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1 Introduction and Definitions

The comparative study of the computational power of
nondeterministic, deterministic, and randomized compu-
tations is one of the central tasks of complexity theory.
In this paper we focus on the relationships between Las
Vegas and determinism and between Las Vegas and non-
determinism.

Recently. Duris, Hromkovic and Inoue [1] proved, for
the first time, a strong separation between nondetermin-
ism. Las Vegas, and determinism for finite automata with
two-dimensional squared inputs.

Very recently, Inoue, Tanaka, Ito and Wang [4] proved,
for the first time, a strong separation among nonde-
terminism, Las Vegas, and determinism, for computing
models with strings as its inputs. This paper proves a
strong sparation among nondeterminism, Las Vegas and
determinism for three-way (simple) multihead finite au-
tomata [3] with two-dimansional squared inputs.

A four-way two-dimansional k-head finite automaton
{2-kHA) M is a finite automaton with k read-only in-
put heads operating on two-dimansional input tapes sur-
rounded by boundary symbols #. These heads can move
up. down, left, or right. We denote by L(M) the set
{language) of all inputs accepted by M.

A four-way two-dimansional simple multihead finite
automaton (SP2-MHA) is a 2-MHA whose only one head
(called the “reading” head) is capable of distinguishing
the symbols in the input alphabet, and whose other heads
(called “counting” heads) can only detect whether they
are on the boundary symbols or a symbol in the input
alphabet.

A three-way multihead finite automaton (TR2-MHA)
(vesp.. three-way simple multihead finite automaton
(TRSP2-MHA)) is 2-MHA (resp., SP2-MHA) all the
heads of which cannot move up. As usual, we define
nondeterministic and deterministic versions of those au-
tomata. The states of these automata are considerd to be
divided into three disjoint sets of working, accepting, and
rejecting states. No action is possible from any rejecting
or accepting state.

A self-verifying nondeterministic 2-MHA (resp., TR2-
MHA. SP2-MHA. TRSP2-MHA) is a 2-MHA (resp.,
TR2-MHA, SP2-MHA, TRSP2-MHA) with four types
of states: working, accepting, rejecting, and neutral {“I
do not know™) ones. There is no possible move from ac-
cepting, rejecting, and neutral states. The self-verifying
nondeterministic_device M is not allowed to make mis-
takes. If there is a computation of M on an input
finishing in an accepting (resp., rejecting) state, then =
must be in L(M) (resp., & must not be in L(M)). For
every input y, there is at least one computation of M
that finishes either in an accepting state (if y € L(M))
or in a rejecting state (if y ¢ L(M)).
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A Las Vegas 2-MHA (resp., TR2-MHA, SP2-MHA,
TRSP2-MHA) A may be viewed as a self-verifying
nondeterministic 2-MHA (resp., TR2-MHA, SP2-MHA,
TRSP2-MHA) with probabilities assigned to every non-
deterministic branching. The probability of a computa-
tion of A is defined through the transition probabilities
of A. We require for y € L(A) (resp., y & L(A)) that A
reaches an accepting (resp., rejecting) state with a prob-
ability of at least %

For each k > 1, let 2 — kH A denote a two-dimensional
k-head finite automaton. In order to represent different
kjﬁds of 2 — kHA’s, we use the notation XY Z2 — kHA,
where

o)) X = TR : three-way

there is no X : four-way.
(2) Y €{D,N,SVN,LV},
D: deterministic, N: nondeterministic,
SV N: self-verifying nondeterministic,
LV: Las Vegas;
3) { Z = SP :simple )
there is no Z : non-simple;
We denote by £{XYZ2 — kHA] the class of languages
accepted by XYZ2-kHA’s.

Let ¥ be a finite set of symbols. A two-dimensional
tape over T is a two-dimensional rectangular array of el-
ements of . The set of all two-dimensional tapes over ©
is denoted by ()% . Given a tape z € S, we let I; (2)
be the number of rows of z and 2(z) be the number of
columns of z. If 1 < ¢ < li(z) and 1 < 5 < lo(x), we
let %(z, 7) denote the symbol in = with coodinates (i, 7).
We define z[(1, 5), (7', 5')], only when 1 < ¢ < ¢ < I ()
and 1 < 7 < j' < lx(z), as the two-dimensional tape z
satisfying the following:

h(z)=¢—i+1land l2(z) =5 -j5+1,

gii) for each k,r(1 gkgh(z%,l < la(x)),
zkyry=z(k+i—1,r4+7—1
Particularly, for each ¢ < i < l(x), z[i,*] denotes

z[(1, 1), (i,l2(z))], that is the i-th row of z.

2 Determinism versus Las Ve-
gas for Three-way Machines

We first prove a strong separation between determin-
istic and Las Vegas TRSP2-MHAs.

Theorem 2.1. For each k > 2,
£[TRDSP2 — kHA] ¢ £[TRLVSP2 - kHA
Proof. For each k > 2, let
Tik)= {2€{0,1}P% | 3n >k + 1[li(z)
Aty i, -, k(1 <45 < < -2 < i
z(Lu)=z(l,0)=-=z(la)=1
AVI(1<i<n—"1,5%1,is i)z
Al(z(2,1) =1A z(2,n) =0
V('r(z,’ig) =z(2,53)=---=2(2,%) =1
A z(2,n) = ]I}

T1(2k) is a witness language for the theorem. Lan-
guage T1(2k) is accepted by a TRLVSP2-kHA M which
acts as follows. Let R and H;, Hz,- -, Hx—; be the read-
ing and counting heads of M, respectively.

First, M checks whether the first row of x has exactly
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2k 1's. Let 2(1,11).(1,22), -+, 2(L,4x), where 1 < 1; <
12 < -+ < 1 < n—1, be these 2k ‘1’s on the first row.
Then. M chooses one of the following two actions @) and
@ with probability %

@ M checks whether x(2,41) = 1.
if .1‘('34]'1) =1 and z(2.n) = 0, then M enters an
accepting state.
If 2(2.11) # 1 and x(2
rejecting state.
If 2(2,n) = 1, then M enters a neutral state, whther
or not x(2,741) = 1.

@ Foreach j(1 < j<k-—1), M moves H, to the cell
of r with coordinates (42;,%2;41). Then, M checks
by using R whether z(2,12;) = 1, and for each j(1 <
J <k —=1). M checks by using R and H, whether
r(2.42;) = 1 and x(2,12,41) = 1. { It is an easy
exercise to see that these actions can be done.)

If 2(2.42;) = 1 for each (2 < I < k) and z(2,n) =1,
then A enters an accepting state.
Ifa(2.tn) # lforsome (2 <1 < k)and z(2,n) =1,
then 3 enters a rejecting state.
If z(2,n) = 0, then M enters a neutral state whether
or not (2,1} = 1 for each {2 <1 < k).
The proof of “T1(2k) ¢ £[TRDSP2 ~ kHA]” is omitted
here.
We next prove a strong separation between determin-
istic and Las Vegas TR2-MHAs
Theorem 2.2.For each & > 2,
L{TRD2? - kHA) € £[TRLV2—kHA].
Proof. For each k > 2, let

,n) = 0, then M enters a

To(k)= {o € {0, 1} | 3n > 2b(k I (z) =l(x
() {= ne/\{[(xl[}l, *] i x 21—)>_(k) (* )/\+171([2b((k))+ 1, { ))
=0)V (Vz? <1 < b(k)) mﬂi,*]}_—. z[2b(k) — 1
+1,+JAx '2b(k2 +1,n) =1}

where b(k) = (7).

T»(k) is a witness language for the theorem. The de-
tails of the proof are omitted here.

3 Self-verifying Nondetermin-
ism versus Nondeterminism
for Three-way Machines

This section proves a strong separation between self-
verifying nondeterminism and nondeterminism, for three-
way machines.

Theorem 3.1.

LTRN2-1HA}- | ] £[TRSVNSP2-kHA]#¢.

1<k<o
Proof. For each n > 2, let
Ty = {oe{0. 1} | Li(z)=h(z)=n

Axfl,#] # z[2, %]}
T, is a witness language for the theorem. The details
of the proof are omitted here.

Theorem 3.2.
£[TRN2 —2HA] - |

1<k <o

L[TRSVN2 - kHA) # ¢.

proof. Let,
= {oe{0.1.2J0 |3n >3L(x)=Lig)=n
A(there exists an integer 1,3 < i < n, such that
()2[(7. 1), (n, )] € {2124,
(1)V3(1 < 7 <1 —1)[the ]th row of x is of
the form wJZwJ for w;, w; € {0, 1}*], and
(11)3k, 31(1 <k<i<i-— 13[(the kth row of = is
wi2wy) A (the lth row of z is wi2w;)
Awp = wr A w7 wi] )]}
T, is a witness language for the theorem. The details
of the proof are omitted here.

4 Self-verifying Nondetermin-
ism versus Las Vegas for
Three-way Simple
Multi-head Machines

Theorem 4.1, For each k > 2,
£[TRSV N2—-1HA]- U L[TRLVSP2—kHA) # ¢
1<k<oo
Proof.For any n > 2, let
L= {z€{0,1}* | In>1[li(z)=b(z)=n
/\31(0<z<n—1)
3z € {0, 1}*[if =[2,
. =11}
L is a witness language for the theorem. The details
of the proof are omitted here.

¥] = 0'1z, then z(1,1+ 1)

5 Four-way Self-verifying Non-
determinism versus Las Ve-
gas

For four-way machines, we have:

Theorem 5.1. For each k > 1,

(1) £[SVN2 - kHA] = £[LV7 ~ kHA], and

(2) £[SVNSP2 ~kHA]= £[LVSP2 — kHA).
Proof. We prove only (1), because the proof of (2) is the
same. “L£[LV2 - kHA] C £[SV N2 — kH A]” is obvious,
because every LV2 — kH A can be viewed as a SVN2 —
kHA. The simulation ofa SVN2—kHAby aLV2—kHA
can be done by using a mixture of the proofs of Theorem
1 in {5] and Theorem 1 in [2].

6 Conclusion

This study proved a strong separation among nonde-
terminism, Las Vegas, and determinism for 2 ~ A H As.
Unsolved problems in this study are :
(1) £[TRLVSP2-1HA]- | | £[TRDSP2-kHA]# o7

1<k<eo
(2) ZITRLV2-1HA] — | | £[TRD2-kHA] # ¢?
1<k<oo

(3) £[TRSVN2-1HA] — [ ] £[TRLVZ-KHA]# o7
(4) £[DSP2-2HA] C £[LVSP2-2HA]?
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