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Abstract: Biological memory is a ubiquitous function that can generate a sustained response to a transient inductive stimulus. To 

better understand this phenomenon, we must consider how the structure of different genetic networks achieves the memory. Here, 

we investigated two types of gene regulatory network models: regulated mutual activation network (MAN); regulated mutual 

repression network (MRN). The mathematical comparison was used to analyze the deterministic or stochastic memory between 

the proposed models at the same steady state level. The MAN model improved the memory function in both deterministic and 

stochastic models, compared with the MRN model. The MAN provided a robust memory window, but the MRN provided opposite 

gene expressions with a fragile memory. The MAN model that comprises two protein kinases p42 MAPK and Cdc2 are suggested 

to need robust memory. The MRN model that consists of cI and Cro proteins would require opposite gene expression rather than 

robust memory.  
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1. Introduction     

    Systems biology and theoretical biology have revealed the 

mechanisms of how a biochemical network generates a variety of 

functions such as switching, amplification, adaptation, pulse 

generation, oscillation, and memory [1]. A positive feedback loop 

of a mutual activation network comprising p42 MAPK and Cdc2 

presented a bistable memory module [2]. Coupling of mutual 

inhibition proteins (LacI and TetR or Lacl and cl ) of 

prokaryotic genes with ultrasensitivity addressed the bistable 

gene expression memory module in E. coli [3]. To our knowledge, 

accurate comparison of the mutual activation and mutual 

repression has not been performed. It is interesting to reveal the 

mechanisms of how different types of mutually closed loops 

generate memory function. We investigated two types of gene 

regulatory network models: regulated mutual activation network 

(MAN); regulated mutual repression network (MRN). The 

mathematical comparison was used to analyze the deterministic 

or stochastic memory between the proposed models at the steady 

state.  

2. Method and Materials 
    We constructed two simple models of the gene regulatory 

networks that consists [1, 4] of two genes encoding a transcription 

factor, as shown Fig. 1 [5]. 
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Figure 1. The Schematic models are the genetic regulated mutual 

networks. (A) MAN model; (B) MRN model; 

where the employed parameters are described in Table 1.  

Table 1. List of kinetic parameters used in the gene regulatory 

networks 

Kinetic parameters Definition 

S  input signal 

)1(k , )3(k , )4(k , )6(k , )7(k  protein synthesis rate constants 

)2(k , )5(k , )8(k  degradation rate constants 

)1(K , )2(K , )3(K , )4(K  dissociation constants 

We used a very low rate constant of 01.0b  as basal synthesis 

of activators to prevent the protein synthesis from being 

shutdown [6]. We calculated the ordinary differential equations 
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(ODEs) for deterministic simulation. The Gillespie algorithm was 

used to perform the stochastic simulation [7]. The MATLAB 

(Math works) was employed. 

3. Results  
To analyze the mechanism of how different architectures of gene 

regulatory networks alter the persistence of memory. This is very 

much in the spirit of the mathematically controlled comparison 

[8]. Therefore, we compared the memory windows, while the 

values of the corresponding kinetic parameters within each model 

and between the competitive models and the steady state levels 

of )2(y  and )3(y  were conserved as much as possible. 

Corresponding parameters within each network 100)1( k , 1)2( k ,

1.18)6()3(  kk , 8.0)8()5(  kk , 9)3()1(  KK . In MAN model, 

the synthesis rates )7()4( kk  gain the value at steady state 

analysis i.e. depends on dissociation constant and hill coefficients. 

But in MRN model, synthesis rates )7()4( kk  to conserve the 

same steady state level between the models.  

 

Fig 3. Double-well potentials 

(A-C) The system passes through a low concentration state to 

high concertation state (B) The system is equally stable states.  

 

Fig 2. Deterministic and stochastic simulations of the MAN 

model 

(A) Deterministic simulation of proteins )1(y , )2(y  and )3(y  

at different dissociation constants. Signal S  is input from time 

250 to 500. The red and magenta lines indicate )2(y  and )3(y  at 

dissociation constant 43)4()2(  KK , respectively. The black 

and cyan lines indicate )2(y  and )3(y  at 46)4()2(  KK , 

respectively. The Hill coefficient is set to 2n . (B-C) 

Corresponding stochastic simulations. (D) The memory window 

consists of three areas: deterministic (green, blue and red), short 

stochastic (blue), and full stochastic (red) memories are 

illustrated with respect to the Hill coefficient and dissociation 

constants 

 

Fig 3. Deterministic and stochastic simulations of the MRN 

model 

(A) Deterministic simulation of proteins )1(y , )2(y  and )3(y  

at different Hill coefficients. Signal S  is input from time 250 to 

500. Dissociation constants are set to 46)4()2(  KK  and other 

corresponding parameter values are set as the same as the MAN 

model. The red and magenta lines indicate )2(y  and )3(y  at 

n=7, respectively. The black and cyan lines indicate )2(y  and 

)3(y  at n=8, respectively. (B-C) Corresponding stochastic 

simulations. (D) The memory window consists of three areas: 

deterministic (green, blue and red), short stochastic (blue), and 

full stochastic (red) memories are illustrated with respect to the 

Hill coefficient and dissociation constants 

4. Discussions 

   We showed that persistent memory is obtained in 

deterministic or in stochastic approaches of MAN for hill 

coefficient 2n . On the other hand, the MRN model neither 

obtained persistent memory in the deterministic nor in stochastic 

approaches for hill coefficients 2n  and 3n . The full 

stochastic memory requires a high hill coefficient 8n . If a 

robust memory is required, a mutual activation network should 

be selected. If the opposite state of protein synthesis is necessary, 

a mutual repression network must be selected although the 

memory effect is fragile [9]. The fragility may be caused by the 

fact that suppression cascades amplify noise compared with 

activation cascade [10]. A mutual activation network that 

comprises two protein kinases p42 MAPK and Cdc2 are 

suggested to need robust memory [2, 11]. On the other hand, a 

mutual repression that consists of cI and Cro proteins would 

require opposite gene expression rather than robust memory [12]. 

A Notch-Delta mutual repression network is an intelligible 

example to communicate between neighboring cells [13].  

1.1 Conclusions 

   The MAN model is more convenient compared to the MRN 

model in order to realize more reliable memories in noisy genetic 

environments with conserve the steady-state level between the 

two models and changed in kinetic parameters. The mathematical 

comparison of the theoretical networks improved an 

understanding of the potential applications of engineered memory 

networks in medicine and industrial biotechnology. 
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