
Two-Steps Independent Approach for
Rule-based Complex Event Processing

Sunyanan Choochotkaew1,a) Hirozumi Yamaguchi1,b) Teruo Higashino1,c)

Abstract: Rule-based solutions are broadly applied for matching event-pattern in Complex Event Processing
(CEP). Most of the existing works store and process all rules converted from event definition as a single set
and activate irrelevant copies of partially detected events every time new data comes. Against this issue, we
analyze the processing time of using one single set of rules and using two-steps matching where one complex
rule is separated and processed by two modules independently. The experimental results show that the gen-
eral single rule set processing can cause significant delays when some temporary events stay in the working
memory in long time comparing to two-steps approach.

1. Introduction

Now, various kinds of software applications can provide

much higher benefit from analyzing a large amount of infor-

mation which is usually fed by multiple sources. Not only

to respond to human demands as quickly as required, it

is beneficial to perform trend analysis as soon as the data

are available. According to [3], continuously flowing data

can be considered by Stream Processing model or Complex

Event Processing (CEP) model. Nevertheless, the definition

or boundary between CEP and Stream Processing model is

still unclear and not deeply discussed. Recently, the word

CEP is likely to cover all studies in the information process-

ing area.

In CEP, one of the most important part is extracting the

interesting information from such a continuous and high-

volume, sometimes various, flows. Many researchers ex-

ploit the matching power of rule-based engines for solv-

ing this part [5],[1],[6]. They match the event-defined lan-

guage which is easy-to-understand to the complicated en-

gine rules called Rule-based CEP. Straightforwardly apply-

ing rule-based engines for complex event detection in the

earlier works needs some concerns. Generally, a complex

event is composed of multiple simple events which can be

detected at the first step. These simple events may over-

lap between multiple complex events and may repeatedly

detected. This situation incurs unnecessary computational

costs. The most trivial solution is detecting all simple events

and making a copy of the detected one for each referencing

complex event. Doing that, the engine is required to keep

1 Graduation School of Information Science and Technology
Osaka University, Osaka, Japan

a) sunya-ch@ist.osaka-u.ac.jp
b) h-yamagu@ist.osaka-u.ac.jp
c) higashino@ist.osaka-u.ac.jp

the temporary copies in the working memory waiting for the

further detection.

Most of rule-based publications defines one rule set and

keep all copies in the same working memory. In other word,

hardly detected rules and frequently detected rules share the

same working memory. Consequently, a temporary copy of

partial detected event will be called to test the composite

rules every time when facts or rules changed even if it has

no relevance. We concern that this type of overhead is going

to be crucial for future IoT processing that may be done on

more tiny computers. In this paper, we analyze the process-

ing time affected by the staying time of temporary copies

for complex detection in the working memory between us-

ing one single rule set (i.e. dependent working memory) and

using separate rule sets (i.e. independent working memory).

2. Two-Steps Approach

Performance of rule-based engine basically depends on the

number, complexity, and arrangement of rules and number

of facts. In the real-time processing, piling up the copies of

partial detected events which are considered as facts for com-

plex event detection in the same working memory can signif-

icantly slow down the matching process. Because a tempo-

rary fact has to be called whenever a new fact comes, which

is usually continuous. The additional cost corresponds to

the staying time which can be determined from the sparse-

ness of all matching events in the flow. The staying time

of temporary copy subCEi detected at time t may be pri-

marily approximated from the following equation where xi

is the number of referenced simple sub-events in complex

event, (CE), count(subCEk) is the number of each of the

other relevant sub-events remaining in the flows at time t,

and n(t) is the number of events in the flow at time t:



Fig. 1 (a) Distribution of simple events in the experiment flow
(b) Bar graph comparing detected time of complex event
between single-dependent and two-steps approach

StayingT ime(subCEi(t)) ≈
∑xi

k=1,k ̸=i
count(subCEk(t))

n(t)

Notice that, a single dependent solution always activates

temporary copies in all staying time to process continuously

flowing information.

To reduce the activate time, we suggest a two-steps inde-

pendent approach which keep the temporary fact in the sep-

arate working memory and call it only when another tempo-

rary fact, which is supposed to be less frequent, is asserted.

So, the number of activating time will be the number of de-

tected sub-event between t and t + StayingT ime which is

less than all sampling during StayingTime. In the most sim-

ple way, we can apply content filtering (e.g. Simple Rule:

temperature > 45 → ExtremeTemp ) as first step before

continuing the rest complex processing (e.g. Complex Rule:

ExtremeTemp within 5 min from Smoke → Fire [2])

in the second step.

3. Preliminary Results

To measure the processing time of the real engine, we de-

ploy our two-steps independent concept on the JESS rule-

based engine implemented in JAVA[4] with three sets of

10000 dumb information from 20 flows. We defined a com-

plex event which is composed of five simple events. There

are five complex events supposed to be detected from the

experiment flows.

See Fig. 1, the left figure (a) shows distribution of the sim-

ple events in the flow and points that complex events must

be detected while the right figure (b) shows the correspond-

ing detected time comparing single-dependent and two-steps

approach. At the first detection, simple events are highly-

frequently detected. There are just small amount of tempo-

rary simple facts and detected time of both approaches are

slightly different. At the third detection, complex events are

consecutively detected. Difference of time slightly changes.

For the second, forth, and fifth detection, simple events are

infrequently detected. A number of temporary facts are ac-

cumulated. In this case, we can observe that Two-steps

approaches can detect a complex event faster.

4. Conclusion

In this paper, two-steps dependent procedure is consid-

ered and analyzed for efficient implementation of rule en-

gines in Complex Event Processing (CEP). The preliminary

results implemented with the well-known rule-based engine,

JESS, show that two-steps approach gains an advantage

when the number of interesting complex events is very small

and some partial parts stuck in the engine memory.

Acknowledgements

This work was supported in part by JSPS KAKENHI

JP15H02690 and JP16KT0106.

References

[1] Cugola, G. and Margara, A.: RACED: An Adaptive Mid-
dleware for Complex Event Detection, Proceedings of the 8th
International Workshop on Adaptive and Reflective MIddle-
ware, ARM ’09, NY, USA, ACM, pp. 5:1–5:6 (2009).

[2] Cugola, G. and Margara, A.: TESLA: A Formally Defined
Event Specification Language, Proceedings of the Fourth ACM
International Conference on Distributed Event-Based Sys-
tems, DEBS ’10, NY, USA, ACM, pp. 50–61 (2010).

[3] Cugola, G. and Margara, A.: Processing Flows of Informa-
tion: From Data Stream to Complex Event Processing, ACM
Comput. Surv., Vol. 44, No. 3, pp. 15:1–15:62 (2012).

[4] Friedman-Hill, E.: Jess, The Rule Engine for the Java Plat-
form, http://herzberg.ca.sandia.gov (2007).

[5] Li, G. and Jacobsen, H.-A.: Composite Subscriptions in
Content-based Publish/Subscribe Systems, Proceedings of the
ACM/IFIP/USENIX 2005 International Conference on Mid-
dleware, Middleware ’05, NY, USA, Springer-Verlag New
York, Inc., pp. 249–269 (2005).

[6] Li, G., Muthusamy, V. and Jacobsen, H.-A.: Middleware
2008: ACM/IFIP/USENIX 9th International Middleware
Conference Leuven, Belgium, December 1-5, 2008 Proceed-
ings, chapter Adaptive Content-Based Routing in General
Overlay Topologies, pp. 1–21, Springer Berlin Heidelberg
(2008).




