Vol. 43 No. SIG 3(PRO 14) goooooooooooooooo Mar. 2002

ugoog

guooudbboooooooood
000000 obooodnb OrgelDODOOODOOOO

O O o of o o o ot O o Of

0000000 Orgel0D0OO0OO0OOOOOrgel 000 /000000000 DODOO0ODOOO
0oooo0ooooopooooO0ooDO0oOoOO00OooOODO0O0O00O0OO0OrgelD0OOOODO
ooooooooooOoobooOoOooboOoOoooOO0O0O0O0oO0oOoO0OoboOO0OOOb0ObOO00n
jdobooooooobooooooooooooooooobobobo0ooooooboOooooOoooo
0000000o0ooo0oo0DooDD Orgel00OO0D0OOOODOOOOOOOOOOOOODO
gooooOoooooooOoOo0ooOoOoOO0OoO0OO0OOOO00O0O0O000O0000CO000000O0
00000000 000000000000000000OCrgel00O0O0O0O0DOOOOOOODOOOO
goooooo0ooooooooooOoooOoO0ObOO0ObOO0O0ODOOOODbOO0000O00O000o0O0
goooooooOoboO0oooOooOobOoOoOoO0O0OO0OO0O0OO0COOOO0OO00O0O0OOOO0O00O0000
gooooooooOO0oO0o0o0oOoOooOooOoooOooOoooOOOoboOoO0OoOoOoobooOooooOonoo
gooo0ooo0oo0ooboooooooooooobOOooOoooOo0OO0OO0O0ODOOODbOOO0Ob0DODOO
goooOooooOoOooo0oOoOO0O0OOO0OCOOOO0O00O0O00O0O0O0O0O0O0O0G0O0O000CO0O0O0
goooooooooooooOoboOoOoOoOoObOOOOoOoUOOoOoOooOoobOOoOoOoDOoOoOoOoOooon
oooooooooooOoO0oooooOoooOboOOO00O0O0O0OOoOoOObOOO0O0OO0ODOOO0DbOO0o

Scheduling of Agent-oriented Parallel Language Orgel
Using Static Analysis and Dynamic Processing

SHIGEHIRO YAMAMOTO,! KAZUHIKO OHNOt
and HIROSHI NAKASHIMA T

We are developing a parallel language called Orgel. In the execution model of Orgel, a set
of agents are connected with abstract communication channels called streams. The agents
run in parallel sending asynchronous messages through the streams. In an Orgel program,
each unit of parallel execution is specified as an agent by the programmer. The connections
among agents and streams are declaratively specified. Thus, parallel execution model is clear
and the highly accurate static analysis is possible. Utilizing these features, we propose an
optimization scheme that minimizing the dynamic overhead. If the complete structure of the
whole program is known at compile time, static optimization will be sufficiently effective.
However, in Orgel, the number of agents and structures actually generated are not always
static, because recursive connection is supported. Moreover, although a communicating pairs
of agents are known at compile time, the number of messages and the granularity of agents are
known only at runtime. Therefore, it is difficult to balance loads on the processor by whole
static scheduling. Thus, in our scheme the compiler outputs an analysis result to instruct the
runtime how to allocate and/or schedule an agent when its quantitative attributes are known.
Considering the number of processors and the present load of each processor, the runtime
uses this information for optimization; it allocates agents balancing loads and minimizing
inter-node communication. It also schedules agents on each node considering dependencies.

ooo130vrO2roo0O0O

t0o0o00oo0oooooooo
Department of Information and Computer Sciences,
Toyohashi University of Technology

83



