
Vol. 46 No. SIG 14(PRO 27) IPSJ Transactions on Programming Oct. 2005

Regular Paper

A Rewrite System with Incomplete Regular Expression

Type for Transformation of XML Documents

Taro Suzuki† and Satoshi Okui††

In this paper we propose a new framework for transformations of XML documents based
on an extension of regular expression type, called incomplete regular expression type. Incom-
plete regular expression type is a restricted second-order extension of regular expression (RE)
type: An incomplete RE type can be applied to arbitrary RE types as its arguments. It is ac-
complished by introducing holes to types. We give a version of second-order rewrite systems,
designed founded on our type system. Matching between a subterm with the left-hand side of
rewrite rules yields a substitution that bind second-order terms to the variables of incomplete
type. This feature is practically useful when we want to reuse “the upper parts” of XML doc-
uments in the transformation. We demonstrate that the introduction of incomplete regular
expression type allows programmers much flexibility. In this paper, we mainly concentrate on
the type theoretic issues and give some properties concerning for incomplete types. We also
show the type preservation in rewriting.

1. Introduction

Statically typed XML transformation lan-
guages such as XDuce 8) has brought benefits to
XML world; it makes us possible to statically
analyze XML documents and their transforma-
tion procedures with type checking. XDuce
provides a powerful pattern matching mecha-
nism called regular expression pattern match-
ing, based on regular expression type. How-
ever, it can extract only the substructures from
a given XML document because the nature of
matching in XDuce is in first-order.

Higher-order matching allows us to extract
not only the substructures but also the func-
tions. Higher-order matching is broadly used
in program transformation 7),10). One of our
aim is to gain the expressiveness of statically
typed XML languages by extending them with
the second-order matching. The second-order
matching is useful when we want to extract
“upper-parts” of subterms of a given term and
reuse them. We will show an example in the
next section.

Our another aim is to give a framework for
the transformation of XML documents with
much flexibility. For this purpose we adopt
term rewriting systems (TRSs, for short). A
TRS is a model of computation with much flex-
ibility. For instance, the reduction strategy is
not fixed. Many reduction strategies are pro-

† The University of Aizu
†† Chubu University

posed in the literature (See Refs. 1), 3) and 13)
for further details). We can select one of them
and combine it to the concerned TRSs in order
to perform the intended computation. On the
other hand, in statically typed XML transfor-
mation languages the situation is different; for
instance, XDuce is based on XML and hence it
employs the innermost reduction strategy.

It is worth noting that recently higher-order
term rewriting systems are intensively investi-
gated 17), including some systems with higher-
order matching 12),16). We expect to take ad-
vantage of useful results obtained from these
works.

We propose a framework for statically typed
XML transformation with a restricted form of
the second-order matching. In this paper we
mainly concentrate on the type theoretic issues.

This paper is organized as follows. In the
next section we describe our basic idea by il-
lustrating an example. In Section 3 we show
formal definitions and some properties of our
framework. In Section 4 we revisit the exam-
ple in Section 2 more precisely with formalities
defined in Section 3. Finally we conclude the
paper with some remarks and the further re-
search.

2. Basic Idea

We explain our basic idea using a simple ex-
ample. Suppose a fragment of an XML docu-
ment represents a word with specified font prop-
erties such as a name, a size, a weight and a
style. The type of words with font properties

43

44 IPSJ Transactions on Programming Oct. 2005

is denoted by Word, which is defined as follows
(we adopt notation similar to XDuce in this sec-
tion).
type Word =

FL[WL[SL[String[]]] Int[]]
where FL, WL and SL are abbreviations of the
unions of labels as denoted below.
FL = times | helvetica | courier
WL = bold | normal | thin
SL = italic | roman

For example the word "Hello" with font name
times, font size 12, font weight bold and
font shape italic is represented as follows.

times[bold[italic["Hello"]] 12]
Now we would like to transform the representa-
tion of the font properties from ‘nested’ forms
to ‘flat’ forms. The new type of the words with
font properties is NewWord defined as follows.
type NewWord =

word[String[]
font[FL[Int[]] WL[] SL[]]]

The word transformed from the above is shown
below.
word["Hello"

font[times[12] bold[] italic[]]]
The implementation of this transformation in
terms of first-order matching is clumsy: ac-
tually, the number of rules to implement the
transformation is equal to sum of the labels for
the font properties.
flatten(times[x s]) =

flat(x, times[s])
flatten(helvetica[x s]) =

flat(x, helvetica[s])
flatten(courier[x s]) =

flat(x, courier[s])
flat(bold[x], l) =

flat2(x, l bold[])
flat(normal[x], l) =

flat2(x, l normal[])
flat(thin[x], l) =

flat2(x, l thin[])
flat2(roman[w], l) =

word[w font[l roman[]]]
flat2(italic[w],l) =

word[w font[l italic[]]]
Here the italic fonts denote (first-order) vari-
ables.

On the other hand, second-order matching
provides us more direct and simpler imple-
mentation. In this paper we instantiate the
second-order variables with contexts. Con-
texts are terms with special constants � called
holes. This restriction gives us a restricted

form of second-order matching, so-called con-
text matching 5),6),14). The holes act as pair-
wisely distinct bound variables. Thus, a con-
text l[� l′[�]] corresponds with λxy.l[x l′[y]].
The holes can be replaced with the other terms
later on: l[� l′[�]]{t, t′} = l[t l′[t′]].

Now that the transformation from nested rep-
resentation to flat one of font properties is im-
plemented by a single rule.

flatten2(fl{wl{sl{s}}}) =
word[s font[fl{()} wl{()} sl{()}]]

Here fl, wl and sl are second-order vari-
ables. When the above rule is applied to
times[bold[italic["Hello"]] 12], they are
instantiated with contexts with a single hole as
follows.

fl = times[� 12]
wl = bold[�]
sl = italic[�]

The desired transformed XML fragment is ob-
tained by instantiating the right-hand side of
the above rule.

Note that in the instance of each side of the
rule the holes are replaced by the terms with
different types. In the above example, the hole
in italic[�], substituted for sl, is replaced
with "Hello" in the instance of the left-hand
side, whereas with the empty sequence () in
the instance of the right-hand side. In order
to replace a single hole by terms with differ-
ent types, we introduce holes also in types; the
second-order variable sl has type SL[�]. Like-
wise, the other second-order variables fl and wl
are typed with FL[� Int[]] and WL[�], re-
spectively. As well as holes in terms, the holes
in types can be replaced with the other types
later on. So the argument of the left-hand side
is typed with
FL[� Int[]]{WL[�]{SL[�]{String[]}}}

= FL[WL[SL[String[]]] Int[]]
= Word.

The right-hand side is typed with
word[String[]

font[FL[� Int[]]{()}
WL[�]{()}
SL[�]{()}]]

= word[String[]
font[FL[Int[]] WL[] SL[]]]

= NewWord,
thereby the given rule transforms fragments
typed with Word into ones with NewWord, which
is the desired transformation. In Section 4 we
will revisit the example in more formal way af-
ter we state the formal definition of our frame-

Vol. 46 No. SIG 14(PRO 27) A Rewrite System with Incomplete RE Type for XML Transformation 45

work in the next section.

3. Formalities

This section presents a formal definitions of
our framework: languages, the subtype rela-
tion, typing rules, substitutions, and rewrite
systems. we also show some properties of our
framework.

3.1 Languages
As in XDuce our languages are parameterized

on a language of labels, which defines as follows.
Definition 1. A language of labels is a triple
〈L, TL, [[]]〉 with the following properties.
• L is a non-empty set of labels,
• TL is a non-empty set of label types,
• a denotation function [[]] is a mapping from

TL to P(L) − {∅},
• for every label l there exists a unique label

type L such that [[L]] = {l},
• for every L, L′ ∈ TL the subsumption [[L]] ⊆

[[L′]] is decidable.
In this paper we don’t fix the language of la-

bels. An example is the following.
• a set of labels consists of all the integers,

all the UNICODE strings and XML tags,
• a set of label type consists of Int, String,

all labels and unions of XML tags such as
h1 | h2 | h3,

• [[Int]] is a set of all the integers, [[String]]
is a set of all the UNICODE strings, [[L]] =
{L} if L is a label, [[L1|L2]] = [[L1]]∪ [[L2]] if
L1 and L2 are XML tags.

Hereafter we use l and L to stand for a label
and a label type, respectively.

A set of types are built from TL and a set TN
of type names. We assume that these two sets
are disjoint. The syntax of types is defined by
the following grammar.

T ::= types
TC complete type
� hole
L [T] tree
T T concatenation

TC ::= complete type
() empty
N type name
L [TC] tree
TC TC concatenation
TC | TC union
TC

∗ repetition
The concatenation type is associative, i.e.,
(T1 T2) T3 is equal to T1 (T2 T3), and the empty
sequence type is identity with respect to con-
catenation, i.e., T () and () T are equal to T .

The union type is associative and commutative.
A type defined by TC is called complete, which
contains no hole. We call a type T incomplete
if it is not complete. Note that the incomplete
types are classified into the following two forms:
T1 �T2 with T1 complete, or T1L[T2]T3 with T1

complete and T2 incomplete. We will often use
this fact in some proofs shown in Section 3.2.
Let T be a type with n holes and T1, . . . , Tn

complete types. The notation T{T1, . . . , Tn}
represents a complete type obtained by simul-
taneously replacing the holes in T from left to
right with T1, . . . , Tn.

Let V and F be sets of variables and function
symbols, respectively. We assume V , F and L
are mutually disjoint. The syntax of terms is
defined from V , L and F as follows.

t ::= terms
� hole
() empty sequence
x{t, . . . , t} application
l [t] tree
t t concatenation
f(t, . . . , t) function term

Here l ∈ L, f ∈ F and x ∈ V . We write
x{} and f() as x and f , respectively. We
assume that concatenation is associative, i.e.,
((t1 t2)t3) = (t1 (t2 t3)), and the empty sequence
() is identity with respect to concatenation, i.e.,
t () = () t = t. Note that t{t1, . . . , tn} is a syn-
tactically correct term only when t ∈ V . A
term is called complete if it contains no hole;
Otherwise, it is called incomplete. A term is
called ground if it contains no variable. A set
of variables occurring in a term t is denoted by
V ar(t).

Hereafter, we use N for type names, x for
variables, f for function symbols, s and t for
terms, and T for types, with subscripts or
primes if necessary. We denote tm, . . . , tn (m ≤
n) by tm,n. If m > n then tm,n denotes the
empty sequence. If m = 1 it can be denoted by
tn.

We define the size of a type T , denoted by
|T |, as follows.
• |()| = 0,
• |�| = |N | = 1,
• |L[T]| = |T | + 1,
• |T1 T2| = |T1| + |T2|,
• |(T1 | T2)| = |T1| + |T2| + 1,
• |T ∗| = |T | + 1.

The size of a term t, denoted by |t|, is defined
in the same manner as follows.

46 IPSJ Transactions on Programming Oct. 2005

• |()| = 0,
• |�| = 1,
• |l[t]| = |t| + 1,
• |t1 t2| = |t1| + |t2|,
• |x{tn}| = |f(tn)| = 1 +

∑n
i=1 |ti|.

3.2 Subtype Relation
As in XDuce, our framework provides a sub-

type relation <: over types. In order to define
subtype relation, we define a denotation func-
tion [[·]] mapping a type to sets of terms.
Definition 2. The denotation function [[]]
mapping a type to a set of terms is defined by
the least solution of the following set of equa-
tions.

[[�]] = {�}
[[()]] = {()}
[[N]] = [[N (N)]]

[[L [T]]] = {l [t] | l ∈ [[L]], t ∈ [[T]]}
[[T1 T2]] = {t1 t2 | t1 ∈ [[T1]], t2 ∈ [[T2]]}
[[T1|T2]] = [[T1]] ∪ [[T2]]

[[T ∗]] = {t1 . . . tn | n ≥ 0, ∀i.ti ∈ [[T]]}
We call [[T]] the denotation of a type T . Sub-
type relation <: is semantically defined as T1 <:
T2 ⇔ [[T1]] ⊆ [[T2]].

In the above definition N is a counterpart
of E in 8), which stands for a mapping from
the set TN of type names to a set of complete
types. The mapping N is called type name def-
inition. We impose on N the same restriction
as E in XDuce in order to avoid defining types
corresponding to context free languages. Intu-
itively all the ‘loops’ from a type name N to
itself should pass through the body of a tree
type L[T] except for the case where N appears
only in tail positions. See Ref. 9) for the formal
definition of the restriction.

The existence of [[]] is guaranteed from the
usual argument on the fixed-point. Let [[T]](0) =
∅ for each type T , and [[]](i+1) be defined from
the set of the equations in Definition 2 by re-
placing the occurrences of [[]] in the left-hand
sides by [[]](i+1)’s and the ones in the right-hand
sides by [[]](i)’s. An order � on a set of functions
mapping a type to a set of terms is defined such
that φ � φ′ if and only if φ(T) ⊆ φ′(T) for each
type T . Then it follows from the Fixed-Point
Theorem that for each type [[T]] =

⋃
i[[T]](i).

Note that the denotation of a type is a set of
ground terms without function symbols. Later
(in Proposition 2) we will state the relationship
between the denotation function and the set of
typing rules defined in the next section.

We investigate some properties of the subtype
relation. It is important to note that the num-
ber of holes in types with the subtype relation
are the same. In order to show this property,
we first prove several lemmas.
Lemma 1. For any complete type T , every
term in [[T]] is complete.
Proof. We only have to show that for every
i and every type T the set [[T]](i) contains only
complete terms. The result is obvious when i
is zero. We show that every term in [[T]]i+1 is
complete for any complete type T by assum-
ing the result holds for i. If T is a type name
N then [[N]](i+1) = [[N (N)]](i). Since N (N)
is complete, it follows from the induction hy-
pothesis yields that the terms in [[N (N)]](i) are
complete and hence the result holds. If T is of
the form L[T ′] then [[L[T ′]]](i+1) = {l[t] | l ∈
[[L]], t ∈ [[T ′]](i)}. By the induction hypothesis
[[T ′]]i consists of complete types, and so does
[[L[T ′]]]i+1. The other cases are proved in the
same way.

Hereafter, we denote the number of the holes
in a term t and a type T by #�(t) and #�(T),
respectively.
Lemma 2. For any type T and any term t in
[[T]], the equation #�(t) = #�(T) holds.
Proof. We show it by induction on the size
of types. As for the base cases, it is obvious
that the result holds for the hole �. In the
remaining base cases, () and the type names,
the result follows from Lemma 1.

We consider the induction step. When the
type is either of the form L[T] or T1T2, the
result immediately follows from the definition
of [[]] and the induction hypothesis. Suppose
the type is of the form T1|T2. By definition T1

and T2 are complete types, i.e., they have no
holes. Induction hypothesis yields that for each
t ∈ [[T1]]∪ [[T2]] the term t has no hole and hence
the result holds. The case where the type is of
the form T ∗ is proved in the same manner.

Now we prove that the number of the holes
in two types are invariant whenever they are in
the subtype relation.
Proposition 1. Let T1 and T2 be types with
T1 <: T2. Then #�(T1) = #�(T2).
Proof. Suppose t ∈ [[T1]]. Then Lemma 2
yields #�(T1) = #�(t). From the definition
of the subtype relation t belongs to [[T2]] and
hence #�(T2) = #�(t). Therefore we obtain
#�(T1) = #�(T2).

In XDuce the type subsumption property is
decidable, i.e., there exists an algorithm to

Vol. 46 No. SIG 14(PRO 27) A Rewrite System with Incomplete RE Type for XML Transformation 47

know whether given two types S and T satisfies
S <: T 9). The following statements guarantee
us that our subtype relation enjoys this prop-
erty.
Lemma 3. Let S and T be types such that S
is of the form S1 L[S2]S2 with S1 complete and
S2 incomplete. The relation S <: T holds if
and only if there exist a complete type T1, an
incomplete type T2, a type T3 and a label type
L such that T = T1 L′[T2] T3, [[L]] ⊆ [[L′]] and
Si <: Ti for i = 1, 2, 3.
Proof. The if direction is obvious. We prove
the only-if direction. Since S <: T and S is
incomplete, T is incomplete from Proposition 1.
Thus T is written as T1 T4 T3 such that T1 is
complete and that T4 is either � or L′[T2] with
T2 incomplete. Let si ∈ [[Si]] for i = 1, 2, 3 and
l ∈ [[L]]. Since S = S1 L[S2] S3 <: T1 T4 T3,
we have s1 l[s2] s3 ∈ [[T1 T4 T3]]. Hence there
exist terms ti ∈ [[Ti]] for i = 1, 3, 4 such that
s1 l[s2] s3 = t1 t4 t3. Suppose T = T1 � T3.
Then t4 = �. Because S1 and T1 are complete
and S2 incomplete, Lemma 2 yields #�(s1) =
#�(t1) = 0 and #�(s2) �= 0. We can infer that
this contradicts s1 l[s2] s3 = t1 � t3. Hence T4

should be of the form L′[T2] with T2 incomplete.
Then t4 is written as l′[t2] with t2 ∈ [[T2]] and
l′ ∈ [[L′]]. Since T2 is incomplete, Lemma 2
yields #�(s2) �= 0. Together with #�(s1) =
#�(t1) = 0 and #�(s2) �= 0, it follows that
si = ti for i = 1, 2, 3 and l = l′. Therefore
Si <: Ti for every 1 ≤ i ≤ 3 and [[L]] ⊆ [[L′]].
Lemma 4. Let S and T be types such that S
is of the form S1 � S2 with S1 complete. The
relation S <: T holds if and only if there exist
a complete type T1 and a type T2 such that T =
T1 � T2 and Si <: Ti for i = 1, 2.
Proof. The proof is similar to the previous
lemma.

The decidability of type subsumption prop-
erty is an immediate consequence of the above
lemmas.
Theorem 1. The type subsumption property
is decidable.
Proof. We show that for given types S and T
the property S <: T is decidable. We use in-
duction on |S|. If S and T are complete then we
employ the algorithm described in 9) to decide
whether the property holds. If S is incomplete
then S is of the form S1 S4 S3 such that S1 is
complete and that S4 is either � or L[S2] with
S2 incomplete. Let S4 = L[S2]. From Lemma 3
the property S <: T holds if and only if (1) T
is of the form T1 L′[T2]T3 with T1 complete and

T2 incomplete; (2) [[L]] ⊆ [[L′]]; and (3) Si <: Ti

for every 1 ≤ i ≤ 3. It is easy to check whether
the property (1) holds. The property (2) is de-
cidable by Definition 1. The last property is
also decidable owing to the induction hypoth-
esis. The case S4 = � is similarly proved by
Lemma 4.

Before leaving this section, we show two prop-
erties concerning the replacement of the holes
in types.
Lemma 5. Let T be an incomplete type with
n holes (n ≥ 0) and T1, . . . , Tn, T ′

1, . . . , T
′
n com-

plete types with Ti <: T ′
i for 1 ≤ i ≤ n. Then

T{T1, . . . , Tn} <: T{T ′
1, . . . , T

′
n}.

Proof. We use induction on n. The case
for n = 0 is trivial. Suppose n > 0. Let
S be a type obtained by replacing the left-
most hole in T with T ′

1. Because S includes
n − 1 holes, the induction hypothesis yields
S{T 2,n} <: S{T ′

2,n} = T{T ′
n}. Let U be

an incomplete type obtained as the result of
simultaneous replacements of every hole in T
except the leftmost one from left to right with
T2, . . . , Tn, respectively. Then T{Tn} = U{T1}
and S{T 2,n} = U{T ′

1}. Hence it suffices to
show U{T1} <: U{T ′

1}. We use induction on
|U |. If U is a hole then the result immediately
holds. Suppose U is a tree type L[U ′]. The
(second) induction hypothesis yields U ′{T1} <:
U ′{T ′

1} and hence L[U ′]{T1} <: L[U ′]{T ′
1}.

The case for concatenation is shown in the same
way. We conclude the proof because incomplete
types fall into the above three cases.
Lemma 6. Let S and S′ be types with
#�(S) = #�(S′) = n ≥ 0 and S <: S′. If
T1, . . . , Tn are complete types then S{Tn} <:
S′{Tn}.
Proof. We use induction on |S|. If S is com-
plete then the result is obvious. Let S be incom-
plete. We distinguish the following two cases.
(1) If S = S1 � S2 with S1 complete then
Lemma 4 implies that S′ should be of the form
S′

1 � S′
2 such that S′

1 is complete and Si <: S′
i

for i = 1, 2. The induction hypothesis yields
S2{T 2,n} <: S′

2{T 2,n}. Hence we obtain

T{T n} = S1 T1 S2{T 2,n}
<: S′

1 T1 S′
2{T 2,n} = T ′{Tn}.

(2) If S = S1 L[S2] S3 with S1 complete and
S2 incomplete then Lemma 3 implies that T ′
should be of the form S′

1 L′[S′
2] S′

3 such that
S′

1 is complete, S′
2 incomplete, [[L]] ⊆ [[L′]] and

Si <: S′
i for every 1 ≤ i ≤ 3. Let #�(S2) =

k(≤ n). Proposition 1 yields #�(S′
2) = k. The

48 IPSJ Transactions on Programming Oct. 2005

induction hypothesis yields S2{T k} <: S′
2{T k}

and S3{T k+1,n} <: S′
3{T k+1,n}. Hence we

obtain T{Tn} = S1 L[S2{T k} S3{T k+1,n} <:
S′

1 L′[S′
2{T k}] S′

3{T k+1,n}.
3.3 Typing Rules
As in the other typed systems in Church-

style, we are concerned with only the well-typed
terms. In this section we identify well-typed
terms.

In the language of labels, labels are associated
to label types with ΣL. Likewise, we associate
function symbols with types. A function signa-
ture, denoted by ΣF , is a mapping from F to a
set of finite and non-empty sequences of com-
plete types. We write a sequence of n + 1 com-
plete types T1, . . . , Tn+1 as T1×· · ·×Tn → Tn+1.
A type is assigned to each variable. The set of
variables with type T is denoted by VT . We as-
sume that for each type T the set VT is count-
ably infinite.
Definition 3. A judgment � t : T is a rela-
tion between a term t and a type T . A term t
is well-typed if there exits a type T such that a
judgment � t : T is deducible using the typing
rules shown in Fig. 1. In this case we say the
term t has type T .

Note that in the rule (apply) in Fig. 1 T has n
holes and T ′, T1, . . . , Tn are complete from the
definition of T{T1, . . . , Tn}.

The following proposition states that the set
of the ground terms without function symbols
that have type T coincides with the denotation
of T .
Proposition 2. Let t be a ground term with-
out function symbols. � t : T if and only if
t ∈ [[T]].
Proof.
(⇒)We use induction on a typing derivation
of � t : T . Since t is a ground term without
function symbols, the typing rules used in the
last step of the deduction are other than (vari-
able), (apply) and (f-apply). Since most cases
are trivial, we only show the case (tree). In
this case � l[t] : L[T] is deduced from l ∈ [[L]]
and � t : T . The induction hypothesis yields
t ∈ [[T]]. Hence, by the definition of [[]], the
desired result l[t] ∈ [[L[T]]] is obtained.
(⇐)We use induction on |T |. The cases T = ()
and T = � are trivial. Consider the case L[T].
The elements of [[L[T]]] are of the form l[t] with
l ∈ [[L]] and t ∈ [[T]]. The induction hypothesis
yields � t : T . Then from (tree) we obtain �
l[t] : L[T]. Consider the case T1 T2 with Ti �= ()

(empty)

� () : ()

(variable)
x ∈ VT

� x : T

(box)

� � : �

(tree)
l ∈ [[L]] � t : T

� l [t] : L [T]

(concatenation)
� t1 : T1 � t2 : T2

� t1 t2 : T1 T2

(apply)
x ∈ VT � t1 : T1 · · · � tn : Tn

� x{t1, . . . , tn} : T ′
if n > 0 and T ′ = T{T1, . . . , Tn}

(f-apply)
ΣF (f) = T1 × · · ·Tn → T
� t1 : T1 · · · � tn : Tn

� f(t1, . . . , tn) : T

(subtype)
� t : T1 T1 <: T2

� t : T2

Fig. 1 Typing rules.

for i = 1, 2. By definition the elements of [[T1T2]]
are of the form t1 t2 with ti ∈ [[Ti]] for i = 1, 2.
The induction hypothesis yields � t1 : T1 and
� t2 : T2, which produces � t1 t2 : T1 T2 from
the (concatenation) rule. Consider the case T1 |
T2. By definition t ∈ [[T1 | T2]] means either
t ∈ [[T1]] or t ∈ [[T2]]. Without loss of generality,
we assume t ∈ [[T1]]. The induction hypothesis
yields � t : T1. By definition T1 <: T1 | T2.
Hence the (subtype) rule yields � t : T1 | T2.
Finally consider the case T ∗. Every element
of [[T ∗]] is written as t1 · · · tn with n ≥ 0 and
ti ∈ [[T]] for every 1 ≤ i ≤ n. The induction
hypothesis yields � ti : T for every 1 ≤ i ≤ n.
The applications of the (concatenation) rule n
times yield � t1 · · · tn : T ′ where T ′ is the
concatenation of n T ’s. By definition T ′ <: T ∗.
Therefore � t1 · · · tn : T ∗ is deduced from the
(subtype) rule.

Since our typing system employs the sub-
type relation, a term has generally many types.
However, it would be convenient if we can as-
sign terms to the unique types. Thus we in-
troduce a function τ that maps a term to its
unique type.

Vol. 46 No. SIG 14(PRO 27) A Rewrite System with Incomplete RE Type for XML Transformation 49

Definition 4. The partial function τ maps a
term to a type as follows.

τ (x) = T if x ∈ VT

τ (l[t]) = L[τ (t)] if ΣL(l) = L
τ (()) = ()
τ (�) = �

τ (t1 t2) = τ (t1) τ (t2)
τ (x{tn}) = T ′

if n > 0, x ∈ VT

and T ′ = T{τ (t1), . . . , τ(tn)}
τ (f(tn)) = T

if ΣF (f) = T1 × · · · × Tn → T
and τ (ti) <: Ti for 1 ≤ i ≤ n

Here ΣL is a mapping from L to TL such that
ΣL(l) = L if [[L]] = {l}. We call ΣL a label
signature.

We show the function τ satisfies desired prop-
erties: given a well-typed term t, τ (t) con-
structs the least type among types of t with
respect to <:. Furthermore, the well-typedness
of a term t identifies with the definedness of
τ (t).
Lemma 7. For each term t, if τ (t) is defined
then � t : τ (t).
Proof. By a trivial induction proof on the size
of terms with the definitions of τ () and the typ-
ing rules. We only show the case where the term
is of the form x{tn} with n > 0. Since τ (x{tn})
is defined, τ (x{tn}) = T{τ (t1), . . . , τ(tn)} with
x ∈ VT . From induction hypothesis we ob-
tain � ti : τ (ti) for 1 ≤ i ≤ n. Therefore
� x{tn} : τ (x{tn}) from the rule (apply).

The following theorem states that τ satisfies
the desired properties mentioned above.
Theorem 2. For each term t, t is well-typed
if and only if τ (t) is defined. Moreover, for any
type T if � t : T then τ (t) <: T holds.
Proof. The if direction of the first half is im-
mediate from Lemma 7. The remaining part
of the result is a immediate consequence of the
following claim: if � t : T for a type T then
τ (t) is defined and τ (t) <: T . The proof of the
claim is done by induction on a typing deduc-
tion of � t : T . We proceed by cases on the
typing rule used in the last step of the given
deduction. The first three cases in Fig. 1 are
obvious. If (tree) is used then the deduced
judgment is of the form � l[t] : L[T] where
l ∈ [[L]] and � t : T . By the induction hypoth-
esis τ (t) is defined and τ (t) <: T . By defini-
tion τ (l[t]) = L′[τ (t)] where [[L′]] = {l}. Hence
τ (l[t]) = L′[τ (t)] <: L[T] from the definition
of <:. The case for (concatenation) is shown

in the same way. Suppose the rule (apply) is fi-
nally used in the deduction. Then the judgment
is of the form � x{tn} : T{Tn} (n > 0) which
is deduced from � ti : Ti for 1 ≤ i ≤ n with
x ∈ VT . From the induction hypothesis τ (ti)
is defined and τ (ti) <: Ti for 1 ≤ i ≤ n. For
each i ∈ {1, . . . , n}, Ti is complete and hence so
is τ (ti) from Proposition 1. Then τ (x{tn}) =
T{τ (t1), . . . , τ(tn)} and from Lemma 5 we ob-
tain τ (x{tn}) <: T{Tn}. When the final rule
is (f-apply) then the judgment is of the form
� f(tn) : T deduced from � ti : Ti for 1 ≤ i ≤ n
and ΣF (f) = T1 ×· · ·×Tn → T . By the induc-
tion hypothesis τ (ti) are defined and τ (ti) <: Ti

for 1 ≤ i ≤ n. Thus τ (f(tn)) = T <: T . Fi-
nally we consider the case for (subtype). In
this case � t : T1 and T1 <: T2 yields � t : T2.
By the induction hypothesis τ (t) is defined and
τ (t) <: T1, from which τ (t) <: T2 immediately
follows.

The following statement is an immediate con-
sequence of the above theorem.
Corollary 1. Well-typedness of a term is de-
cidable.

3.4 Substitution
A substitution σ is a mapping from V to a set

of terms ☆ satisfying the following conditions:
(1) there are finitely many variables x such that
σ(x) �= x; (2) τ (σ(x)) <: τ (x) for every x ∈
V . Given a substitution σ, we denote the set
of variables {x ∈ V | σ(x) �= x} by dom(σ).
We sometimes write a substitution σ as the set
{x �→ σ(x) | x ∈ dom(x)}.

Theorem 2 guarantees us that the above def-
inition yields the expected substitutions. Sup-
pose we have label types L1, L2, labels l, l′ and
a variable x ∈ VL1[] such that [[L1]] = {l}
and [[L2]] = {l, l′}. Since τ (x) = L1[] and
[[L1]] = {l}, we expect that l[] can be sub-
stituted for x, i.e., there exists the substitution
σ = {x �→ l[]}. However, if τ (l[]) were equal
to L2[], the term l[] could not be substituted
for x because L2[] �<: L1[] = τ (x) violates the
second condition τ (σ(x)) <: τ (x). But, as a
matter of fact, τ (l[]) = L1[] by definition.
Hence we can substitute l[] for x as expected.

Substitutions are extended to mappings over
terms.
Definition 5. For a well-typed term t and a
substitution σ, a term tσ is recursively defined
☆ Note that σ(x) may contain variables. Though it is

not necessary in usual XML transformation, it may
be useful in investigating properties of transforma-
tion in general way.

50 IPSJ Transactions on Programming Oct. 2005

as follows.
()σ = ()
�σ = �

x{tn}σ = σ(x){tnσ}
(l [t])σ = l [tσ]

(t1 t2)σ = t1σ t2σ
f(tn)σ = f(tnσ)

where tnσ stands for t1σ, . . . , tnσ.
The notation σ(x){tnσ} in the above defini-

tion represents a term defined as follows. Let t,
t1, . . . , tn be terms with #�(τ (t)) = n ≥ 0 and
t1, . . . , tn are complete. Then t{tn} is defined
as follows.

t{ } = t
(� s){tn} = t1 s{t2,n}

(x{sm} s){tn} = x{sm} s{tn} if m > 0
(x s){tn} = x{tk} s{tk+1,n}

where #�(τ (x)) = k
(l [s1] s2){tn} = l [s1{tk}] s2{tk+1,n}

where #�(τ (s1)) = k
(f(sm) s){tn} = f(sm) s{tn},

The well-definedness of the above definition is
an easy consequence of Lemma 2 and the defi-
nition of τ .

Composition of substitutions σ and ρ, de-
noted by σρ, is the composition of mappings
σ and ρ, which is defined by t(σρ) = (tσ)ρ. Re-
naming is a substitution σ such that σ is an
isomorphic mapping over V .

As mentioned in the previous section, we only
deal with well-typed terms. Thus, it would be
good if the application of substitutions to well-
typed terms always yield well-typed terms. We
show this property holds with the help of the
following lemma which states τ (t{t1, . . . , tn}) is
defined for well-typed terms t, t1, . . . , tn.
Lemma 8. Let t, t1, . . . , tn (n ≥ 0) be well-
typed terms such that #�(τ (t)) = n and each
τ (ti) is complete for 1 ≤ i ≤ n. Then
τ (t{tn}) = τ (t){τ (t1), . . . , τ(tn)}.
Proof. Induction on |t|. The case for the
empty sequence is obvious. We distinguish the
following five cases.
(1) If t = �s then the result follows from the
following equations.

τ (� s){τ (t1), . . . , τ(tn)}
= (τ (�) τ (s)){τ (t1), . . . , τ(tn)}
= (� τ (s)){τ (t1), . . . , τ(tn)}
= τ (t1) τ (s){τ (t2), . . . , τ(tn)}
= τ (t1) τ (s{t2,n})
= τ (t1 s{t2,n})
= τ (� s{tn})

The fourth equation is obtained from the induc-
tion hypothesis.
(2) Consider the case t = x{sm} s. Be-
cause τ (x{sm}) is complete by definition,
τ (t){τ (t1), . . . , τ(tn)} equals to the sequence
type τ (x{sm}) τ (s){τ (t1), . . . , τ(tn)}. By the
induction hypothesis its second half is equal to
τ (s{tn}). It follows the desired result.
(3) If t = x s then τ (t){τ (t1), . . . , τ(tn)}
equals to the concatenation of τ (x){τ (t1), . . . ,
τ (tk)} and τ (s){τ (tk+1), . . . , τ(tn)} where k =
#�(τ (x)). By definition the former equals to
τ (x{tk}). From the induction hypothesis we
obtain τ (s){τ (tk+1), . . . , τ(tn)} = τ (s{tk+1,n}).
Combining them yields the desired result.
(4) Consider the case t = l[s1] s2. By defini-
tion τ (t){τ (t1), . . . , τ(tn)} is represented as the
concatenation of L[τ (s1){τ (t1), . . . , τ(tk)}] and
τ (s2){τ (tk+1), . . . , τ(tn)} where ΣL(l) = L and
k = #�(τ (s1)). By the induction hypothesis
they are equal to L[τ (s1{tk}] and τ (s2{tk+1,n}),
respectively. The result follows from their con-
catenation.
(5) If t = f(sm) s then the given
type equals to τ (f(sm)) τ (s){τ (t1), . . . , τ(tn)}.
From the induction hypothesis it is equal to
τ (f(sm)) τ (s{tn}), thereby we obtain the de-
sired result.

The following proposition states that the set
of well-typed terms are closed under the appli-
cation of substitutions. Moreover, it states that
the type is preserved by the application of sub-
stitutions, i.e., for any type T the term tσ has
type T if � t : T .
Proposition 3. For any substitution σ and
any term t, τ (tσ) is defined and the relation
τ (tσ) <: τ (t) holds.
Proof. Induction on |t|. The cases for empty
sequences or holes are trivial. If t is a variable
x, by definition τ (xσ) is defined and τ (xσ) <:
τ (x). If t is a concatenation of non-empty se-
quences t1 and t2 then τ (tσ) = τ (t1σ) τ (t2σ).
By the induction hypothesis τ (tiσ) is defined
and τ (tiσ) <: τ (ti) for i = 1, 2, from which
the result follows. The case for trees l[t1]
is proved in the same way. Let t = x{tn}
with n > 0. By definition τ (ti) is complete
for 1 ≤ i ≤ n. By the induction hypothe-
sis τ (tiσ) is defined and τ (tiσ) <: τ (ti) for
1 ≤ i ≤ n. Thus, from Proposition 1 τ (tiσ)
is complete for 1 ≤ i ≤ n and #�(τ (σ(x))) =
#�(τ (x)) = n. Since τ (tσ) = τ (σ(x){tnσ}),
from Lemma 8 τ (tσ) is defined and τ (tσ) =
τ (σ(x)){τ (t1σ), . . . , τ(tnσ)}. Lemmas 5, 6 and

Vol. 46 No. SIG 14(PRO 27) A Rewrite System with Incomplete RE Type for XML Transformation 51

the induction hypothesis yield
τ (σ(x)){τ (t1σ), . . . , τ(tnσ)}

<: τ (σ(x)){τ (t1), . . . , τ(tn)}
<: τ (x){τ (t1), . . . , τ(tn)}
= τ (x{t1, . . . , tn}).

Finally we consider the case for function terms
f(tn). By definition τ (tσ) = τ (f(tnσ)). From
the induction hypothesis τ (tiσ) is defined and
τ (tiσ) <: τ (ti) for 1 ≤ i ≤ n. Since f(tn) is
well-typed τ (ti) <: Ti for 1 ≤ i ≤ n, where
ΣF (f) = T1 × · · · × Tn → T . Hence we obtain
τ (tiσ) <: τ (Ti) for 1 ≤ i ≤ n, which assures us
that τ (tσ) is defined and that τ (tσ) = τ (t) = T .
This yields the desired result.

3.5 Rewrite System
Now we are ready to define rewrite systems

for our language. A rewrite rule is a pair of
terms l and r, denoted by l → r, satisfying the
following conditions: (1) V ar(r) ⊆ V ar(l); (2) l
is of the form f(t1, . . . , tn) with function symbol
f and terms t1, . . . , tn containing no function
symbols; and (3) τ (r) <: τ (l).

A rewrite system is a quadruple R =
〈L, ΣF ,N , R〉, where L is a language of labels,
ΣF is a function signature, N a type name def-
inition and R a set of rewrite rules.

A new variant of a rewrite rule l → r is lσ →
rσ where σ is a renaming such that σ(x) is a
fresh variable for every x ∈ dom(σ).

The rewrite relation →R over terms induced
from a rewrite system R is defined as follows:
s →R t if there exist a new variant l → r of a
rewrite rule in R, a substitution σ, and a well-
typed term s′ with #�(s′) = #�(τ (s′)) = 1
such that s = s′{lσ} and t = s′{rσ}. It follows
from the above definition that if s →R t then
τ (s) and τ (t) are complete.

The following theorem states type preserva-
tion holds for our rewrite systems, i.e., if a term
s has type T and s →R t then t has type T .
Theorem 3. If s →R t then τ (t) <: τ (s).
Proof. By definition there exists a term s′
with a single hole and a substitution σ that
satisfy s = s′{lσ} and t = s′{rσ}. We first
show τ (rσ) <: τ (lσ). By definition τ (r) <: τ (l).
Proposition 3 yields τ (rσ) <: τ (r). From the fi-
nal part of the proof of Proposition 3, we know
that τ (lσ) = τ (l) because l is of the form f(tn).
Combining them, we obtain τ (rσ) <: τ (lσ).
The desired result immediately follows from
Lemma 5.

4. Example

We conclude the example illustrated in Sec-
tion 2. The rewrite rule corresponding to the
function flatten2 is the following:

flatten2(fl{wl{sl{s}}}) →
word[s font[fl{()} wl{()} sl{()}]]

where
ΣF (flatten2) = Word→NewWord

fl ∈ VFL[� Int[]]

wl ∈ VWL[�]

sl ∈ VSL[�]

s ∈ VString[],

FL, WL, SL are label types with denotation
[[FL]] = {helvetica, times, courier}
[[WL]] = {bold, normal, thin}
[[SL]] = {roman, italic},

and Word, NewWord are type names such that

N (Word) = FL[WL[SL[Sting[]]] Int[]]

N (NewWord) =
word[String[]

font[FL[Int[]] WL[] SL[]]]

We obtain
τ (fl{wl{sl{s}}})

= FL[τ (wl{sl{s}}) Int[]]
= FL[WL[τ (sl{s})] Int[]]

= FL[WL[SL[τ (s)]] Int[]]
= FL[WL[SL[String[]]] Int[]]
<: Word.

Thus, by definitions of τ and ΣF , we have
τ (flatten2(fl{wl{sl{s}}})) = NewWord. Sim-
ilarly, τ (word[s font[fl{()} wl{()} sl{()}]])
is obtained as follows.

τ (word[s font[fl{()} wl{()} sl{()}]])
= word[String[]

font[τ (fl{()}) τ (wl{()}) τ (sl{()})]
= word[String[]

font[FL[Int[]] WL[] SL[]]]
<: NewWord,

Therefore the type of the right-hand side is a
subtype of the left-hand side. The substituion

σ = { fl �→ FL[� Int], wl �→ WL[�],

sl �→ SL[�], s �→ "Hello" }
is obtained by matching the term times[bold[
italic["Hello"[]]] 12] with the left-hand
side of the rule. The rewrite step starting from
the above term is described as follows.

52 IPSJ Transactions on Programming Oct. 2005

flatten2(
times[bold[italic["Hello"[]]] 12])

= flatten2(fl{wl{sl{s}}})σ
→ word[s font[fl{()} wl{()} sl{()}]]σ
= word["Hello"

font[times[12] bold[] italic[]]]

The obtained term is the desired one.

5. Concluding Remarks

Our framework proposed in this paper pro-
vides a restricted form of second-order match-
ing, which enables us more direct and simpler
representation of the transformation rules as
demonstrated in Section 2, while static type
checking is still available as in XDuce. Intro-
duction of holes in both terms and types is cru-
cial in our work. Especially, the novel feature of
our work is incomplete types, i.e., the introduc-
tion of holes in regular expression types. There
are some works introducing holes in terms to
provide flexible framework for XML. JWIG, a
JAVA extension for high-level web service con-
struction, supports contexts with holes 4). The
purpose of holes is different from ours: they
introduce holes to provides templates, given
in JAVA programs beforehand, to create XML
documents. On the other hand, in our work
the holes are only generated in the process of
second-order matching. Very recently Kutsia
and Marin proposed an approach very similar to
ours 11). They provide context sequence match-
ing for querying XML data. Although their
matching is more flexible than ours, it is un-
typed and thus static type checking is not pos-
sible.

The XML processing language CDuce 2) sup-
ports a more restricted form of second-order
matching than ours. In CDuce XML tags can
be substituted for variables. Thus, the function
flatten2 is written with the same number of
equations as ours.

fun flatten2(
〈(fl)&FL〉〈(wl)&WL〉〈(sl)&SL〉

[s::String pt::Int]:Word)
: NewWord

= word[s font[〈fl〉[pt] 〈wl〉[] 〈sl〉[]]]
The notation p1&p2 denotes that both p1 and
p2 matches the same object. Hence 〈(fl)&FL〉
means the variable fl has type FL, which corre-
sponds to FL[�] in our notation where the sin-
gle hole occurs at just below the top-level label
type FL. In contrast to that, our approach al-

lows many occurrences of holes at any position.
Therefore, when a rewrite rule in our frame-
work is transformed to an equation in CDuce,
the latter needs more variables than the former.

Though we allow the occurrence of hols in
any position as mentioned above, the position
of holes in a type is fixed due to the restric-
tion induced from our definition of types. This
suppresses the nondeterministic computation of
the solutions, caused by the ordinary second-
order matching, and hence implementation of
the matching algorithm makes easier (note that
the nondeterminism caused from the sequences
in XML terms still remains). On the other
hand, we should prepare extra rewrite rules to
traverse given XML documents to find the sub-
jects of transformation (though the transforma-
tion of subjects themselves is simply presented
compared to the transformation with first-order
matching, as shown in Section 2). As pointed
out in Refs. 14) and 11), such extra rules are un-
necessary in untyped context matching. A way
to overcome this problem is to allow the pres-
ence of holes in union types and the definitions
of type names.

Consider the following label type and type
name definitions.

[[Qf]] = { helvetica, times, courier,
thin, bold, italic }

N (HTML) = head[String[]] body[QSent]

N (QSent) =
(String[] | Qf[QSent]) QSent

Suppose that when there are multiple occur-
rences of bold’s on a path in a XML term with
type HTML, we want to leave only outermost
bold on the path and remove other occurrences
of them. In order to implement that, we intro-
duce the following type name definitions.

N (QSentBox) = QSent? � QSent?

| QSent? Qf[QSentBox] QSent?

N (HasBold) = bold[QSentBox]

| QSent? Qf[HasBold] QSent?

N (NoBold) =
(String[] | (Qf\bold)[NoBold])
NoBold

where T? is an abbreviation of () | T and
Qf\bold denotes a label type whose denota-
tion contains any labels in [[Qf]] except bold.
Obviously, every term in the sets [[QSentBox]]
and [[HasBold]] has a single hole. Let c ∈
Vhead[String[]] body[HasBold] and s ∈ VNoBold. Then
the application of the function uniq defined by

Vol. 46 No. SIG 14(PRO 27) A Rewrite System with Incomplete RE Type for XML Transformation 53

the following rewrite rules
uniq(c{bold[s]}) → c{s}
uniq(x) → x

to a term with HTML type at its root yields the
desired transformation.

As we checked in this example, it is important
that the relaxation in the occurrence of holes in
type does not destroy the preservation of the
number of holes with respect to the subtype
relation. Finding sufficient conditions to guar-
antee this is our future work. Furthermore, we
need to modify our framework to allow types
like HasBold above since some of the notions
and the proofs presented in this paper rely on
the restriction of the occurrence of the holes in
types.

Note that the above rewrite rules cannot be
presented by CDuce function definitions be-
cause the variable c matches the arbitrary large
incomplete term which includes variable num-
ber of tags.

In this paper we mainly concentrated on the
type theoretic issues on incomplete types. As
a further research, we should investigate the
properties for our rewrite systems. We have
built a pattern matching algorithm 15). At
present we only have an informal proof of com-
pleteness of the algorithm; it is necessary to
give its formal proof. Moreover, the algorithm
works with a restriction either on the types of
the function terms to the tree types or on the
reduction strategies to innermost one. We need
to extend the algorithm to a general one.

Acknowledgments We are very grate-
ful to the anonymous referee who provided
us helpful comments to improve this paper.
This work is supported by Japan Society
for the Promotion of Science, basic research
(C) No.15500014 (Suzuki), basic research (C)
No.16500014 (Okui).

References

1) Baader, F. and Nipkow, T.: Term rewrit-
ing and all that, Cambridge University Press
(1999).

2) Benzaken, V., Castagna, G. and Frisch,
A.: CDuce: An XML-Centric General-Purpose
Language, Proc. ACM Int. Conf. on Functional
Programming (2003).

3) Bezem, M., et al.: Term rewriting systems,
Cambridge University Press (2003).

4) Christensen, A. S., Moller, A. and
Schwartzbach, M.I.: Extending Java for High-
level web service construction, ACM Trans. on

Programming Languages and Systems, Vol.25,
No.6, pp.814–875 (2003).

5) Common, H.: Completion of rewrite systems
with membership constraints Part I: Deduction
rules, J. Symbolic Computation, Vol.25, No.4,
pp.397–419 (1998).

6) Common, H.: Completion of rewrite sys-
tems with membership constraints Part II:
Constraint Solving, J. Symbolic Computation,
Vol.25, No.4, pp.421–453 (1998).

7) de Moor, O. and Sittampalam, G.: Higher-
order matching for program transforma-
tion, Theoretical Computer Science, Vol.269,
pp.135–162 (2001).

8) Hosoya, H. and Pierce, B.C.: XDuce: A typed
XML processing language (preliminary report),
Int. Workshop on the Web and Databases
(WebDB), (May 2000). Reprinted in The
Web and Databases, Selected Papers, LNCS
Vol.1997 (2001).

9) Hosoya, H., Vouillon, J. and Pierce, B.C.:
Regular Expression Types for XML, ACM
Trans.on Programming Languages and Systems
(2004).

10) Huet, G. and Lang, B.: Proving and ap-
plying program transformations expressed
with second-order patterns, Acta Informatica,
Vol.11, pp.31–55 (1978).

11) Kutsia, T. and Marin, M.: Can Context Se-
quence Matching be used for XML Querying?
Proc.19th Int.Workshop on Unification (UNIF
’05), pp.77–92 (Apr. 2005).

12) Mayr, R. and Nipkow, T.: Higher-order
rewrite systems and their confluence, Theoret-
ical Computer Science, Vol.192, No.1, pp.3–29
(1998).

13) Ohlebusch, E.: Advanced topics in term
rewriting, Springer Verlag (2002).

14) Schmidt-Schaus, M. and Stuber, J.: On the
complexity of linear and stratified context
matching problems, Theory of Computing Sys-
tems, Vol.37, pp.717–740 (2004).

15) Suzuki, T. and Okui, S.: Transformation of
XML documents with incomplete regular ex-
pression type (Draft), Third Workshop on
Programmable Structured Documents (PSD),
pp.120–127 (Jan. 2005)

16) van Oostrom, V.: Confluence for abstract and
higher-order rewriting, PhD Thesis, Vrije Uni-
versiteit, Amsterdam (1994).

17) Yamada, T.: Confluence and termination of
simply typed term rewriting systems, 12th
International Conference on Rewriting Tech-
niques and Applications (RTA’01), LNCS
2051, pp.338–352 (2001).

(Received February 21, 2005)
(Accepted July 12, 2005)

54 IPSJ Transactions on Programming Oct. 2005

Taro Suzuki was born in
1964. He received his D.Sci.
degree from the University of
Tokyo in 1998. He has
been engaged in research in
higher-order rewriting, unifica-
tion and functional-logic pro-

gramming. He is a member of the IPSJ, ACM
and JSSST.

Satoshi Okui was born in
1967. He received his D.Eng. de-
gree from University of Tsukuba
in 1995. He has been engaged
in research in rewriting, unifi-
cation, and functional-logic pro-
gramming. He is a member of

the IPSJ.

