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Concurrent Generational Garbage Collection

HirosHI N1TTA,T TOMOKO FUJITAT and MOTOAKI TERASHIMAT

The design and implementation of multi-generational garbage collection based on both in-
cremental and concurrent features are presented. The garbage collection (GC for short) that
performs its task without data object relocation can be effectively implemented as concurrent
one. On the other hand, the GC with data object relocation may rewrite roots and heap that
list processor (i.e., mutator) also manipulates. Therefore, it seems to be difficult to imple-
ment such concurrent GC on general purpose machines effectively due to complex exclusive
and mutual processing. Our concurrent GC with data object relocation has high performance
by applying the exclusive and mutual processing to the heap only. Our GC may be regarded
as the refinement of the so-called occasional GC that is fast mark—and—compact one. The
occasional GC has a merit of making the processors totally run faster by means of working
set reduction that results from the localization of data objects in use, though it monotonously
consumes the heap as a demerit. Our GC has good effects on multi-generational heuristics
that the occasional GC has never done. The data objects being alive through the current GC
processing are subjected to process again at the GC two or three times after, which results in
space economy. The analysis of the GC on its performance is done by using our experimen-
tal data obtained from the execution of typical Lisp compiled programs running on PHL, a
dialect of Common Lisp.
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