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1 Introduction

It is known that the Youla-Kucera parametrization
parametrizes all stabilizing controllers of a stabilizable
plant whenever it admits a doubly coprime factorization
[1]-[3]. If a plant does not admit a doubly coprime factor-
ization, the Youla-Kucera parametrization is not applied to
such a plant. In this case, to parametrize all stabilizaing con-
trollers of such a plant, the general parametrization is em-
ployed. The general parametrization does not require that a
plant admits a doubly coprime factorization [1], [2]. Also
the general parametrization can parametrize all stabilizing
controllers of a plant that admits a doubly coprime factor-
ization. However, when the general parametrization is ap-
plied to such a plant, extra parameter variables always exist.
Furthermore, when the general parametrization is applied
to a plant that does not admits a doubly coprime factoriza-
tion, also there exist possibility that some extra parameter
variables are included in a parametrization of all stabilizing
controllers of such a plant. Consequently, following two
verifications are purposed in this study. (1) If a plant admits
a doubly coprime factorization, by computing extra param-
eter variables, it is confirmed that a reduced parametrization
is obtained when the general parametrization is applied to
this plant. (2) If a plant does not admit a doubly coprime
factorization, by computing some extra parameter variables,
it is confirmed that a reduced parametrization is obtained.

2 Preliminaries

Denote by .4 a commutative ring that is the set of stable
causal transfer functions. The total ring of fractions of A
is denoted by F; that is, F = {n/d|n,d € A, d: nonzero
divisor}. This F is considered to be the set of all possible
transfer functions. Matrices over F are transfer matrices. A
matrix over A is said to be nonsingular if the determinant
is a nonzero divisor of .4 . We consider the feedback system
>~ shown in Fig. 1. [1]-[3]. For details of the stabilization
problem, considered this thesis, the reader is reffered to [1]-
[3]. Throughout this thesis, suppose that 1) a plant has m
inputs and n outputs, and its transfer matrix is denoted by P
2) P is a n x m matrix over JF and stabilizable, 3) a trans-
fer matrix of a stabilizing controller of P is denoted by C.
Then H (P, C) denotes the transfer matrix from [uf ub] to
[e! eb] of the feedback system >, that is

(I, +PC)~* —-P(,+CP)~!
C(I, + PC)~! (I, + CP)1
where det(I,, + PC) is a nonzero divisor of A , namely
H(P,C)isa(m+n) x (m+ n) matrix over A [1]. Ma-
trices A and B over A are right- (left-)coprime if there
exist matrices X and Y over A such that XA + Y B =
I (AX + BY = I) holds. An ordered pair (N, D) of
matrices N and D over F is said to be a right-coprime
factorization of P if 1) D is nonsingular, 2) P = ND!
over F, 3) N and D are right-coprime. As a parallel no-
tion, the left - coprime factorization of P is defined anol-
ogously. When P admits both a right-coprime factoriza-
tion and left-coprime factorization, P is said to admit a
doubly coprime factorization [1].
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Fig. 1. Feedback system Y .

3 Youla-Kucera Parametrization and

General Parametrization

First, the Youla-Kufera parametrization is introduced
briefly. Suppose that P admits a doubly coprime factor-
ization. Then the set of all stabilizing controllers of P is
parameterized with mn parameter variables [3].

Next, the general parametrization is introduced briefly.
Suppose that C' is already given one of stabilizing con-
trollers of P. Then the set of all stabilizing controllers of
P is parameterized such that H(P) = {Q(Q)|(Q) is a
matrix over A and (@) is nonsingular} where 2(Q) =

Q(Q) + H(P,C), and

0@ - (mreo - | g o] )ex
(wsr - £ 2])

with (m+n) X (m+n) parameter matrix () over A [1], [2].
Since Q has (m + n)? entries such that Q = (g; ;) where
1 <i,5 < m+mn, (m+ n)? parameter variables exist in
Q(Q). It is possible to give an element in A for a parameter
variable freely.

4 General Parametrization for a

Polynomial Ring

We propose the reduction algorithm in the case of polyno-
mial ring. Even so, our algorithm can be applied to the set
of causal stable taransfer function is a Euclidean domain.
Also, the reduction algorithm is focused on Q(Q) since pa-

rameter variables only exist in (Q).
In a polynomial ring, R[z] is A and R(z) is F. Then
Q(Q) is expanded and decomposed such that

Q(Q) = A1,1Q1,1 +A1,2q1,2 +---+ Am+n,7n+n‘]m+n,m+n
where coefficient matrices A1 1, A1 2, -, Amtn,m+n are
(m 4+ n) x (m + n) matrices over R[z]. It is the reduction
algorithm to calculate a minimal basis of Q(Q) By calcu-

lating a minimal basis Q(Q) coefficient matrices of extra
parameter variables are zero matrix. Then extra parameter

variables are reduced from (Q), and such reduced Q(Q) is

denoted by Q2,.(Q). By adding H (P, C) to £2,-(Q), reduced
Q(Q), say ©,(Q), is obtained. To calculate a minimal ba-
sis, new coefficient matrix is constructed by A, 1, A; 2, - -,

- - - t
Am—i—n,m—i—n such that M = |:A1,17 Al,Qa ) Am+n,m+n:|
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where each of row vectors corresponds to each of coeffi-
cient matrices, namely, coefficient matrices are considered
as row vectors. Then a reduction starts from the first col-
umn of M. In the first column, an entry a that has the
lowest degree except zero is found. There exit some quo-
tients q1, -, Qm4n—1, and remainders 71, -+, Typ4n_1
for the other entries modulo a. Note that quotients and re-
mainders are in R[x]. Multiplying the row vector that has
a by each of these quotients with the opposite sign, namely
—q1, > —@m+n—1, is added to each of the other row vec-
tors. Then the entries of the other row vectors are equal to
these remainders. This calculation can be reflected to 2(Q)
since an element in R[z] can be given to a parameter vari-
able freely. Namely, in (Q), the parameter variable for
the coefficient matrix that has a is re-given as new prame-
ter variable. For example, suppose that a is (1,1) entry of
Aj 1, then there exit quotients ¢, - - -, ¢m+n—1 and remain-
ders 71, -+, "man—1 modulo a for each of (1,1) entries
of Aj 2, -+, Apmtn,m+n- Then g is re-given such that
(jl,l =dq1,1 —4q191,2 = — m+n—19m+n,m+n> and 41,1 18
applied to Q(Q) as follows:
AQ) = Aiigii+Ai 2o+ +
Am—&-n,m,+an+n,m+n
= Al —qqa2—-—
Qm—i-n—IQm-‘rn,m—i-n) +
A1,2111,2 + -+ Am+n,m+an+n,m+n
= A+ (—adig+Ai2)q 2+ +
(_Qm+n—1A1,1 + Am+n,m+n)Qm+n,m+n
= A+ Ao+ +

*
Am+n,m+nqﬂ1+n,m+n

where each of (1, 1) entries of A7 5, -+, A}, |, .+, iseach
of these remainders 71, - - -, Ty4n—1. If all remainders are
zero, a reduction in the first column of M ends since it is
impossible to reduce a from ry, - -, 7p4n—1. Therefore
Aj 1 is one of a minimal basis, and ¢; ; is not extra parame-
ter variables. If one or more nonzero remainders exist in 1,
-+, "'m+n—1, a remainder that has the lowest degree except
zero is found. Then the above procedure is repeated in the
first column until only one entry is nonzero and the other en-
tries are zero. When a reduction ends in the first column, the
coefficient marix that has nonzero entry is one of a minimal
basis, and the parameter variable of this coefficient matrix
is not extra parameter variable. Then reductions are contin-
ued from the second column to the last column of M. When
a reduction in the last column ends, namely, all reductions
end, 2,-(Q) is obtained. Note that, in a Euclidean domain,
M is an upper triangular matrix by suitable interchanging
row vectors when all reductions end.

Due to space limitation, we have omitted to describe the
cases of classic continuous-time systems and discrete-time
systems. Since these systems are also over a Euclidean do-
main, the reduction algorithm can be applied to these sys-
tems. For details the reader reffered to [3].

5 General Parametrization for the
Case of Nonexistence of a Doubly

Coprime Factorization
The polynomial ring R[d?,d?] is equal to R][d] except a
term of first degree, namely ad' where a € R, does not

exist. Moreover, P over R[d?, d®] does not admits a doubly
coprime factorization. Since R[d?,d?] is not a Euclidean
domain, the Euclidean division can not be employed in the
reduction algorithm. Therefore, instead of the Euclidean di-
vision, we employ leading term elimination [4]. The reduc-
tion algorithem can be applied to R[d?, d®] by constructing
quotients and remainders with leading term elimination.

6 Examples

As an example, we present a reduced parametrization of all
stabilizing controllers of a stabilizable plant over a poly-
nomial ring R[z]. Both (Q) and Q,.(Q) are appeared as
below.

Suppose that P = 22 + 1, C = ﬁ, and Q = (g; ;)

where 1 < ¢, < 2. Then Q(Q) = Q(Q) + H(P,C) where

—22%2 -1, 22*+322+1
HP.C) = ( 2, —2z% — 1 ’
Q(Q) = A+ A2 + A2 + Az 2qa 0.
Coefficient matrices Ay 1, A1 2, A2.1, Az 2 are as follows.
A _ 4zt + 622 +2, —425 — 102" — 822 — 2
L= —4z2 — 2, 4zt + 622 42 '
A B —4x? — 4, dz* + 82 + 4
1,2 — 4, —41'2 —4 ’
Agq =
—425 —8z% — 522 — 1, 4a® 4+ 1225+ 132 + 622+ 1
4t + 422 + 1, —420 — 8x* — 522 — 1
A _ 4zt + 622 +2, —425 — 102" — 822 — 2
2z = —4z? — 2, 4zt + 622 42

While, a reduced parametrization 2,.(Q) is such that

0(Q) = 0 (Q) + H(P,C) where Q,(Q) = A 2q15.
H(P,C) and A, o are the same as H(P,C') and A; 5 of

Q).

7 Conclusions

In a parametrization of all stabilizing controllers of a sta-
bilizable plant that admits a doubly coprime factorization,
extra parameter variables is reduced successfully. Hence
it is possible to apply the general parametrization with the
reduction algorithm to such a plant as well as the Youla-
Kucera parametrization. In the case where a stabilizable
plant does not admit a doubly coprime factorization, we
have confirmed that some extra parameter variables can be
reduced.
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