
Simulation and Model Checking of Embedded Assembly Program

Satoshi Yamane, Tomonori Kato, Ryosuke Konoshita
Kanazawa University

Abstract

It is important to ensure the safety for embedded soft-
ware by software model checking. We have developed
a verification system for verifying embedded assem-
bly programs. It generates exact Kripke structure
including clock cycles by exhaustively and dynami-
cally simulating assembly programs, and simultane-
ously verify it by model checking in order to avoid
the state space explosion. In addition, we have in-
troduced undefined values to reduce the number of
states.
keyword: Embedded assembly program, Model

checking, Simulation

1 Introduction

Recently software model checking [1] [2] is actively
studied, and program verification [3] is receiving a lot
of attention. B.Schlich have developed model check-
ing [mc]square [10] [11] of assembly programs for
microcontrollers. [mc]square generates overapprox-
imated models by static program analysis, and ver-
ifies them by model checking. This model checking
can verify assembly programs, and find various errors
such as stack overflow and stack underflow.
In this paper, we develop new model checking of as-

sembly programs. While we generate an exact model
by dynamic program analysis, simultaneously verify
the model. The reasons to verify assembly programs
are as follows:

1. We realize program verification at the level of
registers. From this, we can verify stack overflow
and stack underflow.

2. We realize verifying timing errors. For this, we
estimate the execution time of assembly pro-
grams.

But verifying assembly programs causes the state
space explosion problem [4]. B.Schlich generates the
whole overapproximated models by static program
analysis, and after that verifies them by model check-
ing [mc]square. But B.Schlich does not consider
clock cycles.
In this paper, we generate Kripke structure such

as the exact models including clock cycles, and de-
velop abstract and refinement method of the bit level
by undefined values. Also we verify Kripke structure
by model checking while generating the structure by
dynamic program analysis. We verify whether stack
overflow or stack underflow occurs or not by our pro-
posed run-time exhaustive verification. In order to
avoid the state space explosion, we propose the fol-
lowing methods.
We explain our proposed new methods as follows:

1. By generating the exact models including clock
cycles, we can uniquely decide the timing of the
interrupt about clock cycles. Therefore we can
reduce the number of states of Kripke structure.
Moreover we can verify timing constraints.

2. Our proposed abstract and refinement method
of the bit level is quite different from Delayed
NonDeterminism(DND)[12]. In our method,
only bits needing concretization is refined.
Therefore we avoid the state space explosion
problem.

3. By the exact Kripke structure, we never judge
the structure to be dangerous when it is safe.

18ⓒ 2016 Information Processing Society of Japan

組込みシステムシンポジウム2016 
Embedded Systems Symposium 2016

ESS2016
2016/10/21



4. As we verify Kripke structure by model checking
while generating it by dynamic program analy-
sis, verification results may be provided even if
we do not generate the whole Kripke structure.
Therefore we may avoid the state space explo-
sion problem.

We demonstrate the effectiveness of our proposed
verification method for robots [6] which carried mi-
crocomputer H8/3687[5] of Renesas company. In ad-
dition, this robot is equipped with plural timers and
analog-digital converters.
The rest of this paper is structured as follows.

First, Section 2 introduces Kripke structure and
model checking. Our proposed verification system
is described in Section 3. Experiments of embedded
robot software are described in Section 4. Finally,
Section 5 concludes this paper.

1.1 Related works

B.Schlich reported that embedded C programs were
not verified by the existing C code model check-
ers such as BLAST[7], BOOP[8] and Schlich’ Model
Checker[9] because embedded C contains more fea-
tures than defined in ANSI C.
Afterwards B.Schlich developed model checker

[mc]square, which verified assembly programs
[10]. [mc]square generates the whole over-
approximated model by static program analy-
sis, and then verifies it by model checking.
But [mc]square does not consider clock cycles.
B.Schlich developed abstraction techniques such as
Delayed NonDeterminism(DND)[12], Dead Variable
Reduction(DVR)[13][14], Path Reduction(PR)[14] in
[mc]square. DND is an abstraction technique that
is used when replacing abstract values when replacing
abstract values with concrete values.
In this paper, our proposed method is quite dif-

ferent from [mc]square as follows: (1)Generating
models including clock cycles and computing the ex-
ecution time, (2)Abstract and refinement method of
the bit level, (3)Generating exact models by dynamic
program analysis, (4)Verifying a model by model
checking while generating it by dynamic program
analysis.

On the other hand, Lynette Millett sliced the
Promela programming language, used to specify pro-
tocols for the Spin model checker [15]. A static pro-
gram slice consists of the parts of a program that may
affect or are affected by the value being computed at
the point of interest. Our method is dynamic ab-
stract and refinement method of the bit level, which
is quite different from Lynette Millett’s method.
Our previous work [16] simulatse assembly pro-

gram, and verifies whether it reaches bad states or
not. This paper extends our previous work [16] with
temporal logic model checking.

2 Kripke structure and model
checking

We define Kripke structure [17] as the model gen-
erated from assembly program, and describe model
checking [1].
Let AP be a set of atomic propositions. A Kripke

structure M over AP is a three tuple M = (S,R,L)
where

• S is a finite set of states.

• R ⊆ S × S is a transition.

• L : S → 2AP is a function that labels each state
with the set of atomic propositions true in that
state.

We use CTL(Computational Tree Logic) for spec-
ifying properties Kripke structures [18]. CTL for-
mulas are composed of path quantifiers and tem-
poral operators. The path quantifiers are used to
describe the branching structure in the computa-
tion tree. There are two such quantifiers A(”for all
computation paths”) and E(”for some computation
path”). On the other hand, the temporal opera-
tors describe properties of a path through the tree.
There are five basic operators such as X(”next time”),
F(”eventually” or ”in the future”), G(”always” or
”globally”), U(”until”) and R(”release”).
Given a Kripke structureM = (S,R,L) and a tem-

poral logic formula ϕ, find the set of all states in S
that satisfy ϕ.

19ⓒ 2016 Information Processing Society of Japan

組込みシステムシンポジウム2016 
Embedded Systems Symposium 2016

ESS2016
2016/10/21



In this paper, we verify whether stack overflow hap-
pens or not. We specify stack overflow by CTL [18]
as follows.

AG(sSTACK ≤ LIMITSTACK)

= ¬EF (sSTACK > LIMITSTACK)

,where sSTACK denotes the consumption of the
stack in some state, and LIMITSTACK denotes the
use limit quantity of the stack. This formula intu-
itively means that sSTACK ≤ LIMITSTACK holds
at every state on every path from initial states; that
is, sSTACK ≤ LIMITSTACK holds globally.

In this paper, we verify EF (sSTACK >
LIMITSTACK). That is, if EF (sSTACK >
LIMITSTACK) does not hold true at initial states,
¬EF holds true. In this case, stack overflow does not
happen.

We can easily verify other properties described in
CTL.

3 Verification system

3.1 Overview of verification system

This subsection describes the configuration of the
verification system, which consists of Simulator and
Model Checker as shown in Figure 1.

First, Simulator inputs assembly program, and
generates a Kripke structure. Next, Model Checker
inputs the Kripke structure and a property, and out-
puts true or false. Especially, Model Checker in-
puts a Kripke structure while Simulator generates the
Kripke structure.

Simulator generates the exact model of the behav-
ior exhibited by the corresponding assembly program,
based on dynamic program analysis by exhaustive
breadth-first search. The exact model is described
by Kripke structure, which consists of a finite set S
of states, a transition R ⊆ S × S and a set of
atomic propositions. The set of atomic propositions
denotes input and output information from environ-
ments, events, registers. A state s ∈ S is defined
by values of registers, memory, stack pointer and
program counter. The value of n-th register is de-
scribed by Reg(n) = XXXX, a memory value by
add = XXXX, a stack pointer by stack = XXXX,

a program counter by PC = XXX. In addition, PC
in a state s is denoted by s.PC.

Figure 1: Configuration of verification system

3.2 Algorithm of verification system

The algorithm of our verification system is defined by
Algorithm 1.
First we explain the outline of Algorithm 1.

1. First, by Simulator in Figure 1, in an ini-
tial state s0, all enabled interruptions are exe-
cuted by InterruptHandling, and then In-
terruptHandling generates successor states
(line 10,23) . A generated state s′ by In-
terruptHandling(line 10) is added to Kripke
structure by AddNewState (line 31,43). Af-
terwards ModelCheckEF verifies the Kripke
structure by model checking (line 47,50). We as-
sume an interrupt processing is one instruction.

2. Next, by Simulator in Figure 1, after interrup-
tions, the instruction of the address of program
counter PC in a state s is executed, and then the
next state s′ is generated (line 12,37). A gener-
ated state s′ by InterruptHandling(line 10)
is added to Kripke structure by AddNewState
(line 40,43).

3. Finally, by Model Checker and Property in
Figure 1, ModelCheckEF verifies the Kripke
structure by model checking (line 47,50). In this
paper, Property is EFformula, and it is defined
in line 1,2.

While a new state is generated, that is, while list is
not empty, Algorithm 1 repeats the above procedure.

20ⓒ 2016 Information Processing Society of Japan

組込みシステムシンポジウム2016 
Embedded Systems Symposium 2016

ESS2016
2016/10/21



But when EFf holds true in s0, ModelCheckEF
outputs true, and then terminates.
Next we explain main functions in Algorithm 1.

1. In InterruptHandling(line 23), interruptions
are executed. The top address of the interrupt
service routine corresponding to an enabled in-
terrupt i is captured from the interrupt vector
table, and then is substituted for PC (line 27).
Afterwards flags are masked (line 29) and re-
leased (line 30), and then the interrupution is
executed.

2. In ExecuteInstruction (line 37), a new next
state is generated. In ExecuteInstruction
(line 37), there are two functions as follows.

(a) In execute(s, operation) (line 39), a new
next state s′ is generated by updating
propositions in current states correspond-
ing to an input instruction operation. Also,
we compute the execution time by the clock
cycles of the instruction operation. But we
do not consider delay on the architecture.
For example, we explain move instruction
between registers and registers.

(1)First a source register is refined in order
to concretize values of CCR,

(2)Next the value of the source register is
moved to the value of a destination register,
and then CCR is set,

(3)Finally both a timer counter and PC are
updated.

(b) In AddNewState (line 43), a new gener-
ated state s′ is added in Kripke structure.

(1)First s′ is added in the set of states, and
the transition relation between s and s′ is
added in the set of relations (line 44,45).

(2)Next s′ is added in list (line 46).

(3)Finally new updated Kripke structure is
verified by model checking (line 47).

3. Whenever Simulator generates a new state,
ModelCheckEF (line 50) is performed.

(1)First ModelCheckEF (line 50) checks
whether the stack pointer in a state s exceeds the

stack domain (line 52). If the stack pointer does
not exceed the stack domain, nothing is dones.
Otherwise, s is added into a set T (line 53),

(2)Next until T is empty (line 55), a state s is
chosen from T (line 56), and s is deleted from T
(line 57),

(3)For any state t which satisfies R(t, s) (line 59),
EF f is added in L(t) (line 60) and t is added
in T (line 61).

Example 1 If s0 ∈ L(EFf), stack overflow is de-
tected (line 18).
For example, we explain simulation and model

checking by Figure 2.
First, Simulator executes MOV.W, and generates

a new state s′. Next, whether s′ satisfies f or not
is checked. When we suppose that s′ does not satisfy
f , Simulator executes PUSH.W, and generates a new
state s′′. When we suppose that s′′ satisfies f , EFf
is added in L(s′) which satisfies R(s′, s′′). Moreover
EFf is added in L(s) which satisfies R(s, s′).

Figure 2: Example of Simulation and Model Check-
ing

4 Experiments of verification
system

4.1 Embedded software

The experiment of our verification system demon-
strates the effects of our proposed techniques. We

21ⓒ 2016 Information Processing Society of Japan

組込みシステムシンポジウム2016 
Embedded Systems Symposium 2016

ESS2016
2016/10/21



Algorithm 1 Algorithm of verification system

1: f := s.STACK > LIMITSTACK ▷ Formula
2: EFf ▷ Property
3: s0 ▷ initial state
4: S := {s0} ▷ set of states
5: R := ∅ ▷ set of relations between states
6: list = [s0] ▷ generated states
7: function Main
8: while list.length ̸= 0 do
9: s← head of list ▷ current state s

10: InterruptHandling(s)
11: if decidable interrupts don’t exist then
12: ExecuteInstruction(s)
13: end if
14: if EFf ∈ L(s0) then break
15: end if
16: remove s from list
17: end while
18: if EFf ∈ L(s0) then return (S,R, true)
19: else return (S,R, false)
20: end if
21: end function
22:

23: function InterruptHandling(s)
24: for all i ∈ Interrupts do
25: if i is interruptible then
26: s′ ← s ▷ Generate new state s′

27: PCi = V ectorTable[i]
28: s′.PC = PCi ▷ set PCi to PC of s′

29: GlobalMaskBits′ ← true ▷ mask s′

30: InterruptF lags′ ← false ▷ clear flag
31: AddNewState(s, s′)
32: ExecuteInstruction(s′)
33: end if
34: end for
35: end function
36:

37: function ExecuteInstruction(s)
38: operation← memory[s.PC]
39: s′ ← execute(s, operation)
40: AddNewState(s, s′)
41: end function
42:

43: function AddNewState(s, s′)
44: S := S ∪ {s′} ▷ add new state to S
45: R := R ∪ {(s, s′)}
46: add s′ at the tail of list
47: ModelCheckEF(s′)
48: end function
49:

50: function ModelCheckEF(s)
51: T := ϕ
52: if s.STACK > LIMITSTACK then
53: T := T ∪ {s}
54: end if
55: while T ̸= ϕ do
56: Choose {s ∈ T}
57: T := T/{s}
58: L(s) := L(s) ∪ {EFf}
59: for all t such that R(t, s) do
60: L(t) := L(t) ∪ {EFf}
61: T := T ∪ {t}
62: end for
63: end while
64: end function

used seven programs written for H8/3687 microcon-
troller [5] [6]. We show the number of lines of seven
above-mentioned C language program and the assem-
bly program in Table 1.

4.2 Results of experiments

4.2.1 Overview of experiments

Our proposed verification system has the follow-
ing originality: (1)generating models including clock
cycles, (2)abstract and refinement method of the
bit level, (3)generating exact models, (4)verifying a
model by model checking while generating it by dy-
namic program analysis. We show them effective by
experiments as follows:

1. We compare (4)verifying a model by model
checking while generating it by dynamic pro-
gram analysis with verifying a model after gen-
erating it, using only stack program. When we
verify a model by model checking while generat-
ing it by dynamic program analysis, we confirm

22ⓒ 2016 Information Processing Society of Japan

組込みシステムシンポジウム2016 
Embedded Systems Symposium 2016

ESS2016
2016/10/21



Table 1: Embedded software
Program C code(lines) Assembly Code(lines)
LED 32 107
PID 141 510
Stack 8 42

Tsensor LED 42 118
Tsensor motor 34 100
Tsensor P 90 272
Line-trace 249 811

it how much the number of the states can reduce
by changing program stack size.

2. We implement both verification systems when
we do not consider a clock cycle and when we
consider a clock cycle, and compare the differ-
ence with both.

3. We compare the difference with three cases as
follows. (1)When we use undefined values for
all, we generate Kripke structure. (2)When we
do not use undefined values for all, we gener-
ate Kripke structure. (3)Also when we use un-
defined values except CCR, we generate Kripke
structure.

We verify seven programs in the following experi-
ment environment.

• Windows 8.1

• Intel(R) Core(TM) i3-2120T CPU @ 2.60GHz

• Available memory area : 2GB

Simulator is written in a combination of Java and
Scala, and Model Checker is written in Java as fol-
lows.

• Java 1.7.0 45 , 15000 lines

• Scala 2.10.3 , 5000 lines

• tools: JFlex[19] Jacc[20]

Table 2: Verifying a model while generating it
stack size(Byte) state relation time(s) so

1024 1398 1397 33.3 true
512 758 757 17 true
256 438 437 10.2 true
48 177 176 4.1 true

Table 3: Verifying a model after generating it
stack size(B) state relation time(s) so

1024 - - - TO
512 - - - TO
254 92823 92822 6649.9 true
48 17683 17682 1889.3 true

4.2.2 Experiments

We show results of experiments in from Table 2 to Ta-
ble 8. The items of each table consists of the number
of states and relations, required time, stack overflow.
Required time is total time of both Simulator and
Model Checking. stack overflow shows stack overflow
occurs or not (true/false). In the following tables, so
means stack overflow, TO means Time Out, and OM
means Out of Memory.

1. In order to evaluate verifying a model by model
checking while generating it by dynamic pro-
gram analysis, we show Table 2 and Table 3.
Here true means that stack overflow occurs, and
Time Out means that a result is not given in
24 hours. By comparing Table 2 and Table 3,
verifying a model by model checking while gen-
erating it by dynamic program analysis is very
effective.

2. In order to evaluate undefined values, we show
Table 4, Table 5 and Table 6.

(a) When we do not use undefined values for
all, we must refine seven 32bit registers in
an initial state. For this reason, we can not
get a result for the state space explosion as
shown in Table 5.

When we use undefined values for all, we
can verify programs except PID and Line-

23ⓒ 2016 Information Processing Society of Japan

組込みシステムシンポジウム2016 
Embedded Systems Symposium 2016

ESS2016
2016/10/21



Table 4: Using undefined values considering clock cy-
cles

Program states relations time(s) so
LED 26909 28613 523 false
PID - - - TO
Stack 177 176 4.2 true

Tsensor LED 13664 14996 334.8 false
Tsensor motor 14842 15054 599.8 false
Tsensor P 106495 108883 7352.1 false
Line-trace - - - TO

Table 5: Without undefined values considering clock
cycles

Program states relations time(s) so
LED - - - OM
PID - - - OM
Stack - - - OM

Tsensor LED - - - OM
Tsensor motor - - - OM
Tsensor P - - - OM
Line-trace - - - OM

trace as shown in Table 4. Whenever AD
conversion is carried out by PID program,
28 states are generated and causes the state
explosion. Whenever a sensor inputs the
external environment, eight states are gen-
erated with Line-trace program in addition
to the problem of PID program.

We show undefined values very effective as
shown in Table 4 and Table 5.

(b) As shown in Table 4 and Table 6, the num-
ber of states in the case of using undefined
values except CCR increases to approxi-
mately 4 times than the number of states in
the case of using undefined values. As CCR
is a special register, we evaluate undefined
values of CCR. Using undefined values of
CCR is slightly effective.

3. In order to evaluate considering clock cycles, we
show Table 7, Table 8. When we do not consider
clock cycles, we can not verify programs except

Table 6: Using undefined values except CCR consid-
ering clock cycles

Software state relation time(s) so
LED 107709 1145444 2474.1 false
PID - - - TO
Stack 194 193 5.3 true

Tsensor LED 54713 60056 1307.5 false
Tsensor motor 60357 61504 2735.9 false
Tsensor P - - - TO
Line-trace - - - TO

Table 7: Using undefined values without clock cycles
Software state relation time(s) so
LED - - - OM
PID - - - OM
Stack 177 176 4.1 true

Tsensor LED - - - OM
Tsensor motor - - - OM
Tsensor P - - - OM
Line-trace - - - OM

Stack program even if we use undefined values
for all. When we do not consider clock cycles,
an interrupt is carried out disorderly. Therefore
the state spece explosion occurs.

Our proposed verification system has the follow-
ing originality: (1)generating models including clock
cycles, (2)abstract and refinement method of the
bit level, (3)generating exact models, (4)verifying a
model by model checking while generating it by dy-
namic program analysis.
We show the above techniques such as (1), (2) and

(4) very effective by our experiments.

5 Conclusion

In this paper, we explain verifying embedded assem-
bly programs. We generate the exact models includ-
ing clock cycles, and develop abstract and refinement
method of the bit level by undefined values. Also
we verify Kripke structure by model checking while
generating it by dynamic program analysis. Our

24ⓒ 2016 Information Processing Society of Japan

組込みシステムシンポジウム2016 
Embedded Systems Symposium 2016

ESS2016
2016/10/21



Table 8: Without undefined values without clock cy-
cles

Software state relation time(s) so
LED - - - OM
PID - - - OM
Stack - - - OM

Tsensor LED - - - OM
Tsensor motor - - - OM
Tsensor P - - - OM
Line-trace - - - OM

proposed verification system has the following orig-
inality: (1)generating models including clock cycles,
(2)abstract and refinement method of the bit level,
(3)generating exact models, (4)verifying a model by
model checking while generating it by dynamic pro-
gram analysis. We show the above techniques very
effective by our experiments.
In the future, we will verify embedded assembly

programs based on CEGAR
(Counterexample-guided abstraction refinement).

We will verify liveness properties by extending our
proposed method.

Acknowledgments

We would like to thank anonymous referees for a
number of useful comments. This work was partially
supported by Kakenhi 15K00093.

References

[1] Clarke, E.M., Grumberg,O. and Peled,D.A:
Model Checking, MIT Press (1999).

[2] Ranjit Jhana, Rupak Majumdar: Software model
checking, ACM Comput. Surv. 41(4) (2009).

[3] Leonardo de Moura, Nikolaj Bjorner: Z3:An Effi-
cient SMT Solver, LNCS 4963, pp.337-340 (2008).

[4] Clarke, E. M., Emerson, E. A. and Sifakis, J.:
Model Checking: Algorithmic Verification and
Debugging, Commun. ACM, 52(11), pp. 74-84
(2009).

[5] Corporation, R. E.: Renesas Electronics, Renesas
Electronics Corporation(online), available from
http://japan.renesas.com/ (2014).

[6] nuvo WHEEL:ZMP
(http://www.zmp.co.jp/products/wheel) (2016).

[7] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala,
Rupak Majumdar:The software model checker
Blast. International Journal on Software Tools for
Technology Transfer, 9(5-6), pp.505-525 (2007)

[8] Weissenbacher, G.: The BOOP Toolkit v0.42,
Graz University of Technology (online), avail-
able from http://boop.sourceforge.net/(accessed
2014-6-17).

[9] Schlich, B. and Kowalewski, S.: Model Checking
C Source Code for Embedded Systems, Interna-
tional Journal on Software Tools for Technology
Transfer, 11(3), pp. 187-202 (2009).

[10] Schlich, B.: Model Checking of Software for
Microcontrollers, ACM Trans. Embed. Comput.
Syst., 9(4), pp. 1-27 (2010).

[11] Schlich, B., Brauer, J. and Kowalewski, S.: Ap-
plication of Static Analyses for State-space Re-
duction to the Microcontroller Binary Code, Sci.
Comput. Program., 76(2), pp. 100-118 (2011).

[12] Noll, T. and Schlich, B.: Delayed Nondetermin-
ism in Model Checking Embedded Systems As-
sembly Code, LNCS 4899, pp. 185-201 (2008).

[13] Holzmann, G. J.: The Engineering of a Model
Checker: The Gnu i-Protocol Case Study Revis-
ited, LNCS 1680, pp. 232-244 (1999).

[14] Yorav, K. and Grumberg, O.: Static Analysis
for StateSpace Reductions Preserving Temporal
Logics, Form. Methods Syst. Des., 25(1), pp. 67-
96 (2004).

[15] Lynette I. Millett and Tim Teitelbaum : Is-
sues in slicing PROMELA and its applications to
model checking, protocol understanding, and sim-
ulation, International Journal on Software Tools
for Technology Transfer, 2(4), pp.343-349 (2000)

25ⓒ 2016 Information Processing Society of Japan

組込みシステムシンポジウム2016 
Embedded Systems Symposium 2016

ESS2016
2016/10/21



[16] Konoshita R., Yamane S., Sakurai K.:Model
Checking by Modeling for Embedded Assembly
Programs, Embedded Systems Symposium 2014,
pp.13-21 (2014).

[17] Browne, M. C., Clarke, E. M. and Grumberg,
O.: Characterizing Kripke Structures in Tempo-
ral Logic, LNCS 249, pp. 256-270 (1987).

[18] Clarke, E.M. and Emerson, E.A. and Sistla,
A.P:Automatic Verification of Finite-State Con-
current Systems Using Temporal Logic Specifi-
cations. ACM Trans. Program. Lang. Syst. 8(2),
pp.244-263 (1986)

[19] Klein, G.: JFlex - The Fast Scanner Genera-
tor for Java, CSE UNSW (online), available from
ihttp://jflex.de/(accessed 2014-6-27).

[20] Jones, M. P.: Jacc: just another compiler com-
piler for Java, Department of Computer Science
and Engineering at the OGI School of Science
& Engineering at OHSU(online),available from
(http://jflex.de/)(accessed 2014-6-27).

26ⓒ 2016 Information Processing Society of Japan

組込みシステムシンポジウム2016 
Embedded Systems Symposium 2016

ESS2016
2016/10/21


