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An Approach to Separate Compilation of C++ Template

TAKASHI MASUYAMA,t EIJIRO SUMIIT and AKINORI YONEZAWA'T

The existing compilation model of C++ templates—namely inlining —suffers from a prob-
lem that each object code and the resulting executable tend to become huge, and also, that
implementations of templates cannot be hidden. In this presentation, we propose a method
of separately compiling C++ templates. This method is based on source-to-source transfor-
mation of C++ code. At runtime, the transformed code (1) performs boxing and unboxing
on polymorphic data (as many ML compilers do) in order to deal with the parametric poly-
morphism of templates and (2) passes around overloaded functions (as the Glasgow Haskell
Compiler does) in order to treat the ad hoc polymorphism of C++. Our method also ex-
ploits the multiple inheritance and abstract interface mechanisms of C++ to handle method
invocations on polymorphic objects.
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