
Abstract - This paper presents a comparative
analysis between Reinforcement Learning (RL)
and Evolutionary Strategy (ES) for training rollout
bias in General Video Game Playing (GVGP).
GVGP has become an emerging research field,
where researchers attempt to develop AI programs
that can play various types of video games without
prior knowledge. Monte Carlo Tree Search
(MCTS), which does not require explicit
evaluation function, has been a popular technique
in GVGP, and existing research as succeeded in
improving its performance by biasing rollouts with
a weight vector, which is trained by ES. This paper
compares RL and ES, and investigates the
advantages and disadvantages of both techniques
as a rollout-bias-training-mechanism in the GVGP
domain.

Keywords - General Video Game Playing, Monte
Carlo Tree Search, Game AI, Reinforcement
Learning

1. INTRODUCTION
Similar to General Game Playing, GVGP aims at

developing techniques that allow an AI bot to play
various unknown games. However, GVGP mainly
concerns real-time arcade games, such as Pac-Man or
Space Invaders, rather than turn-based board games,
such as Poker or Chess. Due to its flexibility and
adaptability, MCTS is an useful technique in this
field.

MCTS relies on random rollouts to evaluate which
action should be performed. Yet, exploring state space
randomly may not be an efficient way to search, and
existing researches have succeeded in improving
MCTS by applying bias to the rollout process. Perez
et al. proposed Fast-Evolutionary MCTS, which
replaces random rollout with biased rollouts [1]. The
weight vector, with which the rollout is biased, is
trained by (1 + 1) ES, using reward gained from the
rollout as the fitness to evolve the weight vector.
While the use of (1 + 1) ES has produced satisfying
results in the existing work, it remains unclear as of
whether ES is the best training mechanism for rollout
bias, and how the weight vector evolves and
converges throughout the evaluation.

Besides ES, RL is another common algorithm for
game-playing AI, usually associated with neural

networks such as Google’s deep-Q-network [2]. It is
intriguing to see how RL would work as a learning
mechanism for training rollout bias. In this research,
we seek to compare the performance and behaviour of
ES and RL as a rollout-bias-training-mechanism.

2. EXISTING RESEARCHES
Perez et al. proposed Knowledge-based Fast

Evolutionary MCTS (KB Fast-Evo MCTS) for GVGP
[1]. In this method, euclidean distances to the closest
NPC, resource, non-static object and portal are
extracted from each state as features, and a weight
matrix is applied in biasing the rollouts. The relative
strength of each action and the probability of selecting
each action are calculated by formulae (1) and (2):

In the above formulae, wij is the weight value that
corresponds to action i and feature j, and fj is the value
of that feature. As suggested by the name, in Fast
Evolutionary MCTS, the weight matrix is trained by
(1 + 1) ES, using the reward gained at the end of each
rollout as the fitness value. For details of the
algorithm, readers are referred to [1]. In our previous
research, we improved the above method by using (4
+ 1) ES in lieu of (1 + 1) ES [3]. However, in this
experiment, only (1 + 1) ES was compared with Q
Learning.

3. Q-LEARNING BIASED ROLLOUT
In this work, the KB Fast-Evo MCTS was

modified, by replacing the (1 + 1) ES with Q-
learning. In other words, the weights are trained by Q-
learning algorithm, instead of ES, so as to compare
the effects and performance of two different training
mechanisms. The pseudocode of the Q-learning
algorithm used is shown in Algorithm 1, where s
represents the current game state in a given rollout.

In our Q-learning algorithm, the Q values are
stored in a matrix, which bears the same structure and
function as the weight matrix in Fast-Evo MCTS.
While Fast-Evo MCTS trains its weights at the end of
every rollout through mutation, our Q-learning bias
algorithm updates the Q values after every step in a
rollout, and the reward begot by the rolled action is
directly added to the corresponding Q values. Also,

Comparative Analysis of Reinforcement Learning and  
Evolutionary Strategy in General Video Game Playing

Chun-Yin Chu†, Suguru Ito‡, Tomohiro Harada‡, Ruck Thawonmas‡

† Intelligent Computer Entertainment Laboratory,  
GSISE, Ritsumeikan University

‡ Intelligent Computer Entertainment Laboratory,
College of Information Science and Engineering,
Ritsumeikan University

(1)

(2)

Copyright 2016 Information Processing Society of Japan.
All Rights Reserved.2-163

5M-09

情報処理学会第78回全国大会

following the convention of Q-learning, the e-greedy
algorithm instead of formula (2) is used for selecting
actions. Following the example set by the deep Q-
learning algorithm proposed in [2], mini-batch and
experience replay have been applied as well. Apart
from the biased rollout, other parts of the MCTS
algorithm follow the implementation in [1].

In our experiments, e was set to 0.1 for e-greedy.
The learning rate α was set to 0.1. The 50 latest
transitions were stored in memory, from which a
mini-batch of size 10 was sampled every time. C was
set to 500.

4. EXPERIMENTS AND RESULTS
Experiments were performed in the GVG-AI

Framework1. Training Set 1 provided by the organiser
of GVG-AI Competition, which is the most used
game set in existing researches, was adopted as the
test set in this research. There are three controllers
being tested, namely Q-learning Bias Roller (the
controller described in Section 3), ES Bias Roller
(implemented based on [1]), and Vanilla MCTS.
Following the convention of the GVG-AI
Competition, each controller played 5 levels for each
game, and the win rate were compared. To ensure
fairness, each game used the same random seed for
every controller. The result is illustrated in Table 1,
where Avg and Win_Rate represent the average score
and percentage of victory in a particular game

respectively.
Overall, Q-Learning Bias Roller had the best

performance, by defeating Vanilla MCTS in 6 out of
10 games, while ES Bias Roller defeated Vanilla
MCTS in 5 games. A closer look at how weighted
values evolved during a game is illustrated by Figure
1. Figure 1 shows the normalised weight values for
the “honey” feature in the f irs t level of
survivezombies, a game where the player must collect
as much honey as possible while avoiding zombies. In
ES Bias Roller, the weight values converged quickly,
since evolution depended solely on mutation. On the
other hand, the weight values showed more
fluctuations, because in Q-learning, rewards from
rollout were directly applied to the weight values, thus
encouraging more flexibility in searches.

5. CONCLUSION AND FUTURE WORKS
Our research tested Q-learning and (1 + 1) ES as

learning mechanism for rollout bias in MCTS.
Experiments showed that Q-learning performed
slightly better in the game set being tested, and Q
learning led to more fluctuations to the weight values
being trained. In the future, we would like to explore
different sets of features and further study the
behaviours of different learning mechanisms in a
GVGP setting.

REFERENCE
[1] D. Perez, S. Samothrakis and S. M. Lucas, “Knowledge-

based Fast Evolutionary MCTS for General Video Game
Playing”, Proceedings of the IEEE Conference on
Computational Intelligence and Games, 2014, pp. 68-75.

[2] V. Mnih et al., “Human-level control through deep
reinforcement learning”, Nature 518, pp.529-533, Feb. 2015.

[3] C.Y. Chu, R. Thawonmas and T. Harada, “Biasing Monte-
Carlo rollouts with Potential Field in General Video Game
Playing”, IPSJ Kansai-Branch Convention 2015, G-107, 28
Sept 2015, Osaka, Japan.

1. http://gvg-ai.net

Q Learning

w
ei

gh
t v

al
ue

(n

or
m

al
is

ed
)

0
0.2
0.4
0.6
0.8

1

#rollouts

0 4000 8000 12000 16000

1 + 1 ES

w
ei

gh
t v

al
ue

(n

or
m

al
is

ed
)

0
0.2
0.4
0.6
0.8

1

#rollouts

0 4000 8000 12000 16000

N_ACTION_LEFT N_ACTION_RIGHT N_ACTION_DOWN N_ACTION_UP

Fig 1. Weight values for the “honey” feature in the first level of
survivezombies

Algorithm 1: Q-Learning Biased Rollout

1. while rollout not finished do
2. F ← extractFeatures(s)
3. a ← e-greedy(F, Q)
4. s’ ← advanceStep(s, a)
5. r ← getReward(s, s’)
6. F’ ← extractFeatures(s’)
7. store transition (F, a, r, F’) in D
8. sample a mini-batch of transitions T from D

randomly
9. foreach ti in T
10. a’ ← greedy(ti.F’, Q)
11. foreach fj in ti.F
12. ΔQ ← α *(ti.r + Q(fj’, a’) - Q (fj, ti.a))
13. Q (fj, ti.a) ← Q (fj, ti.a) + ΔQ
14. Every C steps reset Q = Q
15. end while

^

^

TABLE I. EVALUATION RESULTS USING THE 2014 TRAINING SET

Q-Learning Bias Roller ES Bias Roller Vanilla MCTS
Avg Win_Rat Avg Win_Rat Avg Win_Rat

aliens 62.8 1 66.8 1 61.8 1
boulderdash 1.8 0 2.6 0 5.6 0
bu1erflies 38.4 1 31.2 0.8 30.4 1
chase 0.6 0 0.2 0 1.2 0
frogs -0.4 0.4 -1.2 0 -0.4 0.4
missilecomman
d 2.6 0.4 6.4 1 -0.2 0.4
portals	 0.2 0.2 0.2 0.2 0.2 0.2
sokoban 1 0.2 0.6 0.2 0.2 0
survivezombies 35 0.4 17 0.6 23.2 0.4
zelda 5 0 3.4 0 1.4 0
Win	Count 3	(2	draws) 3	(1	draw) 2	(2	draws)

Copyright 2016 Information Processing Society of Japan.
All Rights Reserved.2-164

情報処理学会第78回全国大会

