component

runtime system and an adaptation manager, where each of the
systems are coordinated with one another through a network
(Fig. 3). The first part runs on each computer and is respon-
sible for executing, duplicating, and exchanging components at
computers and the second part is responsible for interpreting and
analyzing adaptation policies written in our proposed language.
The system and components are executed on the Java virtual ma-
chine (JVM), that can abstract away differences between operat-
ing systems and hardware. Components can be composed from
Java objects such as JavaBean modules without their adaptations,
where their adaptation policies are specified in the language out-
side them to support the separation of concerns.

5.1 Component Runtime System
A runtime system can load each component from a set of pro-

gram codes with state from a local or remote storage and allows
each component to have active threads. When the life-cycle state
of a component changes, e.g., when it is created, terminates, du-
plicates, or migrates to another computer, the runtime system is-
sues specific events to the component. To capture such events,
each component can have more than one listener object that im-
plements a specific listener interface to hook certain events issued
before or after changes have been made in its life-cycle state.

Each runtime system can exchange components with other run-
time systems through a TCP channel using mobile-agent tech-
nology. When a component is transferred over the network, not

Fig. 3 System structure.

only the code of the component but also its state is transformed
into a bitstream by using Java’s object serialization package. The
bit stream is transferred to the destination and then received and
transformed into components. After the components arrive at the
destination, they can continue being processed. Even after com-
ponents have been deployed at destinations, their methods should
still be able to be invoked from other components that may be
running at local or remote computers. The runtime systems ex-
change information about components that visit them to trace the
locations of components in a peer-to-peer manner. The current
implementation supports an original remote method invocation
(RMI) mechanism through a TCP connection independently of
Java’s RMI. When migrating a component, each runtime system
can forward method invocations to/from the destination by using
the mechanism.

5.2 Adaptation Manager
Each adaptation manager periodically advertises its address to

the others by using system and network monitor in Fig. 3, where
the monitor is responsible for sending other managers, which
may be running on different computers, information through UDP
multicasting and receiving information from other computers and
these computers then return their addresses and capabilities to
other computers through a TCP channel *4. When the manager
does not receive advertisement information from other comput-
ers for longer than a specified duration, it assumes the computers
or networks to the computers have problems. The manager stores
policies for components and provides a mechanism to select poli-
cies whose conditions are satisfied. It evaluates the conditions
of its storing policies when the external system detects changes
in environmental conditions, e.g., user requirements and resource
availability.

Each policy is specified based on the language defined in Def-
inition 4.1. The adaptation manager has a database to store poli-
cies and offers an interpreter consisting of two parts. The first
is responsible for evaluating the conditions of adaptations C, C1,
C2,. . . as first-order logic predicates with predicates that reflect
various system and network properties, e.g., the utility rates and
processing capabilities of processors, network connections, and
application-specific conditions. The latter is responsible for eval-
uating the itinerary of components, described as E, E1, E2, . . . on
the basis of the operational semantics defined in Definitions A.2
and A.3. Policies for components can be added or removed after
after creating the components except while the policies are acti-
vated. We will now describe a process of relocating a component
according to one of its policies.
(1) When a component is created or arrives at a computer,

it automatically registers its deployment policies with the
database of the current adaptation manager, where the
database maintains the policies of components running on
its runtime system in a peer-to-peer manner.

(2) The manager then analyzes the policies of its visiting com-

*4 Each runtime system is assumed to have its own adaptation manager.
In the current implementation, a group of runtime systems on different
computers can share an adaptation manager to save computational and
network resources.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

ponents for Properties 4.5 and 4.6. If it detects conflict or
divergence in any of them, it blocks them.

(3) It periodically evaluates the conditions of the policies main-
tained in its database.

(4) When it detects policies whose conditions are satisfied, it
deploys components according to the selected policies at the
computer that the destination component is running on.

Two or more policies may specify different destinations from
Property 4.5 under the same condition that drive them. The man-
ager analyzes whether there are conflicts in the policies of its vis-
iting components by using a technique to find conflicts between
multiple predicates studied in existing propositional or first-class
logic systems. The destination of the component may enter diver-
gence modes, as in Property 4.6. The manager analyzes whether
or not the effects of adaptations are repetitious by using a run-
time system like that in existing runtime checking techniques [24]
based on Property 4.6. The current implementation does not ex-
clude any conflicts or divergences but can predict the presence
of typical conflicts or divergences. As mentioned in the previ-
ous section, the language permits us to specify the requirements
of computers at which components are deployed instead of the
addresses of the computers, where the requirements are defined
as a set of the constraints or limitations that destination comput-
ers must satisfy. In the current implementation constraints are
evaluated as a constraint satisfaction problem (CSP) by using an
existing tool for symbolic CSP, named JaCop [10].

5.3 Current Status
Our runtime system was implemented as a mobile agent plat-

form, but it has been constructed independently of any existing
middleware systems because existing middleware systems, in-
cluding mobile agents and distributed objects, do not support
the policy-based relocation of software components. The cur-
rent implementation basically uses the Java object serialization
package to marshal or duplicate components. This package does
not support the capture of stack frames of threads; rather when
a component is duplicated, the runtime system issues events to
it to invoke their specified methods, which should be executed
before the component is duplicated or migrated, and then sus-
pends their active threads. The system can encrypt components
before migrating them over the network and it can then decrypt
them after they arrive at their destinations. Moreover, since each
component is simply a programmable entity, it can explicitly en-
crypt its individual fields and migrate itself with these and its
own cryptographic procedure. The Java virtual machine can ex-
plicitly restrict components so that they can only access speci-
fied resources to protect computers from malicious components.
Although the current implementation cannot protect components
from malicious computers, the runtime system supports authenti-
cation mechanisms to migrate components so that all runtime sys-
tems can only send components to and only receive components
from, trusted runtime systems. Each component is a general-
purpose programmable entity defined as a collection of Java ob-
jects such as JavaBeans and packaged in the standard JAR file
format. Each can explicitly provide user functions in C when it
is evaluated by the adaptation manager. It has no specifications

Table 1 Basic performance.

Adaptation Time Remark
Component duplication 15 ms
Component migration 35 ms between two computers
Attraction policy 85 ms in Example 4.4
Spreading policy 140 ms in Example 4.4
Repulsion policy 115 ms in Example 4.4
Evaporation policy 14 ms in Example 4.4

for adaptation inside it but can be migrated to and duplicated in a
remote computer by the current adaptation manager.

Our implementation was not built for performance, but even so
we have performed several experiments on a distributed system
of sixteens computers (Intel Core i7 2 GHz) with MacOS X 10.9
and JDK 7 connected through 1-Gbps ethernet networks. Table 1
shows the costs of executing four policies: attraction, spreading,
repulsion, and evaporation, described in Example 4.4. Each of
the costs was the sum of interpreting the policies, marshaling, au-
thentication, transmission, security verification, decompression,
and unmarshaling after the target component or its clone after the
adaptation manager detected the changes that should have acti-
vated the polices. Distributed systems potentially have several
semantics of failures. Nevertheless, the current implementation
supports the detection of crash failures at other runtime systems
and disconnections in networks, where crash failures means that
when a computer has troubles, it stops functioning properly. Each
runtime system and adaptation manager consume smaller than
80 MB memory. It can transfer components to other runtime sys-
tems through TCP/IP. so that it is independent of any physical
networks that support TCP/IP. Our approach is available in lim-
ited resources.

6. Applications

This section presents two applications to demonstrate the util-
ity of the proposed approach.

6.1 Supporting Communities of Ubiquitous Computers
Ubiquitous computing systems are often managed in an ad-

hoc manner because computers and services may be dynamically
added to or removed from the systems. Service discovery mecha-
nisms, e.g., Universal Plag-in-Play (UPnP) and Service Location
Protocol (SLP), are used for automatic detection of computers
and services. Such mechanisms depend on the scales of ubiqui-
tous computing systems. When there are only a few computers
and services, there is no server to support such mechanisms, so
each computer or service needs to detect other existing comput-
ers and services in a peer-to-peer (P2P) manner. In contrast, when
there are many computers and services in a network, P2P-based
service discovery mechanisms result in congestion in the network
and expansion of information about other computers in each com-
puter. One or a small number of computers should be responsible
for managing other computers in a client-server (C/S) manner.
Therefore, service discovery mechanisms should adapt their ar-
chitecture to the number of computers in a network, e.g., from
P2P to C/S, and vice versa.

We constructed an adaptive service discovery system as a
subset-UPnP to evaluate an adaptation between P2P-based and

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

C/S-based service discovery mechanisms *5. We assumed that
each control-point component periodically multicasts an adver-

tisement message with its address to other control-point compo-
nents in a network through UDP multicasting in a UPnP-like for-
mat. We introduced two types of components: control-point and
device components. The former maintained a database for in-
formation about computers, e.g., network addresses, names, and
their preferences, while the latter had the following policy with
a function receivedFrom(n,t) that returned true if it received
messages from more than a number of computers, specified as n,
within a certain duration specified as t.

@peer[(receivedFrom(n,t) then
moveTo(computerSending()) ;
exist(Control proint,@another) then remove)+

(¬receivedFrom(n,t) then copyAt(@another))
| Control proint]

The above policy is for each control-point component and means
that when a control-point component located at a node specified
as @peer receives messages from more computers than n within
t duration, the receivedForm(n, t) function returns true. Next,
it relocates the component to the computer specified as a function
computerSending(), where the function returns the address of
the computer from which the component receives advertisement

messages. When a component receives a lesser number of ad-

vertisement messages than n, it makes a copy of the component
at another computer specified as @another, which has a device

component, but not any control-point components. This example
does not assume which computers should become @another be-
cause it is just an example of our adaptation. Nevertheless, in real
systems a destination specified @another should have the capa-
bility to work as a server for discovering and managing services.

Each device component behaved as: when a device component
received an advertisement message from an unknown control-

point component at another computer, it returned a advertise-

ment message to the control-point component. Next, the control-

point component asked the device about the latter’s preference.
In the second phase, more computers are connected to the net-
work. When a control-point component received advertisement

messages from more than the specified number of other control-

point components at other computers within the certain duration,
the former relocated to one of the computers running the latter
and then the former gave its information stored in its database
to the latter. Therefore, the number of control-point components
was reduced so that network traffic could be reduced and coordi-
nations among control-point components could change from P2P
architecture to C/S one. When a component received a lesser
number of advertisement messages than the specified number, it
distributes its clone at other computers. As a result, their coordi-
nations change from C/S architecture to P2P one. Note that the
device and control-point components were defined independently
of the policy.

*5 There have been many attempts to apply mobile objects or agents to
ubiquitous computing, e.g., Refs. [3], [21]. Unlike these attempts, our
approach is to use the mobility of components as a mechanism for adap-
tations in ubiquitous computing.

6.2 Spreading Software for Sensor Nodes
The second example is the adaptive deployment of components
over a sensor network. It is a well known that after a sensor node
detects environmental changes, e.g., the presence or movement of
people, in its area of coverage, some of its geographically neigh-
boring nodes tend to detect similar changes after a period of time.
Components should be deployed at nodes where and when envi-
ronmental changes can be measured. The basic idea behind this
example is to deploy software components only at nodes around
such changes.

We assumed that the sensor field was a two-dimensional sur-
face composed of sensor nodes and that it monitored environmen-
tal changes, such as motion in objects and variations in tempera-
ture *6. Each software component had spreading and time-to-live

policies described in Example 4.4 in addition to its application-
specific logic, i.e., monitoring environmental changes around its
current node, where the destination components of the former
were neighboring sensor nodes and the condition of the latter
was the detection of changes within a specified time. We as-
sumed that such a component was located at nodes close to the
changes. When each adaptation manager received an event to
notify changes from sensors, it evaluated the policies of the com-
ponent and if there were no components at neighboring nodes, it
made clones of the component and deployed clones at the neigh-
boring nodes. When the change moved to another location, e.g.,
when people were walking, the components located at the nodes
near the change could detect the change in the same way because
clones of the components had been deployed at the nodes. The
policy for each of the Sensing components is described as:

@current[G | Sensing]
+ delay(time) then remove+ detect(target) thenG

where G is ¬exist(Sensing,@neighbor)
then copyAt(@neighbor)

where @current is an element of X and specifies the cur-
rent computer of the component and detect(target) is a user-
defined function that returns true when the movement of a tar-
get is discovered. We can select the destinations by using the
destination(Spec) according to the specification of neighboring
nodes. Each clone was associated with a time-to-live (TTL) limit
by using a delay function and @neighbor is an element of X
and specifies the spatially neighboring nodes around the current
node. Although a node could monitor changes in interesting en-
vironments, it sets the TTLs of its components to their own initial

Fig. 4 Component diffusion for moving entity.

*6 This experiment was evaluated with 256 virtual servers on Amazon EC2.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

values. It otherwise decremented TTLs as the passage of time.
When the TTL of a component became zero, the component au-
tomatically removed itself according to the policy to save compu-
tational resources and batteries at the node. The TTL limit of each
Sensing component was reset when the component detected the
target because, when detect(target) became positive, the policy
initially executed G again.

7. Conclusion

In this paper, we presented an adaptive middleware system for
ubiquitous computing environments. It introduced the relocation
of software components to define functions between computers as
a basic mechanism for adaptation on ubiquitous computing sys-
tems. Although simple, this provided various adaptations to sup-
port the adaptations required in such systems. It also introduced
a language for specifying adaptation policies. Since the language
was defined on a theoretical foundation, it enabled us to ana-
lyze adaptations. It was constructed as a general-purpose middle-
ware system on distributed systems, including ubiquitous com-
puting systems, instead of any simulation-based systems. Two
practical applications demonstrated that the system was effective
to construct ubiquitous computing systems. In future we will
identify further issues that need to be resolved. We need to im-
prove the implementation of the approach. For example, the lan-
guage should be refined with experiences in specifying a variety
of adaptations for ubiquitous computing systems. We also want
to develop more applications with the approach to evaluate its
utility. As other existing adaptation approaches for distributed
systems, our approach cannot guarantee consistency at adapta-
tions. We are interested in proposing adaptations with more strict
consistency.

References

[1] Bravetti, M., Di Giusto, C., Perez, J.A. and Zavattaro, G.: Adaptable
Processes, LNCS, Vol.8, No.4, pp.1–71 (2012).

[2] Brogi, A., Canal, C. and Pimentel, E.: Soft Component Adaptation,
Elec. Notes in Theoretical Computer Science, Vol.85, No.3, pp.1–16,
Elsevier (2003).

[3] Cardoso, R.S. and Kon, F.: Mobile agents: A key for effective per-
vasive computing, ACM OOPSLA 2002 Workshop on Pervasive Com-
puting (2002).

[4] Cheng, S., Garlan, D. and Schmerl, B.: Architecture-based self-
adaptation in the presence of multiple objectives, Proc. International
Workshop on Self-adaptation and Self-managing Systems (SEAMS
2006), pp.2–8 (2006).

[5] Da, K., Dalmau, M. and Roose, P.: A Survey of adaptation systems,
International Journal on Internet and Distributed Computing Systems,
Vol.2, No.1, pp.1–18 (2011).

[6] Damianou, N., Dulay, N., Lupu, E. and Sloman, M.: The Ponder
Policy Specification Language, Proc. Workshop on Policies for Dis-
tributed Systems and Networks (POLICY’95), pp.18–39 (1995).

[7] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B.R. and Steenkiste,
P.: Rainbow: Architecture-Based Self-Adaptation with Reusable In-
frastructure, IEEE Computer, Vol.37, No.10, pp.46–54 (2004).

[8] Holder, O., Ben-Shaul, I. and Gazit, H.: System Support for Dynamic
Layout of Distributed Applications, Proc. International Conference on
Distributed Computing Systems (ICDCS’99), pp.403–411 (1999).

[9] Jaeger, M.A., Parzyjegla, H., Muhl, G. and Herrmann, K.: Self-
organizing broker topologies for publish/subscribe systems, Proc.
ACM Symposium on Applied Computing (SAC 2007), pp.543–550
(2007).

[10] Kuchcinski, K. and Szymanek, R.: JaCoP Library (2008), available
from 〈http://jacopguide.osolpro.com/guideJaCoP.html〉

[11] Kakousis, K., Paspallis, N. and Papadopoulos, G.A.: A survey of soft-
ware adaptation in mobile and ubiquitous computing, Journal Enter-
prise Information Systems, Vol.4, No.4, pp.355–389 (2010).

[12] Lopes, J., Souza, R. and Geyer, C.: A Middleware Architecture for
Dynamic Adaptation in Ubiquitous Computing, Journal of Universal
Computer Science, Vol.20, No.9, pp.1327–1351 (2014).

[13] Luckey, M. and Engels, G.: High-Quality Specification of Self-
Adaptive Software Systems, Proc. Workshop on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS 2013), pp.143–152
(2013).

[14] Lymberopoulos, L., Lupu, E. and Sloman, M.: An Adaptive Policy
Based Management Framework for Differentiated Services Networks,
Proc. 3rd International Workshop on Policies for Distributed Systems
and Networks (POLICY 2002), pp.147–158, IEEE Computer Society
(2002).

[15] McKinley, P.K., Sadjadi, S.M., Kasten, E.P. and Cheng, B.H.C.: Com-
posing Adaptive Software, IEEE Computer, Vol.37, No.7, pp.56–64
(2004).

[16] Melliti, T., Poizat, P. and Mokhtar, S.B.: Distributed Behavioural
Adaptation for the Automatic Composition of Semantic Services,
Proc. International Conference on Fundamental Approaches to Soft-
ware Engineering, LNCS, Vol.4961, pp.146–162 (2008).

[17] Milner, R.: Functions as Processes, Mathematical Structures in Com-
puter Science, Vol.2, No.2, pp.119–141 (1992).

[18] Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V. and
Berbers, Y.: EASY: Efficient semAntic Service discoverY in perva-
sive computing environments with QoS and context support, Journal
of Systems and Software, Vol.81, No.5, pp.785–808 (2008).

[19] Paulino, H. and Lopes, L.: A Mobile Agent Service-Oriented Script-
ing Language Encoded on a Process Calculus, Proc. 7th Joint Modular
Languages Conference, LNCS, Vol.4228, pp.383–402 (2006).

[20] Satoh, I.: Self-organizing Software Components in Distributed Sys-
tems, Proc. 20th International Conference on Architecture of Com-
puting Systems System Aspects in Pervasive and Organic Computing
(ARCS’07), LNCS, Vol.4415, pp.185–198 (2007).

[21] Satoh, I.: Mobile Agents, Handbook of Ambient Intelligence and
Smart Environments, pp.771–791, Springer (2010).

[22] Satoh, I.: Evolutionary Mechanism for Disaggregated Computing,
Proc. 6th International Conference on Complex, Intelligent, and Soft-
ware Intensive Systems (CISIS 2012), pp.343–350 (2012).

[23] Suda, T. and Suzuki, J.: A Middleware Platform for a Biologically-
inspired Network Architecture Supporting Autonomous and Adaptive
Applications, IEEE Journal on Selected Areas in Communications,
Vol.23, No.2, pp.249–260 (2005).

[24] Tamura, G.: Towards Practical Runtime Verification and Validation
of Self-Adaptive Software Systems, Software Engineering for Self-
Adaptive Systems II, LNCS, Vol.7475, pp.108–132 (2013).

[25] Weyns, D., Iftikhar, M.U., Iglesia, D.G. and Ahmad, T.: A Survey
of Formal Methods in Self-Adaptive Systems, 5th International Con-
ference on Computer Science and Software Engineering, pp.67–79
(2012).

[26] Zachariadis, S. and Mascolo, C.: The SATIN component system -
a metamodel for engineering adaptable mobile systems, IEEE Trans.
Softw. Eng., Vol.32, No.11, pp.910–927 (2006).

[27] Zhang, J. and Cheng, B.H.C.: Model-based development of dynami-
cally adaptive software, Proc. 28th International Conference on Soft-
ware Engineering (ICSE 2006), pp.371–380 (2006).

Appendix
We give the operational semantics of the language defined in
Definition 4.1 based on the structural congruence between ex-
pressions ≡ and a reduction relation −→. The semantics is de-
fined in the style of Milner’s transition/reaction relation for π-
calculus [17].

Definition A.1 ≡ is structural congruence.
D ≡ D D1 ≡ D2 then D2 ≡ D1

D1 ≡ D2 and D2 ≡ D3 then D1 ≡ D3

D1 ‖D2 ≡ D2 ‖D1 D1 ‖ (D2 ‖D3) ≡ (D1 ‖D2)‖D3

�[E | P1]‖�[E | P2] ≡ �[E | P1 , P2]

E1 ≡ E2 then �[E1 | P] ≡ �[E2 | P]

E ; 0 ≡ E 0 ; E ≡ E E1 ; (E2 ; E3) ≡ (E1 ; E2) ; E3

E + 0 ≡ E E1 + E2 ≡ E2 + E1

E1 + (E2 + E3) ≡ (E1 + E2)+ E3

E1 ≡ E2 then C then E1 ≡ C then E2

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

P ≡ P P1 ≡ P2 then P2 ≡ P1

P1 ≡ P2 and P2 ≡ P3 then P1 ≡ P3

P1 ≡ P2 then �[E | P1] ≡ �[E | P2] ��
We provide no structural congruence over C, but two logic pred-
icates are the same if they are equivalent in first-order logic. The
operational semantics of the language is given by two kinds of
transition relations: −−−−→⊆ E×A×E and −−−−→⊆ D×A×A×D,
where E is the smallest set of expressions E, E1, E2 in Definition
4.1 and A is the union of the following sets: ∪�∈LmoveTo(�),
∪�∈LcopyAt(�), {remove}, and ∪m∈Mcallback(m) and A is
ranged over α,

Definition A.2 −→ is a labelled transition relation over
E ×M× E.

−
moveTo(�)

moveTo(�)
−−−−→ 0

−
copyAt(�)

copyAt(�)
−−−−→ 0

−
remove

remove
−−−−→ 0

−
callback(m)

callback(m)
−−−−→ 0

E1
α

−−−−→ E′1

E1 ; E2
α

−−−−→ E′1 ; E2

E1
α

−−−−→ E′1

E1 + E2
α

−−−−→ E′1
C is true, E

α
−−−−→ E′

C then E
α

−−−−→ E′

E1 ≡ E2 E1
α

−−−−→ E′1 E′1 ≡ E′2

E2
α

−−−−→ E′2
��

Definition A.3 −→ is a labelled transition relation over
D×M×L ×D.

D1
α

−−−−→� D′1

D1 ‖ D2
α

−−−−→� D′1 ‖ D2

E
moveTo(�′)
−−−−→ E′

�[E | P]
moveTo(�′)
−−−−→ � �

′[E′ | P]

E
copyAt(�′)
−−−−→ E′

�[E | P]
copyAt(�′)
−−−−→ � �[E

′ | P] ‖ �′[E′ | P]

E
remove
−−−−→ E′

�[E | P]
remove
−−−−→� �[E′ | ε]

E
callback(m)
−−−−→ E′

�[E | P]
callback(m)
−−−−→ � �[E

′ | P]
D1 ≡ D2 D1

α
−−−−→� D′1 D′1 ≡ D′2

D2
α

−−−−→� D′2
��

We illustrate transitions of some policies described in Example
4.4.

Example A.4
• Attraction: of Example 4.4 has the following transition if

a computer, named @another, has the same or compatible
component of A.

�[exist(A,@another) then moveTo(@another) ; E. | A]
moveTo(@another)
−−−−→ � @another[E | A]

• Spreading: of Example 4.4 has the following transition if a
computer, named @another, does not have the same or com-
patible component of A.

@current[¬exist(A,@another) then copyAt(@another) ; E | A]
copyAt(@another)
−−−−→ current @current[E | A] ‖ @another[E | A]

Jingtao Sun was born in 1987. He is a
Ph.D. candidate in the Graduate Univer-
sity for Advanced Studies and has been
associated with the Information Process-
ing Society of Japan since 2011. His
research interest is adaptation and dis-
tributed systems. He is a student member
of IPSJ, CCF, IEEE and ACM.

Ichiro Satoh received his B.E., M.E, and
Ph.D. degrees in Computer Science from
Keio University, Japan in 1996. From
1996 to 1997. Since 2001, he became an
associate professor in the National Insti-
tute of Informatics (NII), Japan. Since
2006, he has been a professor of NII.
Also, he was a visiting researcher of

Rank Xerox Laboratory from 1994 to 1995 and a PRESTO
(SAKIGAKE) researcher of Japan Science and Technology Cor-
poration from 1999 to 2002. His current research interests include
distributed and ubiquitous computing. He received the IPSJ Paper
Award, IPSJ Yamashita SIG Research Award. He is a member of
six learned societies, including ACM and IEEE.

c© 2016 Information Processing Society of Japan

