Vol. 44 No. SIG 2(PRO 16) goooooooooboooooooo Feb. 2003

good

C++0000b0oooboooobboooooonoo

0 0 ot oo ooot o o o of

000 C++000000000000000000000000000O00000O000O000O0
gO0oooooboO00o0oOobooooOoOoO0oObo0oO0O0oOoOo0oOoO0OoOO0O0OOO00b0O0OO00OO0O00O
0ooo0o00oo0ooOoOooO0ooooO0oOoooo0oo0o0oC++0000000000000O0
0000000000000000000000(1)0000000 parametric00000000
000000000000 O0000 MLOOOOODOOOOODOO Oboxing 0 unboxing 00000
00(2) C++40 ad hoc0ODODDOOOUOO Glasgow Haskel 00 0000000 DOOOOOO
0ooo000000000o00ooo0oo0ooooooooo0oo0ooooo0oo0o0nO0C++
goboooboooOooOooooooooobooo

An Approach to Separate Compilation of C++ Template

TAKASHI MASUYAMA,t EIJIRO SUMIIT and AKINORI YONEZAWA'T

The existing compilation model of C++ templates—namely inlining —suffers from a prob-
lem that each object code and the resulting executable tend to become huge, and also, that
implementations of templates cannot be hidden. In this presentation, we propose a method
of separately compiling C++ templates. This method is based on source-to-source transfor-
mation of C++ code. At runtime, the transformed code (1) performs boxing and unboxing
on polymorphic data (as many ML compilers do) in order to deal with the parametric poly-
morphism of templates and (2) passes around overloaded functions (as the Glasgow Haskell
Compiler does) in order to treat the ad hoc polymorphism of C++. Our method also ex-
ploits the multiple inheritance and abstract interface mechanisms of C++ to handle method
invocations on polymorphic objects.

Ooo 1060170000

t0000000oooooooo0oooooooog
Department of Computer Science, Graduate School of
Information Science and Technology, The University of
Tokyo

42



