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Dynamic Load Balancing by Using Nested Functions

MASAHIRO YASUGIHt YUSUKE TABATA,! TSUNEYASU KOMIYAT
and TAIICHI YUASAt

To realize efficient dynamic load balancing by transferring tasks among processors in tree-
recursive fine-grained parallel computing such as searching problems, load balancing schemes
which lazily create and extract a task by dividing the present running task, such as Lazy Task
Creation (LTC), are effective. By extracting a task, which is a piece of work transferable to
other processors, around the root of the invocation tree as much as possible, each processor
can have sufficient amount of work with the almost minimum number of task transfers. How-
ever, it requires a way to access to caller’s variables which are usually not accessible during
an invocation of a function. In this presentation, we show that we can describe a program
with LTC-based load balancing where caller’s variables are accessed by using nested functions
provided as an extension to C by the GNU C compiler. We also show that we can describe a
behavior corresponding to backtracking. Although a task is created to process a continuation
in the original LTC, in our scheme, a task is created to process the part for parallel execution
specified in a function. In this presentation, we also show the result of the execution of the
proposed-style program on a shared-memory parallel computer and on an SMP cluster.
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