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A recent trend in program development is the employment of generic software components
such as libraries and frameworks. Typically, however, it is difficult to achieve both genericity
and runtime execution efficiency simultaneously. Therefore, many researchers have studied
program specialization, which is one technique to translate a generic program automatically
into an efficient program specialized for a specific runtime environment. However, it is very
difficult to implement a system that can specialize practical applications. Although some
possible reasons exist for the problem, this paper focuses on the problems of instruction-
dependent processes. Each necessary analysis for existing program specializer systems must
include instruction-dependent processes. Therefore, not only does the code size of the spe-
cializer get larger, but maintainability and reliability are also degraded. Then, we propose a
new algorithm of logic-based binding time analysis using reaching definitions analysis, which
is widely used among many other analyses. We also evaluate how this technique improves the
implementation simplicity of binding time analyzer: the code size is reduced by about 10%.
Especially, instruction-dependent processes are almost entirely eliminated.

1. Introduction

Recently, development of applications with
more features is desired within a shorter time
span. Therefore, it is necessary to employ
generic software components such as libraries,
frameworks, components, etc. Currently, we
are working to develop a methodology for em-
bedded systems in which these problems are
rapidly getting more important.

Realization of genericity requires code for
adaptation for various conditions and environ-
ments such as calculations of parameters and
adaptation logic. Runtime execution efficiency
is degraded because generic components include
the code for their adaptation. This problem
cannot be ignored, especially in the field of em-
bedded systems, where a program is often mod-
ified by hand to improve execution efficiency
while sacrificing genericity.

Conditions and environments are classified
into two categories: one is fixed statically be-
fore program execution, the other is changed
dynamically at runtime. Consequently, the

†1 Fukuoka Laboratory for Emerging & Enabling Tech-
nology of SoC, Fukuoka Industry, Science & Tech-
nology Foundation

†2 Graduate School of Information Science and Elec-
trical Engineering, Kyushu University

†3 freelance
†4 System LSI Research Center, Kyushu University
†5 Computing and Communications Center, Kyushu

University

program calculations are also divided into two
parts: one can be computed in advance from
the static conditions and environments, the
other must be computed dynamically at run-
time. Classification according to when the con-
ditions, the environments, and the result of cal-
culations are fixed is called binding times.

A real application often includes static con-
ditions and environments. Similarly, a part in
the program, especially the code for adaptation,
may be frequently static because it is derived
from static conditions and environments.

Therefore, it improves runtime execution effi-
ciency to compute static calculations in advance
and to execute only essentially dynamic calcu-
lations. We can regard the above-mentioned
program modification by hand in the field of
embedded systems as a kind of speculative cal-
culation.

If the modification can be realized to gener-
ate a program automatically and advance com-
puted static calculations, it can reduce the cost
of the modification by hand; moreover, it can
mitigate risks of modification mistakes.

One technique that realizes this is program
specialization 7). It is an optimization technique
that translates automatically from a generic
program and some parameters to an efficient
program whose parts derived from the parame-
ters are computed in advance.

Unfortunately however, it is difficult to de-
velop a practical program specialization system
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that supports imperative languages such as C,
and object-oriented languages such as C++ and
Java. The reasons are as follows:
• Bloated System Problem: To describe

analyzers and a code translator for pro-
gram specialization, the system must pro-
vide processes that correspond to all in-
structions. As a result, the system tends
to bloat.

• Maintainability Problem: As the result
of bloated system problem, it is very ex-
pensive to ensure that the system performs
correctly.

• Architectural Problem: Little care has
been given to simplify the program special-
ization system or to compose it using gen-
eral analyzers and optimizers because the
target of existing works is not real appli-
cations with practical languages, but lan-
guages that do not have many primitives
or toy problems.

In this paper, we propose the Reaching Def-
initions Method (RDM), which is a new al-
gorithm based on logic-based binding time anal-
ysis 10). It simplifies the program specialization
system using reaching definitions analysis.

The above problems are solved by the RDM:
• Bloated System Problem: The RDM

abstracts dependence between instructions
by reaching definitions. Consequently,
almost all the instruction-dependent
code is eliminated.

• Maintainability Problem: The con-
trol/data flow of RDM is so simpler than
the legacy analysis that the cost of ensur-
ing correctness is less.

• Architectural Problem: The RDM is
composed of basic program analyses such
as reaching definitions analysis. Conse-
quently, we can apply RDM to practical
languages.

The rest of this paper is organized as fol-
lows. Section 2 describes the background of
this paper. Section 3 describes the Direct
Method (DM), which is the naive implemen-
tation of logic-based binding time analysis for
Java virtual machine language (JVML). Sec-
tion 4 proposes the RDM. Section 5 describes
these implementation and assesses and compare
the DM, the RDM and constraint-based bind-
ing time analysis, which are used widely. Fi-
nally, Section 6 summarizes this paper and dis-
cusses a future direction.

class Power {
static int power(int x, int n) {

if(n == 0)
return 1;

else {
int m = n - 1;
int y = power(x, m);
return x * y;

}
}

}
Fig. 1 The power program in Java.

2. Background

In this section, we explain program special-
ization, logic-based binding time analysis, and
bytecode specialization.

2.1 Program Specialization and Bind-
ing Time Analysis

Assume that there are a program f and two
kinds of its input s and d, and that f(s, d) repre-
sents the program execution. Program special-
ization (or partial evaluation) is an algorithm
that is given f and s; it generates fs defined by
∀d.fs(d) = f(s, d).

Now, inputs can be divided into two cate-
gories by the time these become available (bind-
ing times):
• static: these are available in the special-

ization time,
• dynamic: these are not available until

runtime.
Binding times of each part of a program are

derived from binding times of its inputs. Static
parts of the program can be evaluated in the
specialization process.

Two kinds of program specialization exist:
online and offline. Online specialization per-
forms binding time analysis (BTA) and code
generation concurrently. Offline specialization
separates the binding time analysis phase and
the code generation phase. In this paper, we
adopt offline specialization.

BTA is analysis which derives binding times
of every part (statements, expressions, vari-
ables, etc.) of a program from binding times
of its inputs. For example, the result of BTA
for the program in Fig. 1 is shown by Fig. 2:
where the underlined parts are dynamic, the
others are static.

2.2 Makholm’s Logic-based Binding
Time Analysis

Several ways to analyze binding times ex-
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Table 1 Comparison of constraint-based BTA and logic-based BTA.

constraint-based BTA logic-based BTA
basis type inference dependence
constraint class various single
BTA algorithm constraints construction graph construction

normalization graph search
minimal solution

class Power {
static int power(int x, int n) {

if(n == 0)
return 1;

else {
int m = n - 1;
int y = power(x, m);
return x * y;

}
}

}
Fig. 2 The annotated power program.

ist, but this paper specifically addresses logic-
based BTA 10). Table 1 shows a comparison of
it and constraint-based BTA, which is widely
used. Constraint-based BTA regards the bind-
ing time of a term as a type; the inferences of
types under the constraints derive from typing
rules corresponding to grammar. On the other
hand, logic-based BTA uses only dependence
relationships based on data-flow.

We explain the details of logic-based BTA
using an example. We can naturally derive
the constraints from dependence relationships
of each line in Fig. 1 as follows:
( 1 ) If n or 0 is dynamic, then so must if be.
( 2 ) If 1 is dynamic, then so must the return

value of power be.
( 3 ) If n or 1 is dynamic, then so must m be.
( 4 ) If x of the caller is dynamic, then so must

x of the callee be.
( 5 ) If m of the caller is dynamic, then so must

n of the callee be.
( 6 ) If the return value of power is dynamic,

then so must y be.
( 7 ) If x or y is dynamic, then so must the

return value of power be.
( 8 ) If if is dynamic, then so must the return

value of power be☆.
These constraints can be represent by the

form “If α is dynamic, then so must β be.” or
☆ This constraint is derived from non-local side-effects

under dynamic control 7). The following discussion
of the proposed methods abbreviates it, but it can
be introduced easily.

Fig. 3 Constraints as a graph.

“If α1 or α2 · · · is dynamic, then so must β be.”
Therefore we can consider the constraints as the
graph in Fig. 3, where a logical expression such
as “α is dynamic” is a vertex, where “if ... then”
is a directed edge, and where “or” is a merge of
edges.

This graph represents dependence relation-
ships between terms such as variables and ex-
pressions. All BTA must do is find all terms
that must be dynamic. If a term t is dynamic,
all terms depending on t must be dynamic. To
use the graph, the vertices that can be reach-
able from the vertex corresponding to t in the
graph correspond to the terms. Therefore, BTA
can be considered as a graph search problem.

Consider analyzing binding times of the pro-
gram in Fig. 1 using the graph in Fig. 3. Pre-
sume that x is dynamic. To traverse the graph
from the vertex of x, we can traverse the ver-
tices of y and the return value of power, and can
not do the others. This means that y and the
return value are dynamic; the others are static.
This result equals the result of Fig. 2.

2.3 Bytecode Specialization
The above explanation assumes that BTA

and specialization are source-to-source program
analysis and translation, respectively. In con-
trast, bytecode specialization 11),12) uses Java
Virtual Machine Language (JVML) 9).

The primary feature of bytecode specializa-
tion is the ability to realize portable and effi-
cient runtime specialization. Runtime special-
ization realizes specialization using values that
are computed at runtime. Bytecode special-
ization has high portability because the byte-
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Method int Power.power(int,int)
0 iload 1 // push n
1 ifne 4 // go to 4 if n �= 0
2 iconst 1 // (case n = 0) push 1
3 ireturn // return 1
4 iload 1 // (case n �= 0) push n
5 iconst 1 // push 1
6 isub // compute n − 1
7 istore 2 // pop m
8 iload 0 // push x as arg. #0
9 iload 2 // push m as arg. #1
10 invokestatic int Power.power(int,int) // call method
11 istore 2 // pop y
12 iload 0 // push x
13 iload 2 // push y
14 imul // compute x × y
15 ireturn // return x × y

Fig. 4 The power program in JVML.

Table 2 Typical bytecode instructions.

iload n push the current value of the n-th local variable onto the stack
istore n pop a value off the stack and assign it to the n-th local variable
iconst n push a constant n onto the stack
iadd pop two values off the stack and push the sum of them onto the stack
isub pop two values off the stack and push the difference of them onto the stack
imul pop two values off the stack and push the multiple of them onto the stack
ifne l pop a value off the stack and jump to the address l in the current method if the value

is not zero
invokestatic m (1) pop n values off the stack

(2) save the current frame and program counter
(3) assigns the poped value into the variables 0, ..., (n − 1) in a newly allocated frame
(4) jump to the first address of method m

ireturn (1) pop a value off the stack
(2) dispose of the current frame and restore the saved one
(3) push the value on the restored stack
(4) jump to the next address of the saved program counter

code specialization target is JVML, which is
widely used among various platforms. It also
has higher execution efficiency than other run-
time specialization systems because its state-
of-the-art technology drastically improves JIT,
which is used by a bytecode specializer. The
program specializer and JIT complement each
other at the point of efficiency effect: the for-
mer is useful for larger scale optimization using
application nature; the latter is useful for in-
struction level optimization based on runtime
profile information.

JVML is a typed virtual machine language
based on the stack machine model. Our cur-
rent implementation has limitations: it does
not support exception and multi-threading.

Figure 4 shows the result of compilation of
the power program in Fig. 1. A method invo-
cation creates a frame that holds an operand

stack and local variables. An instruction first
pops zero or more values off the stack, performs
computation, and pushes zero or one value onto
the stack 11). Table 2 shows several bytecode
instructions.

Figure 5 shows the binding time annotated
power program in JVML when the binding
times of x and n are dynamic and static, respec-
tively. The binding times of instructions which
are displayed in the code column are either S
(static) or D (dynamic). Binding times of the
operand stack, which is displayed in the stack
column, is written as the form τ1 · τ2 · · · τn · ε,
where τ is a binding time of the corresponding
stack entry. The binding time of local variables,
which are displayed in the local variables col-
umn, are denoted as ∅ or [ik �→ τk], where the
binding time of the variable corresponding to ik
is τk. Only live local variables are displayed.
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Instruction Code Stack Local Variables
0 iload 1 S ε [0 �→ D, 1 �→ S]
1 ifne 4 S S · ε [0 �→ D, 1 �→ S]
2 iconst 1 D ε ∅
3 ireturn D D · ε ∅
4 iload 1 S ε [0 �→ D, 1 �→ S]
5 iconst 1 S S · ε [0 �→ D]
6 isub S S · S · ε [0 �→ D]
7 istore 2 S S · ε [0 �→ D]
8 iload 0 D ε [0 �→ D, 2 �→ S]
9 iload 2 S D · ε [0 �→ D, 2 �→ S]
10 invokestatic int Power.power(int,int) D S · D · ε [0 �→ D]
11 istore 2 D D · ε [0 �→ D]
12 iload 0 D ε [0 �→ D, 2 �→ D]
13 iload 2 D D · ε [2 �→ D]
14 imul D D · D · ε ∅
15 ireturn D D · ε ∅

Fig. 5 Binding-time annotated power.

Although there is no object in the power
example, according to Ref. 1), escape analy-
sis 2),4),15) and side-effect analysis 5) are neces-
sary to support objects. Escape analysis and
side-effect analysis are required to decide which
part to perform dynamically creation and side-
effecting operation of objects, respectively. We
explain and discuss it in detail in the Sec-
tion 4.5.

3. Direct Method: Logic-based Bind-
ing Time Analysis for Java

The Direct Method (DM) is the naive imple-
mentation of logic-based binding time analysis
for JVML.

We describe the assumptions of BTA be-
fore entering discussion. We assume that BTA
should be flow sensitive (or pointwise) and con-
text insensitive (or monovariant).

In this case, “flow sensitive” means that the
same stack entry or local variable can have dif-
ferent binding times at each instruction in a
method. BTA should be flow sensitive because
some different local variables are allocated to
the same number of the local variable. For ex-
ample, in Fig. 4, the local variable m and y are
allocated to the 2nd variable on rows 7–9 and
11–13, respectively. Consequently, the binding
times of m and y are static and dynamic, re-
spectively.

On the other hand, “context insensitive”
means that the same stack entry or local vari-
able along a different control flow path cannot
have different binding times. Our BTA should
be context insensitive because the cost of con-

text insensitive analysis is much less than that
for context sensitive analysis (See Section 3.6 in
Ref. 13)).

Now consider logic-based BTA on JVML.
First, because we assume flow sensitive and
context insensitive BTA, the analyzer creates
the graph in which each instruction and cor-
responding operand stack entry and local vari-
ables are vertices. Secondly, the analyzer adds
it and directed edges according to dependence
relationships of each instruction; then the graph
construction is completed. Finally, the analyzer
traverses the graph from the dynamic input
and produces instructions and variables corre-
sponding to vertices that can be traversed as
dynamic.

We next explain the notation before showing
the rules of logic-based BTA: P represents the
program, PC represents the program counter.
B, F , T , A, R are the binding times of an in-
struction, local variables, the operand stack,
the arguments and the return value, respec-
tively. P , B, F , T are indexed by PC, R is
indexed by a method m, and A is indexed by
m and the number of argument i.

Presume that α and β are binding time vari-
ables. We write α → β as “if α is dynamic,
then so must β be.” We also write α ↔ β as
α → β and β → α.

F is the map from local variables to bind-
ing time variables. Assume that αx,PC is
the binding time of a local variable x at PC.
FPC ⇒ FPC+1 indicates that for all local vari-
able x in F , αx,PC → αx,PC+1. Moreover,
FPC [y �→ β] ⇒ FPC+1 means that for all local
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PPC = iconst n
FPC ⇒ FPC+1

TPC = σ
TPC+1 = α · σ

BPC ↔ α
A, R, B, F, T, PC � P

PPC = iadd

FPC ⇒ FPC+1

TPC = α · β · σ
TPC+1 = γ · σ

α → BPC

β → BPC

BPC ↔ γ
A, R, B, F, T, PC � P

PPC = iload x
FPC ⇒ FPC+1

TPC = σ
TPC+1 = α · σ
FPC [x] → BPC

BPC ↔ α
A, R, B, F, T, PC � P

PPC = istore x
FPC [x �→ α] ⇒ FPC+1

TPC = β · σ
TPC+1 = σ
β → BPC

BPC → α
A, R, B, F, T, PC � P

PPC = ifne L
FPC ⇒ FPC+1

FPC ⇒ FL

TPC = α · σ
TPC+1 = σ

TL = σ
α → BPC

A, R, B, F, T, PC � P

PPC = invokestatic m
FPC ⇒ FPC+1

n = arity(m)
TPC = αn−1 · · ·α0 · σ
0 ≤ i < n. αi ↔ Am,i

TPC+1 = β · σ
Rm → BPC

BPC → β
A, R, B, F, T, PC � P

PPC = ireturn

TPC = α · σ
α → BPC

BPC ↔ Rm

A, R, B, F, T, PC � P

Fig. 6 Rules of logic-based BTA.

variables x in F except y, αx,PC → αx,PC+1,
and that β → αy,PC+1.

Figure 6 shows part of rules of logic-based
BTA; we explain its details as follows:
• An instruction that pushes the result onto

the stack of the next address (such as
iconst, iadd and iload) creates a bi-
directional edge between the instruction
and the result. The reason why the edge
is bi-directional is that it is necessary to
make the binding time of the stack entry
be dynamic if there is flow merging and if
one stack entry is dynamic.

• An instruction that pops information off
the stack (such as iadd, istore, ifne and
ireturn) creates an edge from the stack
entry to the instruction.

• An instruction that gets the value from a
local variable (iload) creates an edge from
the local variable to the instruction.

• Almost all instructions create edges from
local variables of the instruction to the ones
of the next instruction. Only an instruc-
tion that assigns a value to a local variable
(istore) creates such edges, except the lo-
cal variable, and creates an edge from the
instruction to the local variable of the next
instruction.

• An instruction that switches the control
flow (ifne) creates edges from local vari-
ables to those of the instructions that are
potentially jumped to from the instruction
(potentially transitional instructions)☆ and

☆ Potentially transitional instructions do not include

unifies the binding time of stack of the orig-
inal instruction and the potentially transi-
tional instructions.

• An instruction that calls a method
(invokestatic) creates bi-directional edges
between the arguments and the stack en-
tries included in the arity of the method
arity(m), edges from the return value of the
method to the instruction and the stack top
of the next instruction. The reason why the
edges to the arguments are bi-directional is
that the binding times of the method argu-
ments are context insensitive.

• An instruction that returns from a
method invocation (ireturn) creates a bi-
directional edge between the instruction
and the result value of the method. The
reason why the edge is bi-directional is that
return instructions in a method should have
the same binding times.

How to support objects is according to
Ref. 1). Our method does not support partial
static binding times, where ones of object fields
are static and the others are dynamic.

We show an example: Fig. 7 shows the sam-
ple inc program, and Fig. 8 shows the JVML
code that is compiled from the inc program.
Figure 9 shows its graph.

4. Reaching Definitions Method: Im-
proved Binding Time Analysis

This section presents a new BTA algorithm.

instructions that are jumped into because of an ex-
ception throwing.
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class Increment {
static int inc(int v) {

int w = v + 1;
return w;

}
}

Fig. 7 The inc program.

Method int Increment.inc(int)
0 iload 0 // push v
1 iconst 1 // push 1
2 iadd // compute v + 1
3 istore 1 // pop w
4 iload 1 // push w
5 ireturn // return w

Fig. 8 The JVML representation of the inc program.

Fig. 9 Graph of the inc program.

4.1 Instruction-dependent Process
Problems

Figure 10 shows a sample implementation
of the DM in a Java like language. The body
of the method createGraph is a loop that iter-
ates the sequence of instructions m. The loop
includes an extended switch statement that
switches by the class. An instruction-dependent
process is a process for each instruction class.

Because the DM includes many instruction-
dependent processes, it has the following three
problems at least:
• The source code size is large, despite the

similarity between rules of each instruction.
We can group similar code.

void createGraph(Graph g, Collection<Instruction> m) {

int pc = 0;

for (Instruction i : m) {

switch(i.class) {

case Iconst: // PP C = iconst n

g.addEdgesOfLocalVariables(pc); // FP C ⇒ FP C+1

g.addEdge(i, m[pc + 1].stack[0]); // BP C → α

g.addEdge(m[pc + 1].stack[0], i); // BP C ← α

break;

case Iadd: // PPC = iadd

g.addEdgesOfLocalVariables(pc); // FP C ⇒ FP C+1

g.addEdge(i.stack[0], i); // α→ BP C

g.addEdge(i.stack[1], i); // β → BP C

g.addEdge(i, m[pc + 1].stack[0]); // BP C → α

g.addEdge(m[pc + 1].stack[0], i); // BP C ← α

break;

...

}

pc++;

}

}

Fig. 10 Instruction-dependent processes in the
implementation of the DM.

• Maintainability is bad because there are
many test cases that we must perform,
which is necessary to ensure that the bind-
ing time analyzer is correct.

• It is not reasonable to implement a logic-
based binding time analyzer at such a high
cost because the result and the intermedi-
ate products of logic-based BTA are not
reusable in another analysis or optimiza-
tion, to our knowledge, especially analyses
used in specialization such as escape anal-
ysis.

We call these the instruction-dependent pro-
cess problems.

In practical specialization systems, the prob-
lems are serious. Though we have implemented
a specialization system based on the DM, the
implementation and test code are so huge and
unmanageable that we cannot implement the
specializer supporting all instructions, com-
pletely.

4.2 Our Approach
We propose a derivation of the BTA result

from the result of another general analysis to
solve the instruction-dependent process prob-
lem.

Consider again the principles of logic-based
BTA. The rules of logic-based BTA are derived
from the dependence relationships between in-
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structions and variables. They are calculable
from the relationships between definitions and
the references of the variables. Therefore, the
BTA result can be derived from reaching defini-
tions, which is reusable to type analysis, escape
analysis, etc.

We explain this concretely as follows. First,
the analyzer gets the definition of each stack
entry and the local variable of each instruction
using reaching definitions. Next, it gets infor-
mation regarding which stack entry and local
variable is used by each instruction. Our ana-
lyzer framework 16),17) provides the information
because it is basic to almost all analysis. Fi-
nally, the analyzer calculates dependence rela-
tionships between each instruction. Therefore,
it can create a constraint graph.

For only method invocation, the analyzer
must modify edges of the graph between the
stack, the arguments, and the result of the
method.

This approach solves instruction-dependent
process problems. First, the calculation of
dependence relationships and the constraint
graph construction are independent from in-
structions. Next, though reaching definitions
analysis and the information regarding which
stack entry and local variable is used by each
instruction depend on instructions, it is reason-
able to implement them at a high cost because
they are used in other analyses and optimiza-
tions such as escape analysis, which is used in
object-oriented specialization.

4.3 Algorithm
Figure 11 shows the RDM algorithm.
The algorithm input is the target method M

and the list of dynamic arguments A. The algo-
rithm output is the set of dynamic instructions
BT.

Variables that the algorithm uses are the
graph G, a node (an instruction, a local variable
or a stack entry) of the graph N, an instruction
I, and a set of done methods or nodes D.

Basic procedures and functions of the algo-
rithm are as follows:
• Parameters(M) returns the list of the pa-

rameter nodes of the method M.
• ReturnValue(M) returns the return value

node of the method M.
• Code(M) returns the list of instructions in

the method M.
• RD(M, N) returns the reaching definitions

of the method M and the node N.
• Variables(I) returns the set of the input

BTA(M, A)

D := nil;

G := nil;

BT := nil;

CreateGraph(M, G, D);

TraverseGraph(BT, G, A);

CreateGraph(M, G, D)

if(M �∈ D)

D := cons(M, D);

for all I in Code(M)

if(!(I instanceof invoke))

for all N in Variables(I)

for all N’ in RD(M, N)

AddEdge(G, N’, I);

if(I instanceof return)

AddEdge(G, I, ReturnValue(M));

AddEdge(G, ReturnValue(M), I);

else // I instanceof invoke

for all M’ in MethodSet(I)

CreateGraph(M’, G, D);

for all N in Variables(I)

and N’ in Parameters(M’)

for all N’’ in RD(M, N)

AddEdge(G, N’’, N’);

AddEdge(G, N’, N’’);

AddEdge(G, ReturnValue(M’), I);

TraverseGraph(BT, G, A)

D := nil;

for all N in A

Sub(BT, G, N, D);

Sub(BT, G, N, D)

if(N �∈ D)

D := cons(N, D);

if(N instanceof instruction)

BT := cons(N, BT);

for all N’ in Edges(G, N)

Sub(BT, G, N’, D);

Fig. 11 Logic-based BTA algorithm using Reaching
Definitions.

local variables and the stack entries that
the instruction I depends on.

• MethodSet(I) returns the set of the meth-
ods that the instruction I calls potentially.

• AddEdge(G, N, N’) puts an edge from the
node N to the node N’ into the graph G.

• Edges(G, N) returns all edges from the
node N in the graph G.

The algorithm consists of the procedure
CreateGraph and the procedure TraverseGraph.
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Fig. 12 Graph of the DM (left) and the RDM (right).

CreateGraph does the following processes:
( 1 ) Search the call graph in the depth-first

manner.
( 2 ) Scan each instruction in the method.
( 3 ) If the instruction I is not a method in-

vocation, add an edge from the reaching
definitions of Variables(I) to I.

( 4 ) If the instruction I is a return instruc-
tion, add a bi-directional edge between
the return value and I.

( 5 ) If the instruction I is a method invoca-
tion,
( a ) Collect the potential callee method

sets,
( b ) Create the graph of each method

M’, and
( c ) Add a bi-directional edge between

the parameters of M’ and the
reaching definitions of Variables
(I).

TraverseGraph searches the graph G from
dynamic arguments A in the depth-first man-
ner and makes the binding times of the reached
instruction be dynamic.

4.4 Equality between the Direct
Method and Reaching Definitions
Method

Figure 12 shows graphs of the DM and the
RDM. The DM generates a graph with propa-
gating local variables and a stack along control
flow graph. In contrast, the RDM generates a
graph where it adds edges between instructions
depending directly on one another. The start
and end instructions in both these graphs are
the same. Therefore, results of BTA using both
graphs are identical.

4.5 Supporting objects in the Reach-
ing Definitions Method

We show briefly that RDM does not pre-
vent specialization supporting objects based on
Ref. 1).

Figure 13 shows binding times of an exam-
ple code using objects. First, creation of an
object should be dynamic if the object is es-
caped. Next, a field assignment of an object
should be dynamic if the object may have vis-
ible side-effect. In Fig. 13, we use ideal escape
analysis and side-effect analysis. ESCAPED and
CAPTURED means that the objects are escaped
and captured, respectively. SE means that the
assignment has a visible side effect. The cen-
ter of Fig. 13 shows that underlined expressions
and statements are dynamic because x is es-
caped. On the other hand, all expressions and
statements in the right of Fig. 13 is static be-
cause x is captured (not escaped).

In the method main, the reaching definition of
x is the right hand of the first assignment, that
is, creation of LinkedListStack. The binding
times of all use of x equals to the binding time
of the definition of x whether x is escaped or
not. So does entry in the method add. This
means the RDM does not prevent object cre-
ation specialization.

Similarly, there is no dependence between the
reaching definitions and side-effects. Conse-
quently, the RDM does not prevent field assign-
ment specialization.

The difference of treatment between objects
and other type variables is dealing with their
fields. The RDM does not support partially
static objects, that is, the binding times of an
object and its fields should be same. This rela-
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class LinkedListEntry {
LinkedListEntry next = null;
Object entry;
LinkedListEntry(Object e) {

entry = e;
}

}
class LinkedListStack {
LinkedListEntry head = null;
void add(Object e) {

LinkedListEntry entry
= new LinkedListEntry(e);

entry.next = head;
head = entry;

}
}
class Main {
static void main() {

LinkedListStack x
= new LinkedListStack();

x.add(new Object());
...

}
}

class LinkedListEntry {
LinkedListEntry next = null;
Object entry;

LinkedListEntry(Object e) {

entry = eSE;

}
}
class LinkedListStack {

LinkedListEntry head = null;
void add(Object e) {
LinkedListEntry entry

= new LinkedListEntry(e)ESCAPED;

entry.next = headSE;

head = entrySE;

}
}

}
class Main {

static void main() {
LinkedListStack x

= new LinkedListStack()ESCAPED;

x.add(new Object()ESCAPED);
...

}
}

class LinkedListEntry {
LinkedListEntry next = null;
Object entry;
LinkedListEntry(Object e) {

entry = e;
}

}
class LinkedListStack {
LinkedListEntry head = null;
void add(Object e) {

LinkedListEntry entry

= new LinkedListEntry(e)CAPTURED;
entry.next = head;
head = entry;

}
}
class Main {
static void main() {

LinkedListStack x
= new LinkedListStack()CAPTURED;

x.add(new Object()CAPTURED);
...

}
}

Fig. 13 (left) An example code using objects; (center) Binding times if x is
escaped; (right) Binding times if x is captured.

Table 3 Code size comparison.

DM RDM
total code (line) 737 663

instruction-dependent code 241 8

tionship is realized by adding edges between an
object and its fields.

5. Implementation and Assessment

5.1 Implementation
We implement binding time analyzers based

on the DM and the RDM using bytecode read-
ing and writing features of Javassist 3). We im-
plement the DM in Java. On the other hand,
we implement the RDM in AspectJ 8) using our
bytecode analyzer framework 16),17). In addi-
tion, the implementation of the DM does not
support all bytecode instructions currently, but
that of the RDM does.

5.2 Code Assessment
Table 3 shows the code size related to BTA

directly. Although we cannot compare directly
the DM and the RDM because they are based
on different implementation basis, the RDM
tends to have a 10% smaller code size than the
DM.

The more important difference is the code
content. To compare the size of instruction-
dependent code, although one the DM is 33%
of whole BTA, the one of the RDM is a little
more than 1%. The instruction-dependent pro-

cesses of the RDM are only the processes for
method invocation and return☆.

5.3 Computational Complexity As-
sessment

In this sub-section, we compare our approach
and constraint-based BTA.

The RDM also has the advantage to
constraint-based BTA because the result and
the intermediate products of constraint-based
BTA is not reusable to another analysis or op-
timization as far as we know.

Henglein 6) proposes an efficient algorithm
of constraint-based BTA using the fact that
the binding times are either static or dynamic.
He also discusses computational complexity in
detail. The complexity of his algorithm is
O(Nα(N, N)), where N is the code size of the
target program and α is the inversion of Acker-
mann’s function.

On the contrary, there is no article that dis-
cusses the complexity of logic-based BTA, but
our experience shows that it is almost linear.
The complexity of logic-based BTA essentially
equals the complexity of graph construction
and traverse. The complexity of graph con-

☆ The instruction-dependent code size does not in-
clude the size of its callee. Assume that there are in-
structions X and Y and instruction-dependent code
of X and Y includes an invocation of the common
method m. The size of the instruction-dependent
code does not include the size of m.
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struction of the DM is O(N). That of the RDM
equals the one of reaching definitions analysis;
there is an algorithm of it whose complexity
is O(Nα(N, N)) according to Ref. 14). On the
other hand, the complexity of the graph tra-
verse depends on the graph shape. We can-
not conclude how much it is, but in our current
implementation graph, construction takes much
more time than graph traverse.

6. Concluding Remarks

We have proposed an improvement that uses
reaching definitions (the RDM). It offers sim-
ple, reusable, and maintainable implementa-
tion. Moreover, this paper compared the DM,
which is a naive implementation of logic-based
binding time analysis, and the RDM, and evalu-
ated improvement of code quality and quantity.
We have observed that the RDM has eliminated
10% of the code related to BTA. In particu-
lar, the RDM eliminates almost all instruction-
dependent code.

In the future, we will enable our binding time
analyzer to support partially static objects. We
expect that supporting them improves binding
times because they often appear in real appli-
cations.
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