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In this paper, we describe the architecture of Queue Computation Unit (QCU) that is
implemented in a Produced order Parallel Queue Processor. The QCU effectively calculates
the queue head and tail values for each instruction. The QCU has two major hardware parts:
(1) Queue Computation Circuit (QCC), and (2) Queue Buffer (QB). We first give a brief
introduction showing how the Queue Computation Unit is interfaced to the PQP processor.
Then, we present the QCU mechanism architecture.

1. Introduction

Parallel Queue Processor (PQPpfB) architec-
ture is a novel processor architecture that stores
data in a First-In-First-Out (FIFO) scheme
and exploits parallelism dynamically1)2). The
PQPpfB stores, data in produced order scheme.
The architecture has six pipeline stages: (1)
Fetch unit, (2) Decode unit,(3) Queue computa-
tion unit, (4) Barrier queue & control unit, (5)
Issue unit & (6) Execution unit. It can issue up
to four instructions in parallel and per cycle.
As a result, the PQPpfB is expected to have
much lower hardware complexity than conven-
tional architecture3)4). The QCU, described in
this paper, is one of several hardware units that
forms the hardware of the PQPpfB processor.
It calculates the Queue head and Tail values for
each instruction. The algorithm which was used
to calculate the Queue Head and Tail value is
shown in Figure 1.

2. QCU in PQPpfB Processor

The QCU unit consists of two major com-
ponents: (1) Queue head (QH) and (2) Queue
tail (QT). The QH points to the head of the
operand Queue (OPQ) and the QT tail indi-
cates the end point of the OPQ. The QCU is
responsible for calculating QH and QT values
for each instruction. For each instruction, the
QCU also calculates the live queue head (LQH)
value which indicates the starting point from
where the queue is alive. The calculated value
of LQH, QH and QT will be used later by in
the pipeline by the Issue Unit (IU).
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Fig. 1 Queue Computation Algorithm

3. Queue Computing Mechanism

As we mentioned, the QCU has two parts:
(1) Queue Computation Circuit (QCC) & (2)
Queue Buffer (QB). The QCU, which takes its
input signals from the decode buffer has three
8-bit internal registers LQH, QH & QT. These
three registers are used by the QCU for parallel
calculating. There are four QCC units that are
connected by wires. The inputs of each QCC
are: (a) opcode, (b) operand, (c) delta LQH,
(d) delta QH, (e) delta QT and (f) flags. These
are also 8-bit input. The Flags indicate the type
of instruction. Although flags are 8-bit input,
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Fig. 2 Block Diagram of QCC

we are using only 1-bit of this 8-bit. When Flag
= 0 the instruction type is normal instruction
and if Flag = 1, the instruction type is imme-
diate instruction. Here the word ” delta” indi-
cates the data fetched from the decode buffer of
Decode Unit. The QCU also take three 8-bit in-
puts from the internal registers (LQH in, QH in
and QT in). The outputs (8-bit) are LQH out,
QH out, qt out. Figure 2 shows and internal
representation diagram of a single QCC unit.

The calculation of QH, QT and LQH values
is performed by the following formulas:
LQH out = LQH in + delta LQH
QH out = QH in + delta QH
QT out = QT in + delta QT
QH plus operand = QH in + operand
If the instruction type is Immediate Instruction
QH plus operand = operand
In the QCC the opcodes are totally unchanged.
It just pass through the opcode to the QB with-
out changing as :
opecode out = opcode in
The QB is also a buffer that can contains 8-bit
24 words. Actually, it is an output buffer of the
QCU. It contains the calculated values of four
instructions at a time. Figure 3 shows the whole
internal works of QCU. Here, q renew signals
comes from the execution unit which indicate
to renew the values of LQH, QH and qt.

4. Hardware Implementation Results

The QCU is an integral part of the PQPpfB
processor. It was implemented and described
in Verilog-HDL. It was correctly simulated as a
single module and currently it is being verified,
within the whole PQPpfB processor, with Alt
era APEX20kE400 FPGA.
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Fig. 3 QCU I/O interface

5. Conclusion

In this article we explained the queue com-
putation mechanism that enables the parallel
instruction execution in Parallel Queue Proces-
sor. For hardware implementation the HDL
code is written in the verilog’2001 platform.
Our future work is to optimise the QCU hard-
ware and evaluate it within the PQPpfB pro-
cessor.
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