Vol. 42 No. SIG 3(PRO 10) goooooooooooooooo Mar. 2001

ugoog

O0o00o0 GCOooooooono

0O 0 ot o o o ot o o o of

ooopooooooOooooOoooooooooGCcooooooooooooooooooon
0ooooooooooob GCoooooooooooobooooooooDobOooO0oooonOO0
oo GcgCooGCOODOoOoOoOooo0oO0DoOoOonoDoO0oO0oDoo0oo0ooO0oO0oo0DDooo
00000oo0ooo0oooooooooo0oooooo Gecoooooo Gcooooooooo
gooo0oO0o0oo0o0oo0o0oOoOO0O0O000O0O0CcO0OOOOO0O0O00O0O0OO0O0O0000O000B0008O0
0oooo0oooo0oO0o0o0O0000000D0000O00DO00O00ODO0ODO0O0 GCoooooo
GCOOoOoOOoooooooOooooOoooOoOo0oo0ooOooOooo0oooooo Gecooon
goo0obooO0oocooOoO0OO0O0b0O0O0O0O000000000O0000000O0O0O00O0O00O000AO0
0ooo0o0oo0oOooO00oODOo0OO0b00O0OOO00O00DO000O0DbO GCOOO1000 GCOOo
ooooooo0ooooooooobooooooooo Gecoooooooooooooooooo
0oo0o0boO0o0000D0O00000D0b0000000000000000 GCOoOoOooooo
000000000000 00000000000 GCO Common Lisp000000000O0 PHL
goO0OoOoOOO00000000D00 LispODO0ODOOOOOODOOOODODODOD

Concurrent Generational Garbage Collection

HirosHI N1TTA,T TOMOKO FUJITAT and MOTOAKI TERASHIMAT

The design and implementation of multi-generational garbage collection based on both in-
cremental and concurrent features are presented. The garbage collection (GC for short) that
performs its task without data object relocation can be effectively implemented as concurrent
one. On the other hand, the GC with data object relocation may rewrite roots and heap that
list processor (i.e., mutator) also manipulates. Therefore, it seems to be difficult to imple-
ment such concurrent GC on general purpose machines effectively due to complex exclusive
and mutual processing. Our concurrent GC with data object relocation has high performance
by applying the exclusive and mutual processing to the heap only. Our GC may be regarded
as the refinement of the so-called occasional GC that is fast mark—and—compact one. The
occasional GC has a merit of making the processors totally run faster by means of working
set reduction that results from the localization of data objects in use, though it monotonously
consumes the heap as a demerit. Our GC has good effects on multi-generational heuristics
that the occasional GC has never done. The data objects being alive through the current GC
processing are subjected to process again at the GC two or three times after, which results in
space economy. The analysis of the GC on its performance is done by using our experimen-
tal data obtained from the execution of typical Lisp compiled programs running on PHL, a
dialect of Common Lisp.

(00 120 80 3000)

t0000000000000000000
Graduate School of Information Systems, University of
Electro-Communications

78



