Vol. 43 No. SIG 8(PRO 15) goooooooooboooooooo Sep. 2002

good

goooooogooooobod

O o o obffto o o of
0O o o of o o o of

goboobooooooooboooooooooooooooboooooOooboOoboboooOboooOoo
00000000000 0000000 lazyODOOOOOOOOODOOOODOOOOOOOOO
gooooOoooOo0ooOo0ooOoOoOoOoOOOOOOO0OO0OO0O0OO0O0O0O0O00O000000 workOO
obooooooooooooooooooboooooooOooooooboooooooooooDooOono
goooooOo0Ob0O0oO00000oO000000000000O000b000000000000000
000000000000 0O000000000D0O0000000000000GNU COO0000
000 cooooooooo0ooooooooo0ooooooooo0oooooooooonon
gooooooooOoooO0bO0O0oOo00O0O0OoO0O0O0O0OO0ObOcOOO0OO0OOO0O000O0O0OO0O
gobooooooooooooooOoOoooOoOO0oOoOoOoOobooOoOobOOoOoObOObOOObObOOOno
gdbooboobooooooooooooooooooooooboooooooboOoooOOobOboooOoOoa
goooooooo0o0ooO0o000Oo00oooDOoDO0O0O00O0O sMPOODOOOOOOOO
goo0oooo0ooooocOooOoooooooOobooboOooooon

Dynamic Load Balancing by Using Nested Functions

MASAHIRO YASUGIHt YUSUKE TABATA,! TSUNEYASU KOMIYAT
and TAIICHI YUASAt

To realize efficient dynamic load balancing by transferring tasks among processors in tree-
recursive fine-grained parallel computing such as searching problems, load balancing schemes
which lazily create and extract a task by dividing the present running task, such as Lazy Task
Creation (LTC), are effective. By extracting a task, which is a piece of work transferable to
other processors, around the root of the invocation tree as much as possible, each processor
can have sufficient amount of work with the almost minimum number of task transfers. How-
ever, it requires a way to access to caller’s variables which are usually not accessible during
an invocation of a function. In this presentation, we show that we can describe a program
with LTC-based load balancing where caller’s variables are accessed by using nested functions
provided as an extension to C by the GNU C compiler. We also show that we can describe a
behavior corresponding to backtracking. Although a task is created to process a continuation
in the original LTC, in our scheme, a task is created to process the part for parallel execution
specified in a function. In this presentation, we also show the result of the execution of the
proposed-style program on a shared-memory parallel computer and on an SMP cluster.

o0ob14010300000

000000000000 ODOO0OO0OooOooOOO
Department of Communications and Computer En-
gineering, Graduate School of Informatics, Kyoto
University

t1000000000000000 210 00000000000
“Information and Human Activity”, PRESTO, Japan
Science and Technology Corporation (JST)

115



