
rt-Samba: High Performance Real-Time Video File Access

through Samba

HIROSHI MINE
†1

, TAKU SHIMOSAWA
†1

, SOKI SAKURAI
†1

,

TADASHI TAKEUCHI
†1

Abstract: With online video editing systems, file servers supporting standard file sharing protocol and achieving high I/O per-

formance with real-timeness are required to reduce the overall system cost. AVFS is a file system optimized for the efficient

storing and access of video files. Samba is a widely used file server application and enables client terminals to access files via a

network. Since Samba is not adapted to efficiently process accesses to video files using features provided by AVFS, modifica-

tions of Samba such as the addition of deadline information to I/O requests are required to benefit from AVFS. In this paper, we

propose rt-Samba, the Samba-AVFS cooperation method composed of a Samba VFS module and an I/O surrogate daemon using

real-time features provided by AVFS. Using this method, I/O access performance is improved while keeping the amount of modi-

fications in Samba low. Furthermore, the standard CIFS protocol is preserved, allowing the use of unmodified editing stations for

accessing files. Evaluation results of a Linux file server implementation of our proposed method show that rt-Samba achieves 3

times higher read throughput and 1.1 times higher write throughput keeping the storage I/O stability compared to an original

Samba server accessing files on Ext4.

Keywords: File system, Network file system, QoS, Media streaming, CIFS, Samba

1. Introduction

Online video editing systems enable multiple terminals to

edit and preview video files stored in remote file servers via

network[14]. Such video production systems avoid the need for

large capacity local storage in editing stations. Furthermore,

editing work can be performed immediately, without first wait-

ing for potentially long file transfers between editing station and

video file archive server[16]. Another benefit of remotely ac-

cessing files for video editing is that only a single copy of video

files can exist on a file server, thus improving storage efficiency

of the overall system[17].

In the editing stations, commodity computers with

non-linear video editing software supporting de-facto standard

file sharing protocol are practically used to reduce the system

cost. Also in the stations, uncompressed video files with very

large bit rates are commonly used to prevent deterioration of

quality of the videos during editing operations. Hence, with such

online video editing systems, besides the real-time aspect of I/O

guaranteeing smooth preview, the I/O access performance of the

file server is critical[1][15], because it determines the number of

editing stations that a single server can simultaneously support,

and thus the overall system cost. Therefore, in such video edit-

ing systems, file servers supporting standard file sharing proto-

col and achieving high I/O performance with real-timeness are

required.

The Audio/Video File System (AVFS)[2][3] is a file sys-

tem optimized for the efficient storing and access of video files.

Leveraging the features of video files such as large file size and

the constraint of playback bit rates, AVFS can achieve high and

stable disk I/O performance through the use of large block size

and real-time I/O scheduling.

Samba[4] is a widely used file server application. Samba

enables client terminals to access files stored in the remote file

 †1 Research and Development Group, Hitachi, Ltd.

servers using Common Internet File System (CIFS)[13] protocol

via network[18]. Samba does not rely on any particular features

of the local file system being used, and thus is not adapted to

efficiently process accesses to video files using features provid-

ed by AVFS, such as real-time I/O scheduling. Therefore, modi-

fications of Samba such as the addition of deadline information

to I/O requests are required to benefit from AVFS.

In this paper, we present rt-Samba, a Samba-AVFS coop-

eration method composed of an extension module for Samba

and an I/O surrogate daemon which controls file I/O to AVFS on

behalf of Samba. With this method, I/O access performance and

its real-time properties are improved while keeping the amount

of modifications in Samba low and preserving the standard

CIFS protocol used by editing stations for accessing files.

The remainder of this paper is organized as follows. Sec-

tion 2 describes video file optimized features of AVFS and dis-

cusses problems to make Samba exploit AVFS I/O access per-

formance. We propose rt-Samba, a Samba-AVFS cooperation

method and describe its implementation in details in Section 3.

Section 4 presents and discusses experiments results. Related

work is discussed in Section 5 and concluding remarks are given

in Section 6.

2. Background

AVFS is a file system developed in Hitachi optimized for

the efficient storing and access to video files. AVFS is composed

of a file system and a real-time I/O scheduler cooperating to

provide efficient processing of real-time disk accesses with

quality of service (QoS) guaranteed. While preserving the

standard POSIX set of system calls for best effort I/O operations,

AVFS provides a set of APIs implemented with ioctl() system

call allowing applications to specify deadlines for real-time

requests, thus implementing traffic differentiation. AVFS also

implements a block allocation policy resulting in stable perfor-

mance, independent of the files accessed. The disk scheduler is

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan 1

Vol.2016-OS-137 No.14
2016/5/31

optimized to deliver high real-time disk throughput with the

QoS guarantee while minimizing the disk utilization rate

through aggressive seek overhead reduction.

Samba is open source software (OSS) widely used as a file

server application. Samba provides network file sharing func-

tions using CIFS protocol which is supported by most modern

operating systems. Samba enables client terminals to access files

stored in the file systems of file servers via a network as shown

in Figure 1.

Figure 1 Samba file server.

Samba consists of two daemon processes, nmbd and smbd.

The former provides NetBIOS[12] naming service to the clients.

The latter provides CIFS file I/O operations to the clients, and

thus performs actual I/O access to the files stored in the local

file system of the file server. smbd uses virtual file system

(VFS) functions to access the files. The VFS functions are im-

plemented as a library using system calls provided by underly-

ing OS. Hence any file system implementing the standard sys-

tem calls, such as Ext4[8], is used in Samba file server. Samba

also defines a module interface to extend its VFS operations.

The module implementing the interface is called VFS module.

The VFS module is loaded into smbd at run time using the dy-

namic link mechanism provided by the OS, and then hooks any

VFS functions called by smbd.

As mentioned above, to obtain the advantage of AVFS

such as the real-time I/O scheduler, application programs are

required to use the dedicated APIs to specify the deadlines for

real-time requests. Samba is no exception. Therefore, modifica-

tions of smbd such as calculating each deadline of I/O request

satisfying the constraint of playback bit rate and adding the

information to the I/O request by using the dedicated APIs are

required to benefit from AVFS.

3. rt-Samba

rt-Samba addresses the problems of the standard Samba

implementation for real-time file accesses by introducing a new

VFS I/O module for Samba and an I/O surrogate daemon which

controls file I/O to AVFS.

The I/O module is embedded into Samba as one of its VFS

extension modules. The I/O module preempts I/O requests

which are issued to local file systems by Samba via the VFS

interface. The I/O module adds the path name and the offset of

the files to be accessed to these preempted requests, and for-

wards them to the I/O surrogate daemon.

The I/O surrogate daemon aggregates the I/O requests

forwarded from the I/O module and adds control information

such as deadline information to the I/O requests on behalf of

Samba. The I/O surrogate daemon issues the I/O requests to

AVFS as asynchronous I/O requests via its dedicated APIs im-

plemented with an ioctl() system call so that the control infor-

mation can be added to each I/O request. Here the control in-

formation is determined by the configuration information of the

I/O surrogate daemon and its dynamic I/O pattern recognition

function. When the asynchronous I/O requests completes, the

I/O surrogate daemon returns the results of the I/O requests to

Samba via the I/O module.

The Samba-AVFS cooperation method makes the I/O

module and the I/O surrogate daemon cooperate with each other

and improves I/O access performance of Samba keeping the

amount of modifications of Samba minimum and the standard

CIFS protocol used by editing stations untouched.

3.1. Implementation

In this section, we describe the implementation details of

our Samba-AVFS cooperation method.

3.1.1. Overview

We implemented the Samba-AVFS cooperation method on

a Linux Samba file server. The implementation overview is

illustrated in Figure 2. In this research, we implemented a VFS

AVFS module (vfs_avfs.so) as the I/O module for Samba and an

asynchronous I/O daemon (aiod) as the I/O surrogate daemon.

Figure 2 Implementation of Samba-AVFS Cooperation Method.

The VFS AVFS module is embedded in smbd, which is a

Samba daemon process. The smbd and aiod processes exchange

disk I/O requests and results via POSIX message queues. Note

that there would be more than one smbd processes on a file

server because smbd forks on accepting a new connection from

a client, while there is only one aiod process on the same server.

Each smbd and aiod has its own message queue.

smbd and aiod exchange actual I/O data via shared I/O

buffer memory allocated in the main memory of the file server.

smbd

Client terminal

Network

File

Client terminal

Client terminal

Samba file server

File system

CIFS protocol

nmbd

smbd

I/O Hook

open close pwrite pread sendfile

VFS AVFS Module (vfs_avfs.so)

Client

Message Queue

Server

Message Queue
aiod

AVFS

Shared

I/O Buffer

Memory

Shared

I/O Buffer

Manager
I/O Pattern

Analyzer

config

Physical

Memory

unlink ftruncate setlease

Client

Message Queue

Client

Message Queue

Session

Manager

File

Manager

Async I/O

Engine

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan 2

Vol.2016-OS-137 No.14
2016/5/31

The memory region is pinned down on the physical memory of

the file server in order to avoid swapping out by the OS. aiod

also uses the shared I/O buffer memory as cache memory to

aggregate write I/O requests and eliminate unnecessary read for

efficiency.

By separating the actual data exchanges from the messag-

es as described above, the amount of data copies performed by

the OS that stride across the boundary between the user and

kernel spaces can be significantly reduced compared with ex-

changing the whole data with the messages via message queues.

3.1.2. Inter-Process Communication Interface

aiod and smbd are discrete processes running on the same

file server. They perform inter-process communication via

POSIX message queues to communicate with each other. The

messages are processed as a client-server fashion in which aiod

acts as a server and smbd does as a client.

The inter-process communication via message queues is

performed as follows:

(1) aiod creates a server message queue and each smbd (more

precisely, the VFS AVFS module embedded in it) creates a

client message queue as one of their initialization steps.

(2) smbd sends a request message to the server message

queue of aiod, and then waits for a reply received from its

client message queue.

(3) aiod receives the request message by waiting for the serv-

er message queue, processes the request, and then sends

the result as a reply message to the client message queue

of smbd.

(4) smbd receives the reply via the client message queue and

processes the result.

The protocol messages used by aiod and smbd for the in-

ter-process communication are shown in Table 1. Each request

message has a corresponding reply message. The read and write

procedures of the Samba-AVFS cooperation method consist of

two steps, and each step uses its own message. The procedures

are described with the pertaining modules in the next section.

Table 1 aiod protocol messages.

Message Description

AIOD_MSG_CONNECT Request to connect to aiod

AIOD_MSG_DISCONNECT Request to disconnect from aiod

AIOD_MSG_OPEN Request to open a file

AIOD_MSG_CLOSE Request to close an opened file

AIOD_MSG_READ0 Request to read data to shared I/O

buffer

AIOD_MSG_READ1 Notify completion of copying data

form the I/O buffer

AIOD_MSG_WRITE0 Request to allocate shared I/O

buffer to write data

AIOD_MSG_WRITE1 Notify completion of copying data

to the I/O buffer

AIOD_MSG_FTRUNCATE Request to change the size of a file

AIOD_MSG_UNLINK Request to remove a file

3.1.3. Modules Detail

In this section, the VFS AVFS module as the I/O module

for Samba and aiod as the I/O surrogate daemon are described in

detail respectively.

3.1.3.1. I/O Module for Samba

The VFS AVFS module is implemented as one of VFS ex-

tension modules for Samba, vfs_avfs.so, which hooks VFS I/O

functions called by Samba.

The operations of Samba and the VFS AVFS module are

shown as follows:

(1) On accepting a connection request from each unique cli-

ent, Samba forks a new daemon process smbd, which has

the privilege of the user who requests the connection.

(2) The VFS AVFS module is loaded and initialized when the

forked smbd first accesses shared resources on AVFS

specified in its configuration file smb.conf.

(3) During initialization, the VFS AVFS module creates a

client message queue and sends a connection request

message which includes the name of the client message

queue to the server message queue of aiod whose name is

predefined.

(4) The VFS AVFS module obtains the name and size of the

shared memory region allocated by aiod for shared I/O

buffer as a reply of the connection request from aiod, and

maps the region to its own virtual memory space.

(5) The VFS AVFS module removes the client message queue

with unlink() immediately after establishing the connec-

tion with aiod. The resource used for the client message

queue is released when the forked smbd terminates.

The VFS AVFS module achieves the operations above by

hooking the VFS functions. The following sections examine the

VFS functions hooked and describe how the module works in

the functions.

3.1.3.1.1. open

The VFS AVFS module hooks all open() function calls.

The module opens a file internally then requests aiod to open the

same file. If aiod opened the file successfully, the VFS AVFS

module marks the file as the target of further hooking. After that,

the VFS function calls described below to the marked files are

hooked by the VFS AVFS module. The other VFS function calls

such as fstat() are processed by smbd with the file descriptor

opened internally.

3.1.3.1.2. close

The VFS AVFS module hooks close() function calls for

the marked files, and requests aiod to close the file opened by

aiod. Then the VFS AVFS module unmarks the file and closes

the file descriptor opened internally.

3.1.3.1.3. pread

The VFS AVFS module hooks pread() function calls for

the marked files, and requests aiod to read data from the file on

behalf of smbd. First the module sends the file offset and data

length to be read to aiod as the READ0 request, and receives the

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan 3

Vol.2016-OS-137 No.14
2016/5/31

offset and length of the shared I/O buffer in which the data read

by aiod is filled. Then the module copies the data from the spec-

ified region of the shared I/O buffer to the memory region spec-

ified by the upper layer i.e. smbd. On completing the data copy,

the VFS AVFS module sends the READ1 request to the aiod in

order to notify aiod of the completion of the use of the share I/O

buffer region.

3.1.3.1.4. pwrite

The VFS AVFS module hooks pwrite() function calls for

the marked files, and requests aiod to write date to the file on

behalf of smbd. First the module sends the file offset and data

length to be written to aiod as the WRITE0 request, and receives

the offset and length of the shared I/O buffer from aiod as the

reply. Then the module copies the data to be written to the file to

the specified region of the shared I/O buffer. On completing the

data copy, the VFS AVFS module sends the WRITE1 request to

the aiod, and receives the length of the data written actually to

the file as the reply.

3.1.3.1.5. sendfile

The VFS AVFS module hooks sendfile() function calls for

the marked files, and requests aiod to read data and send it to a

socket specified by the upper layer. The process of reading data

is similar to pread(). The module sends the read data to a socket

instead of copying it to a memory region.

3.1.3.1.6. unlink

The VFS AVFS module hooks unlink() function calls, and

requests aiod to remove a file. On receiving file removal request,

aiod discards the data blocks of the file cached in the shared I/O

buffer memory. The file is removed actually by the VFS AVFS

module in smbd.

3.1.3.1.7. ftruncate

The VFS AVFS module hooks ftruncate() function calls

for the marked files, and requests aiod to change the file size. If

the request is to shorten the size, aiod discards the data block of

the truncated part of the file cached in the share I/O buffer

memory. The file size is changed actually by the VFS AVFS

module in smbd.

3.1.3.1.8. setlease

The VFS AVFS module hooks setlease() function calls,

and just ignore them. This is because that both smbd and aiod

open the same file at the same time but no other process opens

the file in the supposed use case of the Samba-AVFS coopera-

tion method.

3.1.3.2. I/O Surrogate Daemon

The I/O surrogate daemon aiod runs as a separate process

from smbd. aiod performs inter-process communication with the

VFS AVFS module embedded in smbd via POSIX message

queues, and execute asynchronous disk I/O to AVFS disk vol-

umes on behalf of smbd. The internal modules of which aiod

consists and their brief descriptions are shown in Table 2. In

these modules, the message manager, the session manager, and

the asynchronous I/O engine modules have threads which pro-

vide execution contexts.

Table 2 aiod internal modules.

Module Description

Shared I/O buffer manger Manages shared I/O buffer

Message manager Manages server message queue

and process messages

Session manager Manages session with VFS AVFS

modules

File manager Manages files

Asynchronous I/O engine Executes asynchronous I/O re-

quests to AVFS disks

I/O pattern analyzer Analyze I/O patterns and deter-

mine I/O parameters

Config Processes information specified

in a configuration file

The functions of the internal modules of aiod are de-

scribed below.

3.1.3.2.1. Shared I/O Buffer Manager

The shared I/O buffer manager module manages I/O buff-

ers allocated on shared memory, which are used by aiod and

smbd to exchange actual I/O data which is written to or read

from AVFS disks. During the initialization of aiod, the module

allocate shared memory region specified in the configuration

file with a predefined shared memory name. The shared I/O

buffer manager module maps the allocated memory to the virtu-

al memory space of aiod as unswappable, and zeros it out. At

this time, actual memory access is performed and all the mapped

shared memory is pinned down on the physical memory. The

module divides the allocated shared memory into the blocks

whose size is specified in the configuration file, and manages

them with the used and unused block queues.

3.1.3.2.2. Message Manager

The message manager module manages the server mes-

sage queue from which aiod receives request messages from

smbd, and processes messages. During the initialization of aiod,

the module creates a POSIX message queue for the server mes-

sage queue with a predefined name, and starts a message man-

ager thread which processes sending and receiving of messages.

The message manager thread receives messages from the server

message queue and does each process requested by the message.

When the message is a connection request, the message

manager thread registers a new session with the process id (PID)

of smbd, which requested the connection, to the session manag-

er module, and sends the reply to the client message queue.

When the message is a disconnection request, the thread

asks the session manager module to discard the registered ses-

sion. Note that the message manager thread only set the flag of

session discard in its context and the session manager thread

actually discard the flagged session in its context in order to

avoid deadlock.

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan 4

Vol.2016-OS-137 No.14
2016/5/31

When the messages are open, close, or removal of a file,

the message manager thread does the corresponding file manip-

ulation in the file manager module via the session manager

module, and sends the reply to the client message queue.

When the messages are read or write of file data, the mes-

sage manager thread transfers file I/O requests to the asynchro-

nous I/O engine via the session management module. If the data

is already cached on the shared I/O buffer, however, the mes-

sage manager thread sends the reply without switching the con-

text to the asynchronous I/O engine in order to increase response

performance on cache hits.

3.1.3.2.3. Session Manager

The session manager module manages the connections

between aiod and smbd as sessions. The module has a thread

which judges the validity of sessions and discards invalid ses-

sions. During the initialization of aiod, the session manager

creates a session queue which contains session data structures,

and starts a session manager thread.

The session data structure contains the PID of smbd and a

session file queue which contains session file data structures

corresponding to open files. The session file data structure con-

tains references of file data structures which contain information

of open files. The session file data also contains a session file

I/O queue which contains session file I/O data structures corre-

sponding to file I/O requests under execution. The session be-

tween aiod and smbd are associated with the PIDs of smbd. In

the same way, the open files are associated with file ids (FIDs)

and the I/O requests under execution are with I/O ids (IOIDs)

allocated uniquely in aiod.

The session manager thread is invoked periodically and

judges the validity of the sessions and discards invalid sessions.

The judgment of the validity is made by checking for each ses-

sion data structures whether the process of the PID exists or not.

If the process does not exist, the thread set the session discard

flag of the data structure assuming that smbd which had the PID

has already terminated without requesting aiod to disconnect.

Hereby the validity can be judged even though the connection

between aiod and smbd with the message queues is actually

connection-less. The thread discards the session by removing

the session data structure from the session queue and releasing

the resources allocated to the session.

3.1.3.2.4. File Manager

The file manger module manages files which are opened

in aiod and file blocks cached on the shared I/O buffer. During

the initialization of aiod, the module creates a file queue which

contains file data structures.

The file data structure contains a file descriptor of a file

opened in aoid, an i-node number of the file, a device number of

the file system, a size of the file, and a file block queue which

contains file block data structures. The file block data structure

contains the references of the cached file blocks held on the

shared I/O buffer.

Each file data structure and file block data structure has its

own reference counter. The reference of sole file data structure

or file block data structure is used to access identical file or file

data region. Though the file data structures and the file block

data structures whose reference counters are zero could be re-

leased at any moment, they are not released instantly and the file

data blocks on the shared I/O buffer referenced by the file block

data structures are used as cached data. When unused shared I/O

buffer runs out, the shared I/O buffer allocated to the file data

block of the least recently used file whose reference counter is

zero is released and recycled.

3.1.3.2.5. Async I/O Engine

The asynchronous I/O engine module controls the file I/O

accesses executed in aiod on behalf of smbd. The engine has a

thread which performs actual I/O accesses with the AVFS asyn-

chronous I/O APIs. During the initialization of aiod, the asyn-

chronous I/O engine creates a file I/O queue and an asynchro-

nous I/O queue, and starts an asynchronous I/O engine thread.

The file I/O queue contains file I/O data structures to

maintain file I/O requests transferred from the message manager

thread. The asynchronous I/O queue contains asynchronous I/O

data structure to maintain the AVFS asynchronous I/O requests

under execution.

When both the file I/O queue and the asynchronous I/O

queue are empty, the asynchronous I/O engine thread sleeps

until notified by a signal generated when a file I/O request is

enqueued to the file I/O queue. If the request is executable, the

thread issues the AVFS asynchronous I/O request with the dead-

line information calculated by the I/O pattern analyzer via the

AVFS asynchronous I/O API, and enqueues the file I/O request

as the asynchronous I/O data structure to the asynchronous I/O

queue. The unexecuted file I/O requests remain in the file I/O

queue. Here the judgment of the excitability of the file I/O re-

quest is made by referring the read and write counts and the lock

state of the target file block.

The asynchronous I/O engine thread waits for the comple-

tion of the AVFS asynchronous I/O requests contained in the

asynchronous I/O queue by using the AVFS asynchronous I/O

polling API. The wait could be interrupted by a signal generated

on arrival of a new file I/O requests.

Returning from the AVFS polling API, the asynchronous

I/O engine thread checks the completion of each asynchronous

I/O request under execution, and sends the reply to the client

message queue if the request is completed. After checking all

the asynchronous I/O requests under execution, the thread goes

back to the aforementioned check of the both the file I/O queue

and the asynchronous I/O queue.

3.1.3.2.6. I/O Pattern Analyzer

The I/O pattern analyzer module recognizes the I/O pat-

terns of the file I/O accesses in aiod, and determines prefetching

of file blocks and AVFS asynchronous I/O parameters. The ana-

lyzer also calculates deadline information for an AVFS asyn-

chronous I/O parameter for files which match file path patterns

and have bitrate information specified in the configuration file.

The calculated deadline information is used by the asynchronous

I/O engine on issuing an AVFS asynchronous I/O request.

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan 5

Vol.2016-OS-137 No.14
2016/5/31

3.1.3.2.7. Config

The config module manages the configuration information

of aiod. During initialization of aiod, the config module reads a

configuration file and parses keys and values stored in INI style.

The module provides references of keys and values on request

of the other modules.

3.1.4. Implementation Steps

The code steps of the implementation of the Samba-AVFS

cooperation modules written in the C language are shown in

Table 3. Note that the VFS AVFS module is implemented as a

VFS extension module for Samba so that no modification of

smbd itself is required. Therefore the original binary image of

Samba provided with the Linux distribution can be used without

any change.

Table 3 Implementation steps of rt-Samba

Module KSteps

VFS AVFS 1.5

aiod 5.7

Shared I/O buffer manager 0.3

Message queue manager 0.5

Session manager 1.1

File manger 0.7

Asynchronous I/O engine 1.0

I/O pattern analyzer 0.4

Config 0.7

Others 1.0

4. Evaluation

In this section, we evaluate the Samba-AVFS cooperation

method by experiment with the implementation prototype and

discuss the results.

4.1. Experimental Environment

The evaluation of the Samba-AVFS cooperation method is

performed by measuring the disk I/O throughput of a Linux

Samba file server with and without aiod. Figure 3 illustrates our

experimental environment which simulates a typical online vid-

eo editing system. We prepare one DELL PowerEdge R710

server for a Linux file server on which Samba and aiod run as

file server application software. Ten Hitachi HA8000-110 serv-

ers and two HA8000-220 servers are used as client video editing

terminals which generate CIFS read and write requests to the

Linux file server. These machines are connected each other via a

10Gbps Ethernet switch.

The specifications of the file server are described in Table

4. The file server has a storage subsystem which is attached

directly to the server via a 4GB FC-AL connection. The storage

subsystem has two RAID5 logical units (LUs) each consists of

four data disks and one parity disk. One LU on the storage is

formatted as an Ext4 file system with mkfs.ext4 default param-

eters, the other LU is formatted as an AVFS file system whose

data block size is 8MB.

Figure 3 Experimental environment.

Table 4 Linux file server specification.

Component Description

Manufacturer

Model

DELL PowerEdge R710

Processor Intel® Xeon® E5506@2.13GHz 4core x

2CPUs (total 8 cores)

Memory 24GB DDR3

Host Bus Adapter 1port 4GB FC-AL Qlogic ISP2432

Storage Subsystem Newtech Ultimate II, 256MB cache

memory

SATA 250GB x 12, RAID5(4D+1P) x

2LUs + 2spare drives, 64KB stripe size

Server Software Asianux 3 (Linux-2.6.18-194.1.AXS3)

samba.x86_64 3.0.33-3.28.0.1.AXS3

Table 5 Storage I/O performance.

I/O size[KB] 64 512 1024 2048 4096 8192 16384

Random

Read[Mbps] 35.0 204.5 361.2 569.9 821.7 1032.4 1216.6

Random

Write[Mbps] 224.3 376.3 440.9 674.0 816.6 925.2 1123.2

In order to make the maximum I/O performance of the

storage subsystem known beforehand, both random read and

random write throughputs of the LUs are measured by running

an I/O load generator program on the file server as a preliminary

experiment. The results are shown in Table 5.

4.2. Experimental Results

To evaluate our proposed method, we performed CIFS

network file access tests on the experimental environment for

the following three cases; 1)smbd running on the Ext4 LU,

2)smbd on the AVFS LU and 3)smbd cooperate with aiod on the

AVFS UL. For each case, the clients generated sequential read

or write requests to the video files on the file server. The access

bitrates were 100Mbps assuming a high definition (HD) video

editorial workload in an editing station. We increased the num-

ber of clients concurrently requesting file accesses to the server

as long as the file server sustained the requests. The storage disk

I/O throughput and the CPU usage were measured by running a

load monitor program on the file server during the tests.

The results of the read tests are shown in Figure 4. The

horizontal axis is for the total number of clients concurrently

Storage (Newtech Ultimate II)

File Server (PowerEdge R710)

RAID5(4D+1P)

Ext4

RAID5(4D+1P)

AVFS

aiod smbd

HA8000-110

HA8000-220

HA8000-110

HA8000-110

HA8000-220

HA8000-110
10

10GbE SW

Client Terminals

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan 6

Vol.2016-OS-137 No.14
2016/5/31

accessing the file server. The solid lines show the disk read

throughput measured against the left vertical axis, and the bro-

ken lines show the CPU usage against the right vertical axis.

Without aiod, smbd could not provide enough throughputs so

that the maximum sustainable numbers of clients both on Ext4

and AVFS were 3. By cooperating with aiod on AVFS, smbd

could serve up to 9 clients without any hassle, while infrequent

deadline misses were observed when the number of clients

reached 10.

Figure 4 Disk read performance.

In the same fashion of the read, the results of the write

tests are show in Figure 5. In this case, the maximum sustaina-

ble number of clients on AVFS without aiod was 8 and that of on

AVFS with aiod was 10. On Ext4 without aiod, smbd got several

late disk I/O when serving more than 9 clients.

Figure 5 Disk write performance.

4.3. Discussion

As shown in Figure 4, smbd with aiod on AVFS achieved

3 times as much disk read throughput as smbd without aiod on

Ext4 or AVFS did. The results of smbd without aiod on Ext4 and

on AVFS were similar because smbd could not use the dedicated

APIs of AVFS and activate the AVFS I/O improvement func-

tions without aiod. The high throughput of smbd with aiod on

AVFS was achieved by the large block read ahead feature of

aiod. No deadline miss was observed while smbd with aiod on

AVFS serving up to 9 clients owing to the real-time I/O sched-

uler of AVFS, which was activated by adding deadline infor-

mation to each I/O request by aiod. Since the throughput

reached nearly the maximum storage random read throughput

shown in Table 5 and both the network bandwidth and the CPU

usage were far below their limit, it is suggested that the perfor-

mance bottleneck be the storage subsystem.

Referring to Figure 5, the performances of smbd without

aiod on Ext4 and with aiod on AVFS look similar. However the

two can be distinguished by stability which is essential to treat

the real-time media. No deadline miss was observed while smbd

with aiod on AVFS serving up to 10 clients, while smbd without

aiod on Ext4 got several late disk I/O in serving more than 9

clients. This means that smbd with aiod on AVFS achieved 1.1

times as much stable disk write throughput as smbd without aiod

on Ext4 did. The stability came from the real-time I/O scheduler

of AVFS. Comparing with on AVFS without aiod, smbd on

AVFS with aiod achieved higher write throughput because aiod

could aggregate I/O requests by using its large shared memory

buffer and make a larger I/O request. In contrast to the read, the

write performance of smbd on Ext4 without aiod was unexpect-

edly high. It is conjectured that Ext4 also has some features of

I/O request aggregation. Similar to the read, we believe the bot-

tleneck be the storage subsystem.

5. Related Work

As a kind of file systems of OSes, several file systems

dedicated for storing audio and video files are developed. These

file systems leverage the features of video files such as large file

size and predetermined playback bitrate to improve the disk I/O

access performance. For instance, a technology is developed to

enhance the sequentiality of disk access by using the large file

size feature of video files[5]. Also technologies are developed to

reduce the head seek over head of disks by performing real-time

I/O scheduling with control information such as deadline using

the constant bitrate feature of video files[6][7].

Many file servers and network storage systems for storing

and delivering real-time media files have been studied and some

solutions which have relationship with our method are proposed.

RIO[9] is studied as an object server which handles re-

al-time media such as audio and video. RIO achieves low laten-

cy access under high disk load by splitting media object access-

es between real-time and non-real-time and performing syn-

chronous and asynchronous disk scheduling. However, RIO is

not implemented as a file system with standard interfaces which

can be used by the conventional file server applications.

Prism[10] is a network storage system for the multi-media

files. Prism classifies I/O requests and provides services suitable

for each I/O class. In order to get the desired effect of Prism,

client applications need to use dedicated APIs to specify service

classes of their I/O requests. Thus the conventional file server

applications are required to be modified to use the APIs.

Coop-I/O[11] proposes a method to cooperate applications

and an OS aiming for less energy consumption. In addition to

the standard file interfaces such as open(), close(), read() and

write(), Coop-I/O introduces new system calls which adds con-

trol information to the I/O requests. By the same token, the

conventional file server applications are required to be modified

to adapt to the additional system call semantics.

With the aforementioned works, modifications of applica-

tions are inevitable to get the advantage of each proposed fea-

tures and the cost of modifying the conventional file server ap-

plications piles up.

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12

C
P

U
 U

sa
ge

 (
%

)

Th
ro

u
gp

u
t

(M
b

p
s)

Number of Clients

Ext4

AVFS

AVFS+aiod

Ext4(CPU)

AVFS(CPU)

AVFS+aiod(CPU)

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12

C
P

U
 U

sa
ge

 (
%

)

Th
ro

u
gp

u
t

(M
b

p
s)

Number of Clients

Ext4

AVFS

AVFS+aiod

Ext4(CPU)

AVFS(CPU)

AVFS+aiod(CPU)

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan 7

Vol.2016-OS-137 No.14
2016/5/31

6. Concluding Remarks

In this paper, we have presented rt-Samba, a Samba-AVFS

cooperation method which consists of Samba VFS module

vfs_avfs.so and I/O surrogate daemon aiod. The I/O module is

embedded into Samba and preempts I/O requests issued by

Samba then passes them to the I/O surrogate damon. The I/O

surrogate daemon aggregates the I/O requests into a larger I/O

request and issues it to AVFS with deadline information via its

dedicated API. Using this method, I/O access performance is

improved while keeping the amount of modifications in Samba

low while preserving the standard CIFS protocol used by editing

stations for accessing files.

Evaluation results have shown that Samba cooperating

with the I/O surrogate daemon on AVFS achieved 3 times higher

read throughput and 1.1 times higher write throughput than

Samba on Ext4. Our method make Samba exploit AVFS I/O

access performance to the extent of the storage subsystem bot-

tleneck.

Future work will concentrate on characterizing more pre-

cisely the impact of the I/O pattern analyzer and adopting ad-

vanced features of the latest CIFS protocol.

Reference

[1] Mokbel, M.F.; Aref, W.G.; Elbassioni, K.; Kamel, I., "Scala-

ble multimedia disk scheduling", Proceedings. 20th Inter-

national Conference on Data Engineering, 2004, pp. 498-

509, 30 March-2 Apr. 2004

[2] Damien Le Moal, Donald Molaro, and Jorge Campello, "A

Real-Time File System for Constrained Quality of Service

Applications", In Information Processing Society of Japan,

Transactions on Advanced Computing Systems (ACS), vol.

3, no. 1, pp. 61-76, Mar. 2010

[3] Le Moal, D.; Molaro, D.; Bandic, Z.Z., "Stable disk perfor-

mance with non-sequential data block placement", IEEE

14th International Symposium on Consumer Electronics

(ISCE), pp.1-6, 7-10 Jun. 2010

[4] French, M. S., “A New Network File System is Born: Com-

parison of SMB2, CIFS and NFS”, Proceedings of the

Linux Symposium, Volume One, 131-140, Jun. 2007

[5] An-I Andy Wang, Geoff Kuenning, Peter Reiher, and Gerald

Popek., “The Conquest file system: Better performance

through a disk/persistent-RAM hybrid design”, Trans.

Storage, vol.2, no.3, pp.309-348, Aug. 2006

[6] A. L. N. Reddy, Jim Wyllie, and K. B. R. Wijayaratne, “Disk

scheduling in a multimedia I/O system”, ACM Trans. Mul-

timedia Comput. Commun. Appl., vol.1, no.1, pp.37-59,

Feb. 2005

[7] Hong Li; Cumpson, S.R.; Jochemsen, R.; Korst, J.; Lambert,

N., "A scalable HDD video recording solution using a re-

al-time file system," IEEE Transactions on Consumer

Electronics, vol.49, no.3, pp. 663- 669, Aug. 2003

[8] A. Mathur, M. Cao, and S. Bhattacharya, “The new EXT4

filesystem: current status and future plans”, in Proc. the

2007 Ottawa Linux Symposium, Ottawa, Canada, Jun.

2007, pp. 21–34.

[9] Richard Muntz, Jose Renato Santos, and Steve Berson,

“RIO: a real-time multimedia object server”,

SIGMETRICS Perform. Eval. Rev. vol. 25, no. 2, pp.29-35,

Sep. 1997

[10] Ravi Wijayaratne and A. L. N. Reddy, “System support for

providing integrated services from networked multimedia

storage servers”, In Proceedings of the ninth ACM interna-

tional conference on Multimedia (MULTIMEDIA '01), Oct.

2001

[11] Andreas Weissel, Björn Beutel, and Frank Bellosa, “Coop-

erative I/O: a novel I/O semantics for energy-aware appli-

cations”, In Proceedings of the 5th symposium on Operat-

ing systems design and implementation (OSDI '02), Dec.

2002

[12] A. Aggarwal and K. Auerbach. Protocol standard for a

netbios service on a tcp/udp transport. IETF Network

Working Group RFC 1001, March 1987.

[13] P. J. Leach and D. C. Naik. A common internet file system

(cifs/1.0) protocol. IETF Network Working Group RFC

Draft, March 1997.

[14] Sumiyoshi, H.; Mochizuki, Y.; Suzuki, S.; Ito, Y.; Orihara,

Y.; Yagi, N.; Nakamura, M.; Shimoda, S., "Network-based

cooperative TV program production system," Broadcasting,

IEEE Transactions on , vol.42, no.3, pp.229,236, Sep 1996

[15] Nou, R.; Giralt, J.; Cortes, T., "Automatic I/O Scheduler

Selection through Online Workload Analysis," Ubiquitous

Intelligence & Computing and 9th International Confer-

ence on Autonomic & Trusted Computing (UIC/ATC),

2012 9th International Conference on , vol., no.,

pp.431,438, 4-7 Sept. 2012

[16] Owen, S.J., "The changing shape of on-line disc-based

editing," Broadcasting Convention, International (Conf.

Publ. No. 428) , vol., no., pp.73,78, 12-16 Sep 1996

[17] Bucci, G.; Detti, R.; Pasqui, V.; Nativi, S., "Sharing Multi-

media Data Over a Client-Server Network," MultiMedia,

IEEE , vol.1, no.3, pp.44,, Autumn/Fall 1994

[18] Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and

Ethan L. Miller. 2008. Measurement and analysis of

large-scale network file system workloads. In USENIX

2008 Annual Technical Conference on Annual Technical

Conference (ATC'08). USENIX Association, Berkeley, CA,

USA, 213-226.

Acknowledgments

We would like to thank Atsushi Hashimoto, Minoru

Urushima and Kenji Hirose of Hitachi Industry & Control Solu-

tions, Ltd. for their support for this work.

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan 8

Vol.2016-OS-137 No.14
2016/5/31

