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Enhancing Multiobjective Evolutionary Algorithms by

Local Dominance and Local Recombination:

Performance Verification in Multiobjective 0/1 Knapsack Problems

Hiroyuki Sato,† Hernán Aguirre† and Kiyoshi Tanaka†

This paper proposes a method to enhance single population multiobjective evolutionary
algorithms (MOEAs) by searching based on local dominance and local recombination. In this
method, first, all fitness vectors of individuals are transformed to polar coordinate vectors
in objective function space. Then, the population is iteratively divided into several subpop-
ulations by using declination angles. As a result, each sub-population covers a sub-region
in the multiobjective space with its individuals located around the same search direction.
Next, local dominance is calculated separately for each sub-population after alignment of its
principle search direction by rotation. Selection, recombination, and mutation are applied to
individuals within each sub-population. The proposed method can improve the performance
of MOEAs that use dominance based selection, and can reduce the entire computational cost
to calculate dominance among solutions as well. In this paper we verify the effectiveness of
the proposed method obtaining Pareto optimal solutions in two representative MOEAs, i.e.
NSGA-II and SPEA2, with Multiobjective 0/1 Knapsack Problems.

1. Introduction

Recently, multiobjective evolutionary algo-
rithms (MOEAs) 1),2) have been increasingly in-
vestigated. MOEAs solve multiobjective op-
timization problems (MOPs) by using evolu-
tionary algorithms 3),4) inspired from biological
evolution. MOEAs are particularly suitable to
solve MOPs because they evolve simultaneously
a population of potential solutions to the prob-
lem in hand, which allows us to search a set of
Pareto optimal solutions (POS) in a single run
of the algorithm.

Two important goals of a MOEA are to
achieve POS converging to the true Pareto
front and keep a good distribution in objec-
tive space of the solutions found. Among
the various methods proposed so far1),2), ap-
proaches that use elitism based on dominance
are becoming the state of the art. In general,
these algorithms are quite effective obtaining
POS when the search space is relatively small.
However, when the search space becomes large
and/or the number of objectives increases, it
becomes gradually difficult for them to obtain
POS with sufficient diversity in objective space.
This is mainly caused by elitism on dominance
that gives strong priority to individuals having
higher rank of dominance in the selection pro-
cess. In this way, conventional schemes try to
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satisfy the convergence condition of POS but
have difficulties satisfying simultaneously diver-
sity requirements. That is, solutions in the pop-
ulation tend to be distributed in a relatively
narrow region of the Pareto optimal front.

In order to solve this problem and obtain
POS satisfying diversity conditions, we propose
a method to enhance single population MOEAs
by performing local dominance and local re-
combination. In this method, we first trans-
form all fitness vectors of individuals to po-
lar coordinate vectors in the objective function
space. Then we divide the population into sev-
eral sub-populations by using declination an-
gles. We calculate local dominance for indi-
viduals belonging to each sub-population af-
ter alignment of its principle search direction
by rotation and apply selection, recombination,
and mutation to individuals within each sub-
population. The proposed method can be easily
applied to MOEAs that use dominance based
selection. An additional and important advan-
tage of the proposed method is that it can re-
duce the entire computational cost to calculate
dominance among solutions.

In this paper we pick up NSGA-II 5) and
SPEA2 6) as two representatives of the latest
generation of elitist MOEAs and enhance them
with our method. We verify the effectiveness
of the proposed method obtaining Pareto op-
timal solutions satisfying diversity conditions
by comparing the search performance between

98



Vol. 48 No. SIG 2(TOM 16) Enhancing MOEAs by Local Dominance and Local Recombination 99

the conventional algorithms and their enhanced
versions. Also, we give an estimate of the entire
computational cost to calculate dominance.

2. Related Works

Related works to the way we perform local re-
combination include methods that bias mating
to recombine similar parents and methods that
group individuals by similar search direction in
the objective space.

Recombination of similar parents in MOEAs
was initially implemented following the mating
restriction suggested by Goldberg 4) for single
objective genetic algorithms, see for example
Refs. 7), 8). In these approaches, individuals
whose distance is farther apart than a value
σmating are banned from recombination. In gen-
eral, the parameter σmating is difficult to set
and depends on the problem at hand. The
importance of mating restrictions was also em-
phasized in Refs. 10), 11), where recombination
is performed only between individuals next to
each other in one of the objectives. Recently,
a simple yet effective similarity based-mating
scheme to recombine similar parents has been
proposed in Ref. 13). In this approach the first
parent is selected using binary tournament se-
lection. Then, other β individuals are selected
using binary tournament selection and the in-
dividual closer to the first parent is selected as
its mate. This approach has been extended suc-
cessfully to recombine extreme and similar par-
ents 14),15). All these methods that restrict mat-
ing have been incorporated in algorithms that
bias selection by calculating dominance in the
whole population. The approach we propose,
in addition to local recombination, is used to-
gether with local dominance.

Other way to induce local recombination is
achieved by temporarily grouping the popula-
tion around a search direction 9),16)∼19). Be-
sides local recombination, an additional and im-
portant objective of these methods is to assign
uniformly the search effort towards all search
directions trying to avoid that the algorithm
focuses only in a narrow region of the objec-
tive space. However, the methods proposed so
far have been based on aggregation approaches,
which use the weighted sum of m objectives
as a fitness function and specify weighting co-
efficients randomly whenever a pair of parent
individuals are selected. These methods have
shown good performance in several applications
but are expected to face difficulties on problems

with non-convex Pareto fronts. In contrast, the
method we propose is based on dominance and
would not suffer from the limited applicability
of weighting based methods.

Regarding dominance, most methods that
use Pareto based selection calculate dominance
globally using a population that could be dis-
tributed alone the whole search space. There
are methods that restrict dominance to individ-
uals located in a neighborhood, see for example
Ref. 20), but there are no previous references to
methods that calculate local dominance after
alignment of search direction by rotation.

Other related work can be found in ap-
proaches that use a distributed GA to bias the
search of each sub-population to a given region
of objective space, aiming to obtain fully dis-
tributed POS. See for example Refs. 20), 21).
The method we propose is an alternative to
single population MOEAs and at this time no
special considerations are being taken for a par-
allel distributed implementation. Nonetheless,
we include as a reference results by Distributed
Computation of Pareto Optimal Solutions 21)

(DCPOS) to show the effectiveness of the pro-
posed approach.

3. Solving MOP Using MOEAs

A MOP including m kinds of objective func-
tions is defined as follows:


Maximize
f(x)=(f1(x), f2(x), . . . , fm(x))

subject to
x ∈ F

(1)

where, x ∈ F is a feasible solution vector
in the solution space S(F ⊆ S), and fi(i =
1, 2, · · · ,m) are the m objectives to be maxi-
mized. That is, we try to find a feasible solution
vector x ∈ F in the solution space maximiz-
ing each objective function fi(i = 1, 2, . . . ,m)
in a vector fitness function f . Important con-
cepts used in determining a set of solutions for
MOP are dominance, Pareto optimality, Pareto
set and Pareto front. We define dominance be-
tween solutions x,y ∈ F as follows: If

∀i ∈ {1, 2, . . . ,m} : fi(x) ≥ fi(y) ∧
∃i ∈ {1, 2, . . . ,m} : fi(x) > fi(y)

(2)

are satisfied, x dominates y. In the following,
x dominates y is denoted by f(x) � f(y). A
solution vector x is said to be Pareto optimal
with respect to F if it is not dominated by other
solution vectors in F . The presence of multiple
objective functions, usually conflicting among
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them, gives rise to a set of optimal solutions.
The set of Pareto optimal solutions (POS) is
defined as

P = {x ∈ F | ¬∃y ∈ F : f(y) � f(x)} ,
(3)

and the Pareto front is defined as

PF={(f1(x), f2(x), . . . , fm(x)) | x ∈ P} .
(4)

MOEAs evolve a population to obtain P for a
given MOP in a single run.

4. Proposed Method

4.1 Concept
Dominance offers important advantages to

multiobjective algorithms. It helps to push the
search towards higher fronts and is effective for
problems with convex and non-convex fronts.
However, some global non-dominated solutions
may have a too strong influence and may under-
mine the contribution of other solutions that,
although globally dominated, have the poten-
tial to make the entire population diverse in
objective space. In other words, a solution
may dominate a broad region but may not be
the best point from which to reach other not
yet found non-dominated solutions. Rather,
we consider that some individuals that appear
globally dominated may be a good source to
populate underrepresented regions. As illus-
trated in Fig. 1, solutions that appear globally
dominated may be ignored by selection (espe-
cially if elitism is used) although it could be
worth trying to populate insufficiently repre-
sented regions from them. Another concern
with dominance is the computational cost re-
quired for its calculation in the entire popula-
tion.

From this point of view, in order to intro-
duce necessary diversity and accomplish effi-
cient search for POS, we divide the entire pop-

Fig. 1 Dominated solutions could help populate
unrepresented optimal regions.

ulation into several sub-populations generation
by generation. Each sub-population consists
of individuals having similar search directions.
Then, we calculate local dominance among indi-
viduals in each sub-population. Next, we apply
parent selection and genetic operations to indi-
viduals within each sub-population by reflect-
ing local dominance. Population division al-
lows us to reduce the entire computational cost
while obtaining dispersed POS. The significant
points of this work are the population division
in objective space using polar coordinates and
the way of calculation of local dominance with
alignment of the principle search direction by
rotation. After calculation of local dominance,
we can simply apply conventional MOEAs 5),6)

in each sub-population. The main loop of the
enhanced MOEAs with the proposed method is
illustrated in Fig. 2. In the following we detail
the procedures for population division and local
dominance.

4.2 Population Division in Objective
Function Space

The objective of the population division is
to group individuals with similar search direc-
tion in the m-dimensional objective space. To
achieve this efficiently, the m-dimensional fit-
ness vector f(x) for each individual is expressed
in polar coordinates by a norm r and m−1 dec-
lination angles θj(j = 1, 2, . . . ,m− 1) as shown
in Fig. 3. First, we create a minimum fitness
vector (fmin

1 , fmin
2 , · · · , fmin

m ) consisting of the
minimum fitness values in each objective func-
tion fi(i = 1, 2, . . . ,m) in the population, and
calculate temporal fitness vectors for all indi-
viduals as f

′
(x) = (f

′
1(x), f

′
2(x), . . . , f

′
m(x)) =

(f1(x)− fmin
1 , f2(x)− fmin

2 , . . . , fm(x)− fmin
m ).

Note that in this paper the prime character (′)
denotes the result after a transformation, and

Procedure enhanced MOEA
for t← 1 . . . T
{P1, . . . , Pk, . . . , Pdm−1} ← population di-

vision (P (t), d,m)
for k ← 1 . . . dm−1

ranking by local dominance (Pk)
Qk ← truncation (Pk)
Rk ← mating and reproduction (Qk)
fitness evaluation (Rk)

end
/* Q(t) = ∪dm−1

k=1 Qk, R(t) = ∪dm−1

k=1 Rk */
P (t+ 1)← Q(t) ∪R(t)

end
Fig. 2 Main loop of enhanced MOEA.
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Fig. 3 Solution expressed as polar coordinate vector,
m = 2.

Fig. 4 Population division using declination angles
(θ1, θ2, · · · , θm−1).

not derivative. Then we transform all temporal
fitness vectors f

′
(x) to polar coordinate vectors

p(x), i.e., f
′
(x) = (f

′
1(x), f

′
2(x), . . . , f

′
m(x))→

p(x) = (r(x), θ1(x), θ2(x), · · · , θm−1(x)).
Next, the joined population of parents and

offspring P (t) is split iteratively according to
declination angles into dm−1 sub-populations,
where d is a parameter indicating the divi-
sion factor at each one of the m − 1 itera-
tions. In other words, P (t) is split into d sub-
populations according to θ1, then each one of
these d sub-populations is split again into other
d sub-populations according to θ2, and so on.
The iterative population division method to di-
vide the entire population P (t) at t-th gen-
eration into dm−1 sub-populations Pk(t)(k =
1, 2, · · · , dm−1) is illustrated in Fig. 4 and the
main steps of the algorithm are as follows.
step1 : Set l = 1 and P1 = P (t).
step2 : Sort all individuals in Pk(k = 1, 2, · · · ,

dl−1) with l-th angle information θl.
step3 : Divide each Pk(k = 1, 2, · · · , dl−1) into

d sub-populations in order of angle infor-
mation θl.

step4 : Increment l. If l ≤ m − 1, repeat
step2 ∼ step3 for sub-populations already
obtained.

In step3 of the above procedure, we use a
method that slightly varies sub-population size
to avoid gaps in objective space among sub-

Fig. 5 Determination of principle search direction for
each sub-population (m = 2, d = 3).

populations. See Section 4.5 for further details.
4.3 Calculation of Local Dominance in

Sub-population
Local dominance among individuals in each

sub-population Pk(k = 1, 2, · · · , dm−1) is calcu-
lated after rotating the principle search direc-
tion of Pk. The algorithm of this procedure is
as follows.
step1 : Find maximum and minimum dec-

lination angles, θmax
kj and θmin

kj (j =
1, 2, · · · ,m − 1), in Pk(t), and determine
the principle search direction as shown in
Fig. 5 by

θ̂kj =
θmax

kj − θmin
kj

2
+ θmin

kj

(j = 1, 2, · · · ,m− 1). (5)

step2 : Calculate m− 1 rotation angles

ψkj = θ̂kj − π

4
(j = 1, 2, · · · ,m− 1). (6)

step3 : Rotate all declination angles of the
polar coordinate vectors of individuals in
Pk(t) as shown in Fig. 6 by
p

′
(x)

= (rk(x), θ
′
k1(x), θ

′
k2(x), · · · , θ′

km−1(x))
= (rk(x), θk1(x)− ψk1, θk2(x)
−ψk2, · · · , θkm−1(x)− ψkm−1). (7)

step4 : Transform all polar coordinates vectors
changed in Pk(t) to modified temporal fit-
ness vectors as
p

′
(x) = (r(x), θ

′
k1(x), θ

′
k2(x), · · · ,

θ
′
km−1(x))→

f
′′
(x)=(f

′′
k1(x), f

′′
k2(x), . . . , f

′′
km(x)). (8)

step5 : Calculate local dominance using the
modified fitness vectors f

′′
(x) in Pk(t).

4.4 Local Dominance and Local Re-
combination

Recalculation of fitness vectors for indi-
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(a) before rotation (b) after rotation

Fig. 6 Rotation of sub-population Pk(t) and its
affection to dominance among solutions.

viduals in each sub-population after rotation
changes dominance among solutions in objec-
tive function space. This brings more selec-
tive advantages to become parent individuals
to solutions having the potential to spread the
search rather than conventional schemes. As
shown in Fig. 6 (a), if we calculate dominance
among solutions with a conventional scheme,
say NSGA-II 5), individuals a, d and e would
be dismissed with high probability in the par-
ent selection process since they are dominated
by b and c. On the other hand, if we take
into account the principle search direction of
Pk and properly rotate declination angles, as
shown in Fig. 6 (b), the individual a becomes a
non-dominated solution, which is expected to
make the entire population spread. In this ex-
ample, a has the potential to disperse the distri-
bution of Pk to the direction of objective func-
tion f2.

Local dominance is reflected in parent selec-
tion within the current sub-population. We ap-
ply crossover and mutation operators to parent
individuals selected within each sub-population
based on local dominance. Because the individ-
uals included in each sub-population have sim-
ilar search direction in the objective function
space, the enhanced algorithm locally achieves
recombination between individuals having sim-
ilar fitness vector. This effectively works to
avoid inefficient recombination in MOEAs.

4.5 Gap Suppression by Varying Sub-
population Size

If we evolve the entire population with a fixed
number of individuals in each sub-population,
the search tends to produce gaps among sub-
populations in the objective space as illustrated
in Fig. 7 (a). In order to suppress this phe-
nomenon, we incorporate a particular popula-
tion dividing scheme that slightly varies the size
of sub-populations, which fluctuates the regions
covered by the sub-populations in the objective

(a) without gap
suppression

(b) gap suppression with
reserve individuals

Fig. 7 Illustration of gap suppression among sub-
populations by reserve individuals (|P | = 10,
µ = 3, π = (1, 0, 0), d = 3).

space. Suppose that a population P is divided
into K sub-populations Pk (k = 1, 2, · · · ,K).
In this process, we describe the total popula-
tion size in P as

|P | =
K∑

k=1

|Pk| =
K∑

k=1

(µ+ πk) (9)

where | · | means number of individuals in
the population. The size of sub-population
|Pk| (k = 1, 2, · · · ,K) is determined by an
equivalent number of individuals µ plus a num-
ber πk of reserve individuals, which are ran-
domly assigned to sub-populations. We prepare
in advance a vector π = (π1, π2, · · · , πK) con-
taining the number of reserve individuals, and
randomly permute its elements at every gen-
eration. We show an example of this popula-
tion division in Fig. 7 (b) in case of |P | = 10,
µ = 3, π = (1, 0, 0) and d = 3. In this example,
we allocate one reserve individual (π1 = 1) to
P1 at t-th generation, thus |P1| = 4, |P2| = 3
and |P3| = 3, respectively. But we allocate the
reserve individual to P2 at (t + 1)-th genera-
tion, to P3 at (t+ 2)-th generation, and so on.
From this illustration we can see that a part of
the offspring created by a sub-population can
be covered (included) by a different neighbor
sub-population. This slight fluctuation of the
solution coverage with sub-populations works
to suppress gaps in the objective space effec-
tively. Although this idea is somehow similar
to immigration among sub-populations in Dis-
tributed EAs, it differs in two points. It fluctu-
ates the size of sub-populations in the process of
sorting with declination angles in polar coordi-
nate vectors. Eventually, it switches belonging-
ness of just neighbor individuals between sub-
populations.
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5. Computational Cost Reduction

Recent MOEAs using dominance generally
require the computation of order O(mN2),
where m and N denote number of objectives
and population size, respectively.

The proposed method can reduce substan-
tially the computational cost to calculate dom-
inance since we divide the entire population
into dm−1 sub-populations. The computa-
tion order for calculating local dominance in
all sub-populations by the proposed scheme is
O

(
mN2

dm−1

)
and the computation order for popu-

lation division is O(mN log2N), where sorting
by angle information is used. Thus, the overall
computation order of the proposed method is
given by O

(
mN2

dm−1

)
+O(mN log2N) < O(mN2)

for m � 2 and d � 2. This could be a big
advantage of the proposed method as popula-
tion size and/or number of objectives increase.
Details of the computational cost are given in
Appendix A.

6. Problems, Parameters, and Metrics

In this paper we use multiobjective 0/1 knap-
sack problems 12) as benchmark problems to
verify the search performance of the proposed
method. A KPn-m problem of n objects and m
knapsacks is formulated to maximize m func-
tions

fj(x)=
n∑

i=1

xi · pi,j j=(1, 2, · · · ,m) (10)

subject to

gj(x) =
n∑

i=1

xi · wi,j ≤Wj

j = (1, 2, · · · ,m) (11)
where xi ∈ {0, 1} (i = 1, 2, · · · , n) are elements
of solution vector x = (x1, x2, · · · , xn), which
gives a combination of items. Also, pi,j and
wi,j (j = 1, 2, · · · ,m) denote profit and weight
of item i according to knapsack (objective) j.
Wj is the capacity of knapsack j, and solutions
no satisfying this condition are considered as in-
feasible solutions F̄ = (S − F). In this paper,
we use benchmark problems with m = {2, 3}
objectives downloaded from22), for which we
know the true POS only in case of two objec-
tives m = 2.

We adopt two-point crossover with a
crossover probability pc = 1.0 for recombina-
tion, and apply bit-flipping mutation with a

mutation probability pm = 1/n. In the fol-
lowing experiments, we show the average per-
formance with 30 runs, each of which spent
2,000 generations. Population sizes are set to
|P | = {200, 600} ☆ for m = {2, 3} objectives,
respectively.

In this paper, we use several metrics to eval-
uate MOEAs performance. The first met-
ric is hyper-volume (HV ), which measures
a m-dimensional volume covered by POS in
objective function space 23). Here we use
(f1, f2, · · · , fm) = (0, 0, · · · , 0) as the reference
point to calculate HV . POS showing higher
HV can be considered as better POS from both
convergence and diversity viewpoints. The sec-
ond metric is generational distance GD pro-
posed by Veldhuizen 24), which measures a de-
gree of convergence to the true POS. In order
to more precisely compare the obtained POS
with the true POS, we also use inverse gen-
erational distance IGD originally proposed by
Czyzak and Jaskiewicz 25) as the D1R measure.
GD measures the average distance for all mem-
bers in the obtained POS to their nearest so-
lutions in the true POS, while IGD measures
the average distance for all members in the true
POS to their nearest solutions in the obtained
POS. POS showing smaller GD and IGD can
be considered as better POS satisfying conver-
gence condition. However, note that IGD gives
a small value only if all members of the obtained
POS dispersively converges to all members of
the true POS, while GD becomes small even
if they converge to some of the members in the
true POS. The third metric is spread (SP ) pro-
posed by Deb et al. 1), which measures the de-
gree of dispersion on the distribution of POS.
POS showing smaller SP can be considered as
better POS satisfying diversity condition.

7. Experimental Results and Discus-
sion

7.1 Performance Enhancement from
Conventional Single Population
MOEAS

In this section, we compare the search per-
formance of conventional NSGA-II and SPEA2
and their enhanced versions incorporating the
proposed method.

☆ Here we adopt these sizes to observe as much as
possible the behavior of the proposed method in a
similar range of sub-population sizes while using dif-
ferent number of sub-populations
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(a) KP100-2 (b) KP250-2 (c) KP500-2

(d) KP100-3 (e) KP250-3 (f) KP500-3

Fig. 8 Performance comparison on hyper-volume (HV ).

7.1.1 Hypervolume
First, we show in Fig. 8 the obtained HV

by the enhanced MOEAs over the parameter d
used for population division. Note that in the
case of m objectives, the size of sub-population
is given by |Pk| ∼ N/dm−1. The two paral-
lel dashed lines are the results by conventional
NSGA-II and SPEA2. Here we depicted the
normalized HV for obtained POS with regard
to HV for the true POS in case of two objec-
tives (m = 2), while the normalized one for the
maximum HV experimentally obtained in case
of three objectives (m = 3) since we do not
know the true POS. The vertical bars, overlay-
ing the mean curves, represent 95% confidence
intervals. The main conclusions from Fig. 8 are
as follows: (i) As a general tendency, the superi-
ority of the proposed method becomes remark-
ably large as we increase the solution space by
increasing the number of objectives (knapsacks)
m and/or the number of items n in the problem.
In other words, the proposed method increases
its effectiveness as the dynamic range of POS in
the objective space becomes large (dispersive).
This means that it becomes difficult for a single
population MOEA to cover POS widely spread
in the objective space. (ii) There is an opti-
mum parameter d∗ to maximize HV depend-
ing on benchmark problem and algorithm to be

used. For example, d∗ = 3 (|Pk| ∼ 66) for en-
hanced SPEA2 while d∗ = 2 (|Pk| ∼ 150) for en-
hanced NSGA-II for test problem KP100-3, re-
spectively. If we increase d excessively, the per-
formance is gradually deteriorated because the
algorithm searches with many but very small
sub-populations, which leads to unstable per-
formance with larger variance. Also, for m = 3
objectives, we can see performance deteriora-
tion in case of d = 1, because in this special
case the principle search direction of the pro-
posed scheme is not always coincident with π/4
as the conventional scheme. (iii) Larger im-
provement by our method can be observed in
case of SPEA2 rather than NSGA-II, while con-
ventional NSGA-II always outperforms SPEA2
in these problems.

7.1.2 Convergence and Diversity
Second, we observe the performance sepa-

rately on convergence and diversity by using op-
timum parameter d∗ for test problems KP100-2,
KP250-2, and KP500-2 for which we know the
true POS. Figure 9 shows the Pareto front of
the obtained POS. In this figure we can see
that as the solution space increases from 2100

to 2500, both enhanced NSGA-II and SPEA2
implementing our method achieve robust per-
formance obtaining fully dispersed POS close
to the true POS. On the other hand, the range
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(a) KP100-2 (b) KP250-2 (c) KP500-2

(d) KP100-2 (e) KP250-2 (f) KP500-2

Fig. 9 Obtained POS for KPn-2 (m = 2).

Fig. 10 Obtained POS for KP500-3 (m = 3).

of the obtained POS by conventional NSGA-
II and SPEA2 becomes narrow for the entire
distribution of the true POS. This trend is pre-
served in case of three objectives (m = 3) as
shown in Fig. 10, where we present the Pareto
front of obtained POS as a bird’s-eye view only
for KP500-3.

Next, we show in Fig. 11 and Fig. 12 the
transition of GD and IGD over the genera-
tions as indicators of convergence of POS, re-
spectively. Conventional NSGA-II and SPEA2
achieve smaller GD than their enhanced ver-
sions because conventional methods tend to in-
cline the search to the direction of a part of the
true POS, which advantageously works to re-
duce GD. On the other hand, enhanced NSGA-
II and SPEA2 achieve clearly smaller IGD than
conventional ones. This is because the en-

hanced methods evolve the search dispersively
inducing a necessary diversity in the entire pop-
ulation. Population division and calculation
of local dominance within sub-populations are
quite effective to keep the search dispersive in
the objective space.

Furthermore, we show the transition of SP
over the generations as an indicator of diversity
of POS in Fig. 13. From this figure, we can see
that initially SP increases substantially in con-
ventional NSGA-II and SPEA2 for all problems
indicating that these algorithms remarkably
lose diversity in the early stage of evolution. On
the other hand, the enhanced methods contin-
uously induce diversity into the entire popula-
tion from the beginning of evolution. Precisely,
enhanced SPEA2 always achieved smaller SP
than enhanced NSGA-II, which supports the
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(a) KP100-2 (b) KP250-2 (c) KP500-2

Fig. 11 Transition of GD over generations.

(a) KP100-2 (b) KP250-2 (c) KP500-2

Fig. 12 Transition of IGD over generations.

(a) KP100-2 (b) KP250-2 (c) KP500-2

Fig. 13 Transition of SP over generations.

result that the former algorithm shows larger
improvement on HV .

These results illustrate the difficulty a single
population MOEA faces to cover widely spread
POS in the objective space and also show the
effectiveness of the proposed method based on
local dominance and local recombination.

7.2 Detailed Observation of Proposed
Method

In this section, we give detailed observation of
the proposed method from several viewpoints.

7.2.1 Change of Dominance Status
First, we observe the change of dominance

status by the proposed method. Our scheme
rotates the principle search direction for each
sub-population in order to calculate local dom-
inance. As a consequence, globally dom-
inated solutions might become locally non-
dominated. Similarly, globally non-dominated
solutions might become locally dominated solu-
tions. Figures 14 and 15 illustrate the ratios
of the number of solutions that change their
dominance status for representative problems,
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(a) KP250-2 (b) KP250-3

Fig. 14 Status change of globally non-dominated
solutions.

(a) KP250-2 (b) KP250-3

Fig. 15 Origin of locally non-dominated solutions.

KP250-2 and KP250-3. These ratios are the
average fractions on 30 runs of the total num-
ber of solutions for each category counted from
the first to the last generation.

From Fig. 14 (a) we can see that in m = 2 ob-
jectives only 1.3% of all globally non-dominated
solutions become locally dominated after ro-
tation. This percentage increases to 6.7% in
case of m = 3 objectives, as shown Fig. 14 (b).
On the other hand, from Fig. 15 (a) we can see
that in m = 2 objectives 42.2% of all locally
non-dominated solutions are originally globally
dominated. This percentage slightly decreases
to 38.3% in case of m = 3 objectives.

These results show that the negative effect
of losing globally non-dominated solutions after
local dominance is quite small. On the contrary,
there are significant high percentages of solu-
tions originally globally dominated that become
locally non-dominated, which help spreading
the search of MOEA.

7.2.2 Local Dominance without/with
Rotation of Principle Search Di-
rection

In the proposed method, we calculate domi-
nance for each sub-population after rotating the
principle search direction. Since the individu-
als in the sub-population cover a sub-region in
objective space forming a neighborhood we call
this kind of dominance as local. In addition, ro-

(a) KP250-2 (b) KP250-3

Fig. 16 LocalDominance without/with rotation.

tation is important to reassign non-domination
ranking in order to increase the chances of so-
lutions that can spread the search around the
given search direction. The simplest way to cal-
culate local dominance is without performing
rotation, in which case solutions outside the
sub-population will not influence domination
ranking but also no special measure is taken to
give more chances to solutions that can spread
the search. In this section we especially fo-
cus on the effect on performance of local domi-
nance without and with rotation of the principle
search direction.

Figure 16 (a) and (b) show bar diagrams of
the HV obtained by a NSGA-II based algo-
rithm on problems with m = 2 and m = 3
objectives and n = 250 objects. In all cases,
the algorithms perform local dominance either
without or with rotation. In addition, in or-
der to clearly distinguish the effect of rotation
in local dominance, we present results when
the algorithm does local recombination (LR)
within each sub-population or global recombi-
nation (GR) considering the whole population.
As a reference for comparison, results by con-
ventional NSGA-II are shown as a horizontal
dashed line as well.

From these figures we can see that local dom-
inance after rotation of the principle search di-
rection achieves a much better HV than with-
out rotation in both m = 2 and m = 3 objec-
tives, whether recombination is applied globally
or locally. A second observation is that the HV
reduces significantly, becoming lower than con-
ventional NSGA-II, if local dominance without
rotation is combined with global recombination.
This is because local dominance without rota-
tion blindly weakens selection pressure. A third
important observation is that the inclusion of
local recombination increases the HV but the
effect of local dominance with rotation is higher
than local recombination.

From these observations, we conclude that



108 IPSJ Transactions on Mathematical Modeling and Its Applications Feb. 2007

(a) global dominance + global recombination (b) global dominance + local recombination

(conventional MOEAs)

(c) local dominance + global recombination (d) local dominance + local recombination

(proposed algorithm)

Fig. 17 All solutions of the entire population at the final generation in the
objective function space (KP500-2).

the alignment of the principle search direction
by rotation is quite important within local dom-
inance. Note that in the following local domi-
nance in the proposed method always includes
rotation.

7.2.3 Effect of Local Dominance and
Local Recombination

Here we observe the effect of local dominance
(with rotation) and local recombination sepa-
rately and verify whether their combined effect
aggregate in a positive manner.

Figure 17 plot all solutions of the popu-
lation at the final generation in the objective
function space. We show results by four al-
gorithms, a conventional NSGA-II that applies
dominance and recombination globally using
the whole population, a NSGA-II (GD+LR)
that applies global dominance but uses popula-
tion division to apply recombination locally, a
NSGA-II (LD+GR) that uses population divi-
sion to calculate dominance locally within each
sub-population but applies recombination glob-
ally, and the proposed NSGA-II (LD+LR) that
apply both dominance and recombination lo-
cally. Results are for KP500-2 setting the opti-

mum d∗ that maximizesHV for each algorithm.
From this figure we can see that in algorithms

that use local recombination, the entire popula-
tion tends to form an arc sticking to the entire
true Pareto front. Whereas in algorithms that
adopt global recombination, the entire popu-
lation tends to form a semicircle sticking to a
part of true Pareto front. See Fig. 17 (b), (d)
and compare with Fig. 17 (a) and (c), respec-
tively. Also, note that the population of lo-
cal dominance algorithms covers a broader re-
gion of objective space than the population of
global dominance algorithms. See Fig. 17 (c),
(d) and compare with Fig. 17 (a), (b), respec-
tively. In other words, both local recombina-
tion and local dominance make the population
more diverse in objective space and the effect
of both aggregates positively. These good re-
sults obtained by local recombination are in ac-
cordance with previous reports on mating re-
strictions to recombine similar parents in eli-
tist MOEAs 10),11),13)∼15). However, note that
the proposed algorithm NSGA-II (LD+LR) in
Fig. 17 (d) produces the most diverse popula-
tion, fully covering the true Pareto front.
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Fig. 18 Interval of population division (KP250-3).

Summarizing, in order to obtain fully spread
POS sticking to the true POS it is quite impor-
tant to rank and select potential solutions as
parent individuals using local dominance and
additionally perform local recombination be-
tween them rather than apply global dominance
and global recombination as conventional algo-
rithms do.

7.2.4 Interval of Population Division
Here we observe the behavior of the algorithm

when we vary the interval to divide the popu-
lation in the proposed method. Note that Gap
Suppression is performed only when we divide
the population. Figure 18 shows the absolute
HV (not normalized) for test problem KP250-
3 as we vary the interval in the range 1 to 20.
From this figure we can see that there is an op-
timum interval around 5 generations to divide
the population with Gap Suppression. In this
case we can further improve the HV shown in
Fig. 8.

7.2.5 Effect of Gap Suppression
This section shows the effect of Gap Suppres-

sion in the proposed method. Figure 19 (a)
and (b) show the obtained final population
without and with Gap Suppression for test
problem KP500-2 setting the parameter for
population division d = 2. Note from Fig. 19 (a)
that without Gap Suppression the final popula-
tion does not cover a broad section of the true
Pareto front, i.e., we can see a big gap between
the two sub-populations. On the other hand,
as shown in Fig. 19 (b), Gap Suppression effec-
tively merges the regions covered by the two
sub-populations. The effect of Gap Suppres-
sion is especially needed in problems with large
search space and when a small number of sub-
populations is used, as the example illustrated
here.

(a) Without gap suppression

(b) With gap suppression

Fig. 19 Effect of gap suppression (KP500-2, d = 2).

7.3 Performance Comparison with
DCPOS

Finally, in this section we compare results ob-
tained by the proposed method with the ones
obtained by DCPOS (Distributed Computa-
tion of Pareto Optimal Solutions) 21). Both ap-
proaches aim to obtain fully distributed POS.
However the differences between them make a
fair comparison difficult. In the following, we
discuss the main difference between the two ap-
proaches and then we present representative re-
sults by both schemes.

First, DCPOS divides the objective space and
then assigns a population to each sub-space.
On the contrary, the proposed method divides
the actual population into sub-populations
grouping the individuals by similar search direc-
tion in the objective space. In other words, the
proposed method creates the sub-populations
based on a sample of points of the actual ob-
jective space, i.e. population. As a result,
each sub-population covers a different non-
overlapping region of the objective space.

Second, DCPOS is static because the objec-
tive space is divided once at the beginning of
the simulation and the sub-spaces remain fixed.
The proposed method is dynamic in the sense
that the regions of objective space covered by
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Fig. 20 HV obtained by DCPOS and proposed
method (KP250-2).

the sub-populations might vary at each gener-
ation. This is emphasized by slightly chang-
ing the sub-population size (Gap Suppression
mechanism in Section 4.5). In the proposed
method, the sub-populations would cover dif-
ferent regions even if the whole population re-
mains the same in two consecutive generations
(for example, due to elitism).

Third, DCPOS is a distributed EA, and each
population could be assigned to one processor.
The proposed method is designed as an alterna-
tive to single population MOEAs and no special
consideration has been given for parallel dis-
tributed EAs. An extension of the proposed
local dominance and local recombination for
parallel implementation in the fashion of dis-
tributed EAs would be an important subject of
future work.

Figure 20 illustrates the average HV
achieved by DCPOS and the proposed method
in test problem KP250-2 using 3, 4, and 5
sub-populations (population division parame-
ter d = {3, 4, 5} in the proposed method). Re-
sults by conventional NSGA-II are also included
for comparison with a dashed line. DCPOS
is set with a migration rate of 40 individuals
and a migration frequency of 60 generations,
which are the best parameters obtained exper-
imentally for this problem. From this figure
we can see that both methods achieve a signifi-
cantly betterHV than the conventional NSGA-
II. However, note that the proposed method
achieves higher HV than DCPOS in all settings
tried here. Figure 21 shows the final popula-
tions and the Pareto optimal solutions found by
both methods in the case of 4 sub-populations,
where the HV is maximum in both cases. Note
from this figure that the propose method pro-
duces a better distributed final population and
POS than DCPOS, which is consistent with the
values of the HV reported in Fig. 20.

(a) DCPOS

(b) Proposed method

Fig. 21 Final population by DCPOS and proposed
method (KP200-2, 4 sub-populations).

These results suggest that the proposed
method can be superior to DCPOS to obtain
better HV and better distribution of POS.
But, again, it is difficult to fairly compare both
methods because of the differences discussed
above. In the future we would like to conduct
a comprehensive comparison with DCPOS by
parallelizing our scheme.

8. Conclusions

In this paper, we have proposed a method to
enhance single population MOEAs by search-
ing based on local dominance and local recom-
bination. We verified that enhanced NSGA-
II and SPEA2 implemented with our method
show better search performance to obtain fully
spread POS than the conventional versions of
the same algorithms. The difference in perfor-
mance increased with the number of objective
and/or size of the search space. Another im-
portant advantage of the proposed method is
a reduction in the entire computational cost to
calculate dominance. As a reference, we could
reduce about 20% of CPU time by NSGA-II
and 80% by SPEA2 with the proposed method
without any special consideration on optimiza-
tion of programming and overhead removal.
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In addition, we presented a detailed observa-
tion of the main components of the proposed
method. Among them we showed that align-
ment of the principle search direction by rota-
tion within local dominance is a very important
feature to achieve high performance. We also
showed that both local dominance and local re-
combination contribute to make the population
more disperse in objective space and that their
individual effects aggregate positively. How-
ever, there still remains the problem that con-
vergence is slightly sacrificed in return for the
noticeable improvement of diversity in the en-
hanced MOEAs. Also, note that the results
given in this paper is on a limited set of exam-
ples of 0/1 multiobjective knapsack problems.

As future works, we would like to improve
this method to achieve higher convergence of
POS while keeping diversity as it is. In addi-
tion, we should verify the performance of this
method for other kinds of problems, and more
than three objectives. We would also like to in-
troduce a more flexible and adaptive population
division method. This would allow to achieve a
better balance between convergence and diver-
sity conditions, and would facilitate the scal-
ability from multiple to many objectives opti-
mization. Furthermore, the extension to paral-
lel MOEAs of the principle of local dominance
with alignment of the search direction by ro-
tation, combined with local recombination, is
another interesting line of research.
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Appendix

A.1 Computational Cost
In this section we give an estimate of the com-

putational costs to perform population division
and calculate dominance. The population divi-
sion and local dominance procedures are illus-
trated in Fig. 22 and Fig. 23 for easy under-
standing of the computational cost calculation.
In the following N denotes the size of the whole
population and m the number of objectives.

A.1.1 Population Division
The three first steps of the popula-

tion division procedure require mN com-
putations each and the main loop that
recursively divides the population requires

Procedure population division
fmin ← create minimum fitness vector (P (t))
calculate temporal fitness vector (P (t),fmin)
calculate polar coordinates (P (t))
P (t)← P (t)
for i← 1 . . .m− 1

s← ∅
for j ← 1 . . . di−1

sort (P j , θi)
{s1, . . . , sd} ← divide (P j , d)
s← s ∪ {s1, . . . , sd}

end
P ← s

end

Fig. 22 Population division method in objective
space.

∑m−1
i=1

{
di−1

(
N

di−1 log2

(
N

di−1

)
+ N

di−1

)}
using a

sorting algorithm of O(|Pj | log2 |Pj |), where
|Pj | ∼ N

di−1 is the size of current sub-population
being split. Thus the time required by the pop-
ulation division procedure is given by

3mN +
m−1∑
i=1

{
di−1

·
(

N

di−1
log2

(
N

di−1

)
+

N

di−1

)}
. (12)

Factoring N and simplifying di−1 we get
= 3mN

+N
m−1∑
i=1

{
log2N−log2 d

i−1+1
}
. (13)

By eliminating − log2 d
i−1 we get

< 3mN +N(m− 1)(log2N + 1). (14)

Again, by eliminating −1 we get

< mN(log2N + 4). (15)

which gives us the following order

O (mN log2N) . (16)

A.1.2 Local Dominance
The two first two steps of the procedure to

calculate local dominance require m − 1 com-
putations each and the next two steps m|Pk|
each, where Pk ∼ N

dm−1 is the sub-population
size. The loop calculates dominance itself and
requires m|Pk|2. Since local dominance is cal-
culated for each sub-population and there are
dm−1 sub-populations, the overall computa-
tional cost of dominance is
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Procedure local dominance
{θk1, . . . , θkm−1} ← determine search direction
(Pk(t))
{ψk1, . . . , ψkm−1} ← calculate rotation angle (θk)
rotate (Pk(t),ψk)
transform polar coordinates to fitness (Pk(t))
for p← 1 . . .N/dm−1

for q ← 1 . . .N/dm−1

for j ← 1 . . .m
Pk(t).individual[p].fitness[j] >? <

Pk(t).individual[q].fitness[j]
end

end
end

Fig. 23 Calculation of local dominance in sub-
population.

dm−1

{
2(m− 1) + 2m

(
N

dm−1

)

+m
(

N

dm−1

)2
}
. (17)

By eliminating −1 and factoring m we get

< mdm−1

{
2 + 2

(
N

dm−1

)

+
(

N

dm−1

)2
}
. (18)

By considering only the exponential term and
simplifying dm−1 we get an order of

O

(
mN2

dm−1

)
. (19)
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