
Queue Computation Mechanism For Parallel Execution

in Parallel Queue Processor

akanda md. musfiquzzaman ,† ben. a. abderazek ,†

soichi shigeta ,† tsutomu yoshinaga † and masahiro sowa †

In this paper, we describe the architecture of Queue Computation Unit (QCU) that is
implemented in a Produced order Parallel Queue Processor. The QCU effectively calculates
the queue head and tail values for each instruction. The QCU has two major hardware parts:
(1) Queue Computation Circuit (QCC), and (2) Queue Buffer (QB). We first give a brief
introduction showing how the Queue Computation Unit is interfaced to the PQP processor.
Then, we present the QCU mechanism architecture.

1. Introduction

Parallel Queue Processor (PQPpfB) architec-
ture is a novel processor architecture that stores
data in a First-In-First-Out (FIFO) scheme
and exploits parallelism dynamically1)2). The
PQPpfB stores, data in produced order scheme.
The architecture has six pipeline stages: (1)
Fetch unit, (2) Decode unit,(3) Queue computa-
tion unit, (4) Barrier queue & control unit, (5)
Issue unit & (6) Execution unit. It can issue up
to four instructions in parallel and per cycle.
As a result, the PQPpfB is expected to have
much lower hardware complexity than conven-
tional architecture3)4). The QCU, described in
this paper, is one of several hardware units that
forms the hardware of the PQPpfB processor.
It calculates the Queue head and Tail values for
each instruction. The algorithm which was used
to calculate the Queue Head and Tail value is
shown in Figure 1.

2. QCU in PQPpfB Processor

The QCU unit consists of two major com-
ponents: (1) Queue head (QH) and (2) Queue
tail (QT). The QH points to the head of the
operand Queue (OPQ) and the QT tail indi-
cates the end point of the OPQ. The QCU is
responsible for calculating QH and QT values
for each instruction. For each instruction, the
QCU also calculates the live queue head (LQH)
value which indicates the starting point from
where the queue is alive. The calculated value
of LQH, QH and QT will be used later by in
the pipeline by the Issue Unit (IU).

† Graduate School of Information Systems, The Uni-
versity of Electro-Communications, Tokyo, Japan.

Is SF OFF ?

Is it manupulate

instruction ?

Is it subroutine

call or subroutine

return address ?

Is it a Subroutine

call ?

Is EU failing

Branch

Prediction ?

Get 4 instruction from the DB

Memorize information about:

(1) Auto increament LQH or not

(2) Auto increarment QH or not

 (3) Length between LQH and QH

Insert LQH,QH and QT values on

each instructions

Send instructions to QB

Make a callee Queue:

 LQHe=QHr, QHe=QHr, QTe=QTr+1

Send call instructions to QB

Renew LQH,QH,QT

Is QP_renewal

= OFF ?

Make a caller Queue:
 LQHr=QHe+1, QHr=QHe+1

Insert QH and QT values on

instructions (call)

Insert QH and QT values on
instructions (rfs)

Send rfs instructions to QB

No

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Fig. 1 Queue Computation Algorithm

3. Queue Computing Mechanism

As we mentioned, the QCU has two parts:
(1) Queue Computation Circuit (QCC) & (2)
Queue Buffer (QB). The QCU, which takes its
input signals from the decode buffer has three
8-bit internal registers LQH, QH & QT. These
three registers are used by the QCU for parallel
calculating. There are four QCC units that are
connected by wires. The inputs of each QCC
are: (a) opcode, (b) operand, (c) delta LQH,
(d) delta QH, (e) delta QT and (f) flags. These
are also 8-bit input. The Flags indicate the type
of instruction. Although flags are 8-bit input,

1－69

3F-3 情報処理学会第66回全国大会

+

+

+

delta_lqh

delta_qh

delta_qt

lqh_in
qh_in qt_in

lqh_out qh_out qt_out

+operand qh_plus_operand

lqh_0_out

qh_0_out
qt_0_out

Fig. 2 Block Diagram of QCC

we are using only 1-bit of this 8-bit. When Flag
= 0 the instruction type is normal instruction
and if Flag = 1, the instruction type is imme-
diate instruction. Here the word ” delta” indi-
cates the data fetched from the decode buffer of
Decode Unit. The QCU also take three 8-bit in-
puts from the internal registers (LQH in, QH in
and QT in). The outputs (8-bit) are LQH out,
QH out, qt out. Figure 2 shows and internal
representation diagram of a single QCC unit.

The calculation of QH, QT and LQH values
is performed by the following formulas:
LQH out = LQH in + delta LQH
QH out = QH in + delta QH
QT out = QT in + delta QT
QH plus operand = QH in + operand
If the instruction type is Immediate Instruction
QH plus operand = operand
In the QCC the opcodes are totally unchanged.
It just pass through the opcode to the QB with-
out changing as :
opecode out = opcode in
The QB is also a buffer that can contains 8-bit
24 words. Actually, it is an output buffer of the
QCU. It contains the calculated values of four
instructions at a time. Figure 3 shows the whole
internal works of QCU. Here, q renew signals
comes from the execution unit which indicate
to renew the values of LQH, QH and qt.

4. Hardware Implementation Results

The QCU is an integral part of the PQPpfB
processor. It was implemented and described
in Verilog-HDL. It was correctly simulated as a
single module and currently it is being verified,
within the whole PQPpfB processor, with Alt
era APEX20kE400 FPGA.

QUEUE

COMPUTATION

UNIT

reset q_renewclk

opcode_0_out
lqh_0_out
qh_0_out

qh_plus_operand_0

qt_0_out
flag_0_out

opcode_1_out

lqh_1_out

qh_1_out

qh_plus_operand_1

qt_1_out

flag_1_out

opcode_2_out

lqh_2_out

qh_2_out

qh_plus_operand_2
qt_2_out

flag_2_out

opcode_3_out

lqh_3_out

qh_3_out
qh_plus_operand_3
qt_3_out

flag_3_out

opcode_0

delta_lqh_0

delta_qh_0

operand_0

delta_qt_0
flag_0

opcode_1

delta_lqh_1

delta_qh_1

operand_1

delta_qt_1

flag_1

opcode_2

delta_lqh_2

delta_qh_2

operand_2

delta_qt_2

flag_2

opcode_3

delta_lqh_3

delta_qh_3

operand_3

delta_qt_3

flag_3

Fig. 3 QCU I/O interface

5. Conclusion

In this article we explained the queue com-
putation mechanism that enables the parallel
instruction execution in Parallel Queue Proces-
sor. For hardware implementation the HDL
code is written in the verilog’2001 platform.
Our future work is to optimise the QCU hard-
ware and evaluate it within the PQPpfB pro-
cessor.

References

1) M. Sowa, B. A. Abderazek, S. Shigeta, K.
Nikolova, and T. Yoshinaga: Proposal and De-
sign of a Parallel Queue Processor Architecture
(PQP) , 14th IASTED Int. Conf. on Parallel
and Distributed Computing and System, Cam-
bridge, USA, (pp. 554-560, Nov. 2002),

2) B. A. Abderazek, S. Shigeta, T. Yoshinaga
and M. Sowa: Architectural Issues in the Design
of a High Performance Parallel Queue Pro-
cessor, 4th Bilateral Symposium on Science &
Technology, April 2003,

3) B. A. Abderazek, Soichi Shigeta, K. Nikolova,
T. Yoshinaga, Masahiro Sowa: Parallel Queue
Processor Design, IEICE CPSY2002-60, pp.
55-60, Nov., 2002,

4) Sowa Lab: PQPpfB Project:
www.sowa.is.uec.ac.jp/sowalab/fpga/public

1－70

