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Abstract:
Recent works in deep learning show that training large models can improve accuracy. Many distributed deep learn-
ing frameworks have been so far developed to scale up machine learning algorithms. For the sake of performance,
we believe these intensive computations must be combined with a clever data parallelism strategy. This paper brings
one possible answer to the issue of supplying data to deep learning worker nodes on HPC systems. We design a two
sides system where independent MPI Process executions match Spark tasks whose job is to provide data partition. We
test and evaluate different Spark configurations and show that this system provides a flexible and scalable data supply
mechanism which leverage MPI high performance and Spark high level data management.

1. INTRODUCTION
Nowadays big data are invading us in every aspect of our lives:

signal from smartphones, stock market data or particle physics
research are a few examples [1]. Machine learning applications
which leverage these data tends to be a valuable business for com-
panies as the exponential data growth is going to continue over
the following years [2]. Recent learning algorithms, which re-
quire more computation power to handle very large data volume,
need multiple computer nodes to be processed. We are convinced
that developing distributed deep learning framework which com-
bines high performance computation, clever data management
and friendly user experience requires a collaborative use of HPC
and Big Data Analysis tools.

However, because tools such as Hadoop and Spark were de-
veloped for a totally different purpose than traditional HPC tools
like MPI, their mutual exploitation needs specific system designs.
Indeed, MPI was firstly developed for distributed computing and
is optimized to leverage multi-core architecture and shared mem-
ory processing. MPI is flexible, gives a total control on the ap-
plication and allow both asynchronous as well as synchronous
communication patterns. All of These attributes make MPI able
to achieve high performance and really suitable for HPC require-
ments. Nevertheless, MPI is not really suitable for general user
experiences targeted by deep learning applications.

On the other hand, Apache Spark and Hadoop are open-source
data analytics frameworks designed to operate on datasets with a
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high level of abstraction such as Map-Reduce model [4]. MapRe-
duce implementations such as Spark and Hadoop are designed to
scale out data processing on commodity machines and provide
scalability, fault-tolerance and high level programming interface.
They are also very convenient for managing, supply or distribute
huge datasets within a cluster of machines and perform operation
on data in a easier way than MPI. However, the lack of control
over communication details in MapReduce makes it less perfor-
mant than low-level MPI implementation.

In Fujitsu Laboratories, we have enhanced the BVLC Caffe
Framework [12] with MPI to distribute computation and decrease
communication overhead by overlapping propagation steps with
the aggregation of weight decays. MPI fine control provided good
performance but the system needs to be enhanced with a data
supply management. In order to provide resiliency, data staging,
ability to express iterative algorithms with a high level and user
friendly interface, we considered Apache Spark well-suited to re-
inforce such a software like the enhanced Caffe.

In this paper we describe our experiments to make Spark and
MPI communicate to leverage MPI fine computing control and
high performance with Spark high level data supply management
for the purpose of deep learning application. The paper is orga-
nized as follow: in section 2 we briefly present Spark and MPI
specificities, then Section 3 describes our system design enabling
the inter-communication between MPI processes and Spark JVM.
Section 4 explains the details of the system architecture. Then in
Section 5, we present our experiments and evaluation results. Fi-
nally, we conclude in Section 6 about about the efficiency of such
a system .

2. PRELIMINARIES
2.1 MPI

Message Passing Interface (MPI) is a language-independent
communications specification for parallel computing where
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point-to-point and collective communication are supported. MPI
goals are high performance, scalability, and portability [5]. MPI
is currently the dominant model used in high-performance com-
puting and is a de facto communication standard that provides
portability among parallel programs running on distributed mem-
ory systems [5]. MPI historically supported the initial growth of
cluster computing and helped to shape what the computing world
has become today with essential features like messages routines
standard and collective operations. However, programming at the
transport layer is obviously awkward for the handling of high
level data structure such as distributed arrays, data frames, trees,
or hash tables and tools like Spark are more suitable for this pur-
pose.

2.2 Spark
Spark is a framework for general distributed computing which

can handle Big Data using in-memory features with high level
APIs for programming language like Scala, Python and Java. It
translates the user program into a dataflow graph, mainly directed
acyclic graph (DAG), and optimizes the program schedule for the
data processing according to the dependency in this graph. Map-
Reduce model is executed through the graph where map are local
data processing and reduce global operation involving commu-
nication between nodes. Spark has its own job scheduler which
leverages data locality and load balancing but it can also collab-
orate with other open source scheduler like Mesos [13] and Yarn
[14]. Spark uses a data abstraction called resilient distributed
datasets (RDD) [3] enabling data persistence and distribution.
RDD can be cached in memory or stored in local storage. RDD
also keep tracks of their original information even after being
modified so that they may reuse their original values (RDD graph
lineage)[3]. Since Spark adopts a lazy evaluation model, data are
not processed until the user calls an action which returns the re-
sult of a computation. Before calling an action, the user defines
a program with multiple transformation. The sequence of trans-
formation creates a dataflow graph where new RDD are created
from the older ones.

We should note that any Spark process working on a cluster is
nothing else than a Java Virtual Machine (JVM) process. And as
any JVM, a Spark process is allocated a Heap memory space with
a capacity of 512 MB by default. Spark allow us the utilisation
of 90% of the heap size (spark.storage.safetyFraction parame-
ter) which is called the safe heap. Among this safe heap, some
amount of memory is reserved for data caching and this part is
usually 60% of the safe heap (spark.storage.memoryFraction pa-
rameter). So it is important to be aware that only (90% of 60/

3. MERGING SPARK AND MPI
3.1 Data Communication Path

Here we describe how the data communication between Spark
JVM and MPI Process is performed in our system.

Since the Java Development Kit version 1.4, Java NIO API pro-
vides MappedByteBuffer which helps to establish a virtual mem-
ory mapping from JVM space to filesystem pages [8]. This re-
moves the overhead of transferring and coping the files content
from OS kernel space to JVM memory. Indeed, OS uses vir-

tual memory to cache files outside of Kernel space to make them
sharable with non-kernel processes. Java can maps the file pages
to MappedByteBuffer directly and can process them without load
into JVM. The idea is to make MPI Processes perform the same
memory mapping by using the GNU C Library mmap function
(Fig. 1). Through this mechanism, any MPI Process and Spark
JVM can share memory, thus communicate data through virtual
memory.

MappedByteBuffer maps directly with opened file in Virtual
Memory by using the map method of a FileChannel object re-
lated to an opened file (Fig. 2). The MappedByteBuffer object
works like a buffer but its data are stored in a file within the OS
Virtual Memory. The get method on MappedByteBuffer object
fetches data from file. In a similar way, the put method updates
the content directly on the mapped file. Modified content is vis-
ible to other reader of the file. Processing file through Mapped-
ByteBuffer has big advantage because it doesnt make any read-
/write system call on file, which improves the latency. Moreover,
file in Virtual Memory caches the memory pages so that they may
be directly accessed by MappedByteBuffer and thus does not con-
sume JVM space.

i n t fd = open ( f i l e n a m e , a c c e s s , p e r m i s s i o n )
char ∗ d a t a = mmap( addr , l e n g t h , p r o t , f l a g s , fd , o f f s e t )

Fig. 1 Memory Mapped File in C language used by MPI

RandomAccessFi le f i l e = new RandomAccessFi le (
f i l e n a m e , p e r m i s s i o n )

MappedByteBuffer o u t = f i l e . g e t C h a n n e l ( ) . map ( mode ,
p o s i t i o n , l e n g t h )

Fig. 2 Memory Mapped File in Java used by Spark

Therefore, Spark can handle large data volume and prepare
fresh batch sized partitions before sending them towards MPI
Processes through this shared memory.

3.2 Notification Path
We describe here the system control mechanism performed in

our system.
Most operating systems provide interprocess communication

(IPC) allowing processes to share data and exchange messages
[9]. Named Pipe has been used for the system notification path.
Named Pipe provides a bidirectional data channel, a file on the
file system, where many processes can read from and write to
as a buffer and thus communicate with each other with simple
short message. The general idea is to use the Named pipe to syn-
chronize and control the communication while data exchanges
are managed by the Virtual Memory mapped. This is definitely a
generic system which can be used for many purposes, with many
kind of processes and with different approaches to pass message
through Named Pipe. In this paper, we describe an instance of
such a system, as presented in Fig. 3), that we developed for the
interaction between MPI and Spark. Spark acts as a server, sup-
plying data to the client which requests them. MPI clients send

ⓒ 2016 Information Processing Society of Japan 2

Vol.2016-HPC-156 No.11
2016/9/16



IPSJ SIG Technical Report

a data request to a Spark server through the Named Pipe. This
triggers the server task : fetching the data, writting them within
the Data Shared Memory, then notifying the client. When receiv-
ing the notification, MPI clients access the required data through
shared memory. This execution can easily be improved by ad-
vanced pipeline using double buffer or ring buffer.

Fig. 3 Spark-MPI with Memory Mapped File and Named Pipe

4. SYSTEM ARCHITECTURE
Our purpose is to build a scalable data storage system to feed

MPI processes with data when required. Within the same cluster
of machines, MPI processes should coexist with Spark workers.
Both processes sets must be synchronized thank to the Named
Pipe/Shared Memory we presented so far. The cluster nodes
should be balanced in terms of process pairs. Each node hosts a
Spark Executor where there are as many Spark cores allocated as
there are MPI process running in the node. Then each Spark cores
indirectly connects itself to one MPI process through a Named
Pipe/Shared Memory system. It begins then a continuous client-
server communication to supply data.

4.1 Data Supply Cycle
We implemented the communication system with MPI and

Spark programs written respectively in C and Scala. Each of
them take as parameters two configuration files listing the whole
Mapped-file and Named pipes available that processes can use
for their mutual communication. When the main program starts,
each MPI process maps one Mapped-file and one Named-pipe
listed from the configuration files.Then each opens its Pipe in
a WRONLY (write only) mode and put a request in it. At this
moment, MPI processes are blocked until Spark server read the
request. On the server side, Spark main program does a similar
thing: it assigns Named Pipe/Shared Memory location to each
Spark core in the cluster. This assignments operation is explained
in details in subsection 4.3. Then each Spark Task is able to open
its pipe, in a RDONLY (read only) mode, and read the MPI re-
quests written in it. Synchronously, after reading the request,
each Spark reader unlocks one MPI process because it remains
no other readers subscribed to the Named Pipe. Unblocked, the
MPI process can reopen its Named Pipe, this time, in a RDONLY
mode, and awaits the Spark notification answer (because nothing
is written in the Pipe yet). Server side, after receiving the MPI
request, Spark Task writes the requested data within the Mapped

Shared Memory. We assume the data (RDD partitions) were al-
ready cached within the Spark Executor memory at this moment,
following section describes in details the data storing and fetch-
ing from Database and Disk. The partition written within shared
memory, Spark Taks reopens their respective Named Pipe in a
WRONLY mode and insert a notification. The notification format
is described later in the paper. At this moment, Spark server has
finished its duty and can listen for another MPI request by reopen-
ing the Named Pipe in a RDONLY mode. Client side, the MPI
processes are unblocked after receiving the notification. They
can finally process the notification and read the specific partition
from the shared memory. At this moment, the MPI client has
been supplied and can ask for another partition by reopening the
Named Pipe in a WRONLY mode. This cycle, presented in Fig. 4,
is a traditional client-server communication between independent
processes through a Named Pipe involving a mutual understand-
ing on how to behave with the data stored inside the shared mem-
ory. Because each MPI client matches one distinct Spark Task,
this system can be scalable with the number of nodes and cores.

Fig. 4 Cycle communication which supply data from Spark to MPI

4.2 Data fetching from LMDB Database
The details described in this section are explanation and how

we used for our own purpose the CaffeOnSpark LMDB manage-
ment [10]. When the Spark main program begins, it takes the
database path given as a parameter where the data it has to supply
to MPI processes are stored. Working on Deep Learning images
processing with Caffe, we mainly handle LMDB database which
provides a high-performance, embedded transactional database in
the form of a key-value store. LMDB Databases may be used con-
currently in a multi-threaded or multi-processing environment,
with read performance scaling linearly. LMDB databases may
have only one writer at a time, however unlike many similar key-
value databases, write transactions do not block readers, nor do
readers block writers. LMDB is also unusual in that multiple
applications on the same system may simultaneously open and
use the same LMDB store, as a means to scale up performance.
Also, LMDB does not require a transaction log (thereby increas-
ing write performance by not needing to write data twice) be-
cause it maintains data integrity inherently by design. LMDB was
originally written in C but it has many API bindings for several
programming languages. In our case we use LMDB JNI, a Java
Interface for the LMDB library we can easily use with Spark to
handle LMDB transaction [11]. By passing the mdb file path to
a new Env object, we can call an openDataBase method which
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returns a new Database instance. This instance enables so far to
handle the Database with simple method called on it. The Spark
program access to the Database thanks to this API. It begins to get
the number of entries within the Database. An entry represents a
single key-value pair recorded in the Database as Byte array. A
program parameter indicates to the Spark program how we want
to split the LMDB Database in many parts by outlining the num-
ber of LMDB-Partition chosen by the user. Knowing the number
of entries in the Database and the number of LMDB-Partitions
the user want, Spark can compute the number of entries it will as-
sign per LMDB-Partition which defines the partition size. Spark
creates so an Array of LMDB-Partition representing the whole
Database. This Array is actually an Array of spark.Partition and
its size is the number of partition desired by the user. Each Par-
tition size is the total number of entries included in each LMDB-
Partition. A Partition lists a set of keys where each key points to
a specific value implemented as an Array of Bytes. The Fig. 5
describes this database management.

Fig. 5 Spark partition an LMDB Database

To create a new kind of RDD, Spark developer needs to over-
ride the getPartitions and compute method of the RDD class. The
getPartitions method should return an Array of Partition. As
described a few lines before, this Array is constructed from an
LMDB Database. Each Partition in this Array is identified with
an index corresponding to the key of the first entry the Partition
contains. The beginning of a Partition in the Database can be
identify and knowing the partition size, the program can seek to
another one. Once the Array of Partition constructed, the com-
pute method defines a new iterator of the Database value. This is
mandatory to build up an RDD where each partition is an LMDB-
Partition and each element is an entry of the Database. Because
our purpose is to perform a Deep Learning training, the LMDB
Database entry values contains images data and related informa-
tion for the Deep Learning Framework Caffe. Concretely, each
value is an Array of Byte which contains : label, number of chan-
nels, height, width, encoded state of image and the image pix-
els themselves. The iterator made by the compute method goes
through each LMDB-Partition index, then begin to process each
entry inside the Partition. The Iterator get the entry key and the
six data values listed previously, then it stores them inside a Scala

Tuple of seven elements to wrap the entry into a single RDD el-
ement. This mechanism creates a new RDD whose the Partitions
maps the LMDB-Partitions and where each element contains one
images and its related information as a Tuple of seven element (A
Tuple is a Scala data type containing a collection of various Scala
Object). In our example, our Tuple looks like the following struc-
ture:(key:String, label:String, channel:Int, height:Int, width:Int,
encoded:Boolean, data:Array[Byte]). The key is directly read
with the getKey method of the Entry Object. Then it is stored
inside a String. However, the value case is more complicated :
the value is get from the getValue method, then it is passed into
a Protocol Language Message builder which processes the value
bytes and separate each information from the other. By this way,
the iterator can get separately each information (label, witdth and
so on) and store them in a specific scala variable for the Tuple7.
The Fig. 6 shows in detail how the Spark RDD element are built
from the database entries.

Fig. 6 Spark compute the LMDB RDD

When a custom class can extends the Spark RDD class by over-
riding the getPartitions and compute methods, a serializable class
can construct a sample RDD by overriding the makeRDD method.
This method takes a Spark context as a parameter and should re-
turn an RDD. So by using a serializable class, overriding mak-
eRDD by calling the custom RDD class constructor, the Spark
main program can build up a new RDD from an LMDB Database.
Next section explain how the Spark main program distributes the
RDD partitions among the Executor cores in the cluster and as-
sign to them a pair of path (Named Pipe and MappedFile) for
communicating with MPI Processes.

4.3 Spark Tasks Control
Because RDD is a distributed collection of records, its datasets

can easily be spread on multiple node and be processed in paral-
lel. In our case, one partition of the RDD is attributed to one JVM
cores and there is one JVM in a single node. RDD are distributed
by design and the Partitions are the units of parallelism. First
when we create the RDD, none execution occurs because RDD
are lazy evaluated. Only action on the RDD can triggers the exe-
cution of a computation. Compare to MPI where the knowledge
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of MPI process ranks and hosts enables to have a perfect control
in how the process are spread, RDD spreading control is not re-
ally easy to manage. Spark tends to spread in a balanced way the
partitions depending on the cluster resources.

In general, more numerous partitions allow the work to be dis-
tributed among more workers, but fewer partitions allow the work
to be done in larger chunks, which may result in the work getting
done more quickly as long as all workers are kept busy, due to
a reduced communication overhead. Increasing partition num-
ber will make each partition to have less data. Spark can only
run one concurrent task for every partition of an RDD, up to the
number of cores in the cluster. So if we have a cluster with 50
cores, we might want our RDDs to at least have 50 partitions. The
maximum size of a partition is ultimately limited by the available
memory of an executor which is 54 % of the heap size allocated
[6-7].

Performing an action into an RDD triggers the execution of
RDD transformation and the parallel Task execution in the Ex-
ecutors. Spreading the RDD partitions across the cluster then
make each Spark Executor core communicate with a specific MPI
Processes is what we want. So we have to tell to each distinct
executor core to connect itself with a specific Named Pipe and
MappedFile. Usually, Spark perform the same action to each par-
tition and it is not usual to assign specific task to each Executor
core. However there are at least two ways to overcome this prob-
lem : the first one is working with pairRDD which are RDD’s of
Key-Value pairs. In Scala, a regular RDD can be easily turned
into a pair RDD by running a map function returning key/values
pairs, an example is given in Fig. 7. In our LMDB purpose, each
Tuple7 (a single element) can be splitted in two parts, the first one
is the key and the second part is the six remaining values. This
turns our RDD of Tuple7 into a pairRDD where each element is
a Scala Tuple2 whose the first element is the key and the second
element a Scala Tuple6 containing the other values. Having a
pairRDD, we can manipulate each element in it by referencing its
key.

v a l pairsRDD = regularRDD . map ( x => ( x . 1 , ( x . 2 , x .
3 , x . 4 , x . 5 , x . 6 , x 7 ) ) )

Fig. 7 Example of creating a pairsRDD with Spark Scala API

The second option is better in a sense it enables to manipulate
directly each distinct partition and therefore each distinct Spark
Executor core in the cluster. It use the mapPartitionsWithIndex
function. When called upon an RDD, this function is called once
for each Partition and not for each element in the RDD. This give
us the advantage to program at the Partition point of view. When
we call this function, we get an Iterator as an argument through
which we can iterate through all element in this particular Parti-
tion. Last but not least, mapPartitionWithIndex provides also an
index to track the Partition Number and therefore the Executor
core identity. This function let the developer identify control a
distinct core and therefore program a distinct task. Fig. 8 is code
snippet showing how it is possible to use this function. The index
represents the Partition ID, the iterator let us go through all the

elements in a partition and x variable represents one element in
the partition. This example show how we can associate to each
element of a RDD, the corresponding ID of the partition it be-
longs to.

rdd . m a p P a r t i t i o n s W i t h I n d e x { ( index , i t e r a t o r ) => {
v a l myLis t = i t e r a t o r . t o L i s t
myLis t . map ( x => x + ” −> ” + i n d e x ) . i t e r a t o r } }

Fig. 8 Example of using mapPartitionsWithIndex with Spark Scala API

Using this programing model, we can have a control upon
each Spark allocated core and assign them a specific Named-
Pipe/Shared Memory location by performing a mapping with the
Partition index and configuration files lines.

4.4 Data Storage Management
This section describes how Spark manages the data storage

while it supply MPI data request. Due to the large data volume
the application handle, data are mainly stored into disk through
the cluster. For the sake of performance, optimized Solid-state
storage devices such as SSD Nvme Disk has been installed on
each cluster node. As a Distributed File System, we use pri-
mary HDFS. We set up a YARN (Hadoop 2.0) cluster where the
DataNode of each Hadoop slave stores their HDFS data blocks
into Nvme. This is configured by turning the dfs.data.dir value of
the hdfs-site.xml file into the mounted Nvme device location. Us-
ing then YARN as the Spark master URL when deploying the ap-
plication (cf Fig. 9), Spark connects directly itself to the Hadoop
cluster as presented in Fig. 10. This let any Spark Task to read
and write data from/to HDFS. Spark on YARN maps each Spark
Executor to a single YARN container and can consequently take
advantage of HDFS data supports such as data locality, replica-
tion and fault tolerance.

spa rk −su bmi t −− c l a s s ” S u p p l i e r ” −−m a s t e r ya rn −−
deploy −mode c l u s t e r −−e x e c u t o r −memory $1 −−num
− e x e c u t o r s $2 −−e x e c u t o r −c o r e s $3 f i l e . j a r
a rgumen t s

Fig. 9 Spark-submit command launching a Spark Application with YARN

Fig. 10 Spark connects itself to HDFS

The main Spark program handles the Database, splits it, cre-
ates an RDD, then assigns to each Executor through the cluster,
one chunk of data (a certain number of partition according to the
number of cores allocated to the Executor). One particular point
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of our purpose is the fact that no one Transformation is performed
over the RDD created from the Database. The reason is simple
: we need to supply the entire Database entries to the MPI Pro-
cesses. When the mapPartitionWithIndex function is launched,
a first action is called upon the RDD. This triggers the begin-
ning of the Database records processing by the Executor Tasks
through the cluster. At this moment, two situations can happen
depending on the size of the RDD partition compare to the clus-
ter allocated resources. The first case is when the partitions are
enough small to be entirely be cached in the Executor memory.
This is the ideal case but it is unusual in practice because we pro-
cess large data volume. So we have to establish a persistence
strategy managing the case where RDD Partitions cannot be en-
tirely held in Executor heap size memory. Hopefully Spark offers
RDD persistence ability to store RDDs either in memory or hard
disk or even a combination of both, with different levels of repli-
cation. RDD can therefore be marked to be persisted using the
persist or cache methods on it as figured in Fig. 11. The first
time the RDD is computed in an action, it will be kept in mem-
ory on nodes or spilled to Disk. Sparks storage levels are meant
to provide different trade-offs between memory usage and CPU
efficiency depending the following case :
• RDD Partition fit entirely in JVM memory

Default storage level MEMORY ONLY is used. This is the
most CPU-efficient option, allowing operations on the RDDs
to run as fast as possible. However, we use this storage level
only when we are pretty sure the entire set of partitions can
be fit in memory. If not, some partitions will be recomputed
on the fly each time they are needed, involving a computa-
tion time higher than if it will be read directly from opti-
mized disk like Nvme (this is not always true and depend
one the RDD computation and the specific disk used).

• RDD Partition does not fit in memory
Storage level MEMORY AND DISK is used. It stores RDD
as deserialized Java objects in the JVM like the previous case
but, if the RDD Partitions do not fit in memory, the partitions
that cannot be cached in memory are stored on Nvme. Then,
when the Spark Task needs to process these partition, it will
read them from Nvme. This mechanism is described in Fig.
12.

v a l rdd = d a t a b a s e . makeRDD( sc )
rdd . p e r s i s t ( S t o r a g e L e v e l . MEMORY AND DISK)

Fig. 11 Example of RDD creation and StorageLevel configuration with
Spark Scala API

Spark automatically monitors cache usage on each node and
drops out old data partitions in a least-recently-used (LRU) fash-
ion. Once a partition has been written on the Data Shared Mem-
ory for being accessible to the MPI client, we don’t use it any-
more so the least-recently written partition will be automatically
dropped out the moment when a Task will fetch a new Partition
from Disk. An important note is the maximum size of a parti-
tion is ultimately limited by the available memory of an ex-
ecutor. Thus we have to be sure, before starting the application,

that the size of a single partition is smaller or equal to the Ex-
ecutor memory allocated. Else, none partition might be cached,
decreasing dramatically the performance.

Fig. 12 Data Storage Management

To manage allocated memory it is important to figure the Spark
JVM memory model: Spark memory represents 75% of Java
Heap - Reserved Memory [6-7]. The pool managed by Spark is
split in two regions: storage memory and execution memory. The
boundary between them is set by spark.memory.storageFraction
parameter, which defaults to 0.5. The advantage of this mem-
ory management scheme is that this boundary is not static, and
in case of memory pressure the boundary would be moved mean-
ing that one region would grow by borrowing space from another
one. Storage Memory pool is used for storing cached data and
temporary serialized data. In case there is not enough memory to
fit the whole unrolled partition, it would directly put it to the drive
if persistence level allows it. Execution Memory pool is used for
storing the objects required during the execution of Spark Tasks.
This pool also supports spilling on disk if not enough memory is
available.

Due to the nature of Execution Memory, data blocks cannot
forcefully evicted from this pool, because this is the data used in
intermediate computations and the process requiring this mem-
ory would simply fail if the block it refers to will not be found.
But it is not so for the Storage Memory which is just a cache of
blocks stored in RAM, and if we evict the block from there we
can just update the block metadata reflecting the fact this block
was evicted to Disk, and trying to access this block, Spark Task
would read it from Disk (or recompute it in case persistence level
does not allow to spill on HDD). Many case can occurs :
• We can forcefully evict the block from Storage Memory
• We cannot do it for Execution Memory
• If free space is available in Storage Memory pool (cached

blocks dont use all the memory available), its size is reduced,
increasing the Execution Memory pool one.

• If Storage Memory size exceeds its initial region (e.g, all the
space is used by cached data), blocks are forcefully evicted
untill the pool reaches its initial size.

• Storage Memory pool can borrow free space from Execution
Memory if it is available.

Initial Storage Memory region size, is determined as
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Spark Memory * spark.memory.storageFraction = (Java
Heap - Reserved Memory) * spark.memory.fraction *
spark.memory.storageFraction. Default values give (Java
Heap-300MB) * 0.75 * 0.5 [6-7].

When we cache the partitions, we are pretty sure that the to-
tal amount of data cached on Executor is at least the same as the
initial Storage Memory region size. However, if the Execution
Memory region has grown up beyond its initial size before we
filled the Storage Memory , we will not be able to forcefully evict
entries from it, involving a smaller cache size. The tradeoff be-
tween caching data or spilling to Disk can be then managed by
changing the parameter value depending on the application re-
quirements.

4.5 Notification format
When the RDD is created from the Database and Partitions dis-

tributed, each Task needs to write the elements into shared mem-
ory, then send a notification to the client. However, because data
written in shared memory are a kind of sequential bytes array, we
need a way to distinguish internally, each partition and its differ-
ent elements so that the MPI client can be able to read the right
data at the right location. To fix this issue, we designed a set of
rules making MPI clients understand the way Spark server write
the data . First, the Spark Task access to each element of its Par-
tition (e.g Scala Tuple7) and converts each different value into
Bytes array (creating 7 distinct bytes array). The size of each
value, as a bytes array, is then recorded and used later. Next the
seven arrays are concatenated together to build up a single array
byte representing the entire element. Spark server is able to read
distinctly each value from this contiguous array because it know
their size and the general order they have been concatenated in-
side the array. The size of the global array is also recorded and
the array is written in shared memory. Doing this preliminary job
is necessary to send a proper notification through the Named Pipe
and make the client able to access the right data. The notification
is composed of the total size of the array written in memory, the
size of each different values encoded within the array and the off-
set position in the shared memory where the array data actually
begins. On receiving this notification, the MPI Process is able to
read the particular area from the shared memory where the next
Partition element is written . Because it knows the size of each
element value, it can extract any particular images metadata and
the image itself. By notify only the data size and position, inde-
pendent Spark and MPI processes can understand each other. The
sequence of these operations are visible in Fig. 13.

Fig. 13 Notification management

5. SYSTEM PERFORMANCE
5.1 Experimental Setup

We managed our experiments on two compute nodes
(server#1, server#2). Each node has a Dual sockets of 2.6
GHz 14-core Intel ”Xeon” E5-2697 v3 processors. Both node
are connected by InfiniBand EDR (Mellanox ConnectX-4).
They have each a 128GB DDR4 SDRAM memory module
and are also equipped by a 1.2TB Intel SSD ”Nvme” which
has a theoretical sequential read performance up to 2.6 GB/s
and 1.6 GB/s for write operation. The experiments have been
conducted under Linux Centos7 OS. We used OpenMPI 1.7.4
as the MPI implemetation and we ported Spark 1.6.1 to run on
the two nodes. Spark was deployed with a YARN 2.6.1 master
to facilitate the control of the resources allocated in each node.
One HDFS DataNode per node were running and only one
NodeManager on server#1. Spark Application was launched in
client-mode from server#1, (e.g the Spark driver runs directly
on server#1) with 5G allocated to the Spark driver. To improve
the Spark data management performance, we also used a fast
serializer such as KryoSerializer. The heap memory allocated
to each Spark Executor depended on the Database size and the
choice of the number of partitions. At least this memory should
had been higher than the partition size. We used 2 Executors,
one for each node (the number of Executor maps the number of
compute node), and 8 local cores were allocated to each Executor
(see below result to understand why). This means that each
Executor can run 8 parallel Tasks at the same time where each
Task process one distinct partition. So in order to make each core
always running and avoid CPU idleness, the memory allocated
to each Executor had to be at least eight times the partition size.
By this way, 8 partitions can be cached in-memory and none core
stay idle. When a partition has been processed (e.g written into
the shared memory), a core can catch the next one from Disk as
explained in last section.

5.2 MPI Processes Read from Data Shared Memory
To calibrate the global supply system performance, we evalu-

ated distinct cycle step on a single node and figured out the con-
figuration reaching to the best performance result.

First we made a Spark application write data and send notifi-
cation to MPI Process and we measured its performance reading
continuously a 1GB partition from Data shared memory using
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memcpy function. The Fig. 14 shows that a single MPI client
can achieve a bandwidth of 6.57 GB/s for reading data from the
shared memory. Using 5 MPI clients achieves 33,55 GB/s. Be-
cause each MPI process is linked with a distinct Shared Memory,
we can see that the performance results are scalable and almost
proportional to the number of Process used.

Fig. 14 MPI Processes read from memory performance

5.3 Spark Write into Data Shared Memory
Once the RDD created and the Partitions spread. We measured

a Spark core writing performance. Having its 1GB partitions
cached entirely in memory, the Spark server continually writes
them into shared memory using the put method of MappedByte-
Buffer object. Fig. 15 shows that a single Executor core achieves
a bandwidth of 4.8 GB/s which is decupled by allocating more
cores and more heap memory to the Executor, with 5 cores we
reach 21.55 GB/s.

Fig. 15 Single Spark Task write into memory performance

5.4 In memory Cycle Performance
We present here the evaluation of the system full cycle. By

”cycle”, we mean the whole step during the supply of data, from
the MPI client request to the moment when it has read the desired
partition from the shared memory after having received the server

answer. The following evaluation has been made with Spark Ex-
ecutor caching the entire set of Partition after the RDD creation.
This means that Spark Task did not need to read data from disk
since the partition requested has been already prefetched into the
heap. These results presents thus the In-Memory cycle perfor-
mance without spilled Partitions. Fig. 16 shows the bandwidth
of the supply system with a single node, related to different num-
ber of pairs of client/server. The bandwidth emphasizes the rate
at which the Spark JVM supply data to MPI client. One pair
means one independent MPI client communicating with one dis-
tinct Spark Task.

Fig. 16 1 Node, Cycle Performance

Fig. 17 describes the same experiment than the previous one
using two nodes rather than one. We can see that the results with
2 node are quite twice of the results given with one. This shows
that the system can be scale out according to the number of node
used.

Fig. 17 2 Nodes, Cycle Performance

5.5 Spilled Data Latency from Nvme
We measured then the performance of Spark server reading

data stored in Nvme. This situation happen when Spark Task
need to access to a new Partition which is not cached in memory
but has been spilled on Disk. We launched the same Spark Ap-
plication reading data from Disk with different number of cores.
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Fig. 18 reveals that using at least 8 Spark cores is sufficient to
reach the theoretical maximum value of Nvme bandwidth which
is 2.5 GB/s. This results provides us so far with the optimal num-
ber of core (e.g. 8) we had to allocate per Executor in order to
reach the best performance for our cluster.

Fig. 18 Spark Tasks read spilled Partitions in Nvme

5.6 Cycle Performance with Spilled Data
Fig. 19 describes the partition processing during a cycle data

supply along the execution of the application. In the begining, the
system supplies the partition already cached in memory (the 25
first partition are cached whereas the other are evicted on Nvme),
then it begins from the 26th partition to read partition from Disk.
This involves a significant difference in the speed performance
because the data latency increases. Also, the more we increase
the number of processes, the more the bandwidth is high. The
performance of such a system is clearly limited by the Disk I/O
but we can reach better performance with multiple independent
processes.

Fig. 19 Cycle Bandwidth

6. CONCLUSION
We designed and evaluated an efficient way to make Spark

JVM and MPI Process exchange data while staying indepen-
dent from each other. Sharing data using Memory Mapped File
gives the advantage of not relying on read-write system calls and
Named pipe brings an easy way to synchronize processes dur-
ing the execution. Letting Spark to be in charge of the data
management (fetching, preparation, distribution and persistence)
across the cluster facilitates greatly the Big Data processing due
to the high level programming interface it provides. The tradi-
tional HPC tools such as MPI can then be used entirely to perform
high performance computation and request already prepared data
only when necessary. HPC becomes a client for Big Data server.
The purpose of this system is obviously to bring a general way to
share data. Therefore it can be use for many kind of applications.
The LMDB Database handling and images partitions processing
give an example on how we can use this system to supply Deep
Learning worker node to scale out Neural Network training. The
evaluation results show how the system can scale and how the
supply bandwidth can be improved with the resources (cores and
memory) allocated to each Executor enabling us to reach a value
of 26.2 GB of data supplied with 10 processes. Our experiments
also emphasize how this system is only limited by the disk I/O
bottleneck. Future work will be focused on how we can over-
come the communication overhead in Spark control to leverage
the maximal performance of disk I/O.
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