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Abstract: The effectiveness of punishment that a player pays certain costs and punishes an uncooperative player is
currently discussed in the field of the study of cooperation under non-kin relationships. The discussions of the effective-
ness of punishment are based on either negative or positive point of view. Contrary to these previous discussions, this
study proposes a novel model introducing an alternative notion of punishment “sanction with jealousy”. The degree of
sanction is proportional to the payoff of the sanctioning player. The condition for sanction to occur reflects jealousy in
that each player sanctions their neighbor players when their payoff is smaller than the payoff of their neighbor players.
Utilizing this model, the author investigates whether the introduction of the sanction with jealousy improves both the
number of players having the strategy of cooperation and the average payoff of all players or not. In addition, the
author organizes the new findings from this investigation in comparison with these previous discussions.
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1. Introduction

Currently, the study of cooperation under non-kin relation-
ships mainly discusses the effectiveness of punishment, and these
discussions are based on either negative [1], [2], [3], [4], [5] or
positive [6], [7], [8], [9], [10], [11], [12], [13], [14] point of
view. Now, punishment means that a player paying certain costs
charges an uncooperative player with the loss of payoff. Briefly
explaining these recent discussions, on the one hand, in the pris-
oner’s dilemma game, Dreber et al. [2] point out that the intro-
duction of punishment reduces the average payoff of all players.
Furthermore, in the public goods game that is the multiplayer
extension of the prisoner’s dilemma game, Rand and Nowak [5]
propose that punishment is an egocentric tool to protect a player
itself because through natural selection, punishment does not in-
crease the number of players having the strategy of cooperation
(=cooperators), and promotes antisocial behavior, i.e., the retal-
iation like the punishment of a player having the strategy of de-
fection (=defector) on a cooperator.

On the other hand, Garcia and Traulsen [13] reveal that Rand
and Nowak [5] only cover very limited case where there are some
players who abstain from the collective action. They show that
even if the antisocial behavior is possible, cooperators who pun-
ish only defectors can prosper enough when these abstaining
players are isolated. Perc and Szolnoki [14] introduce adaptive
punishment that enables a player to vary the degree to which to
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perform punishment in response to the degree of the success of
cooperation. They show that the adaptive punishment activates
the reciprocity on the spatial relationships, and facilitates cooper-
ation.

Here, contrary to these previous discussions, this study pro-
poses an alternative notion of punishment, “sanction with jeal-
ousy”. This notion, as expressed in its name, realizes the sanc-
tion by humans from jealousy because each player sanctions their
neighbor players when their payoff is smaller than the payoff of
their neighbor players. Comparing the sanction with jealousy
with peer-punishment [6] and pool-punishment [11], in the sanc-
tion with jealousy, sanctioning costs and the degree of sanction
are not constant, but dynamically change because they are pro-
portional to the payoff of the sanctioning player. The sanctioning
player is also damaged a little because sanctioning activity im-
poses some stress on the sanctioning player. Fehr and Schmidt’s
inequity aversion [15] also considers the difference of payoff be-
tween sanctioning and sanctioned players regarding the cost and
the degree of punishment. However, this study differs from Fehr
and Schmidt’s study because they deal with the public goods
game rather than the prisoner’s dilemma game, and a player can
punish not related but all other players. This paper investigates
whether the introduction of the sanction with jealousy induces the
increase and the maintenance of cooperative players (=the evo-
lution of cooperation) and also the improvement in the average
payoff of all players or not. The author also considers the previ-
ous discussions on the effectiveness of punishment and organizes
the new findings from this investigation.
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2. Model

This study is basically based on Nowak and May’s spatial pris-
oner’s dilemma game [16], and introduces the sanction with jeal-
ousy. Each player has their strategy of defection or cooperation,
matches their neighbor players, and gains the resulting payoff.
When we express the total number of players as N, two play-
ers of the match as players i and j (i � j, 1 ≤ i, j ≤ N), their
strategy as s(i) and s( j), and their payoff as p(i) and p( j), p(i) is
expressed as the following Eq. (1) by utilizing the payoff matrix
A of Eq. (2). Note that s(i) and s( j) are expressed as (1 0) or (0 1)
by unit vectors. The former is the strategy of cooperation and the
latter is the strategy of defection. O(i) represents the collection of
the opponents of player i.

p(i) =
∑

j∈O(i)

s(i)As( j)T

(i � j, 1 ≤ i, j ≤ N)
(1)

A =

⎛⎜⎜⎜⎜⎝
1 0
b 0

⎞⎟⎟⎟⎟⎠ (1 < b ≤ 2) (2)

As shown in Fig. 1, this study defines neighbor players around
each player as the one-dimensional regular lattice [17]. A node
of the lattice exhibits a player, and the total number of neighbor
players around each player (e(i)) is the same among all players.
Figure 1 shows the initial state; 10% of all players enclosed in
squares are defectors, and others are cooperators. This initial per-
centage of the number of defectors follows the Nowak and May’s
study (see Fig. 1 of Ref. [16]).

Next the author describes the implementation of an alternative
notion of punishment “sanction with jealousy”. Dreber et al. [2]
treat the punishment of a player on another player as the strategy
of game. On the other hand, in this study, no player has the strat-

Fig. 1 This is the illustration of neighbor players around each player as
the one-dimensional regular lattice [17]. The total number of play-
ers N = 100, and the total number of neighbor players around each
player (e(i)) is the same among all players. In the initial state, 10%
of all players enclosed in squares are defectors.

egy of costly punishment but does have the option of sanction
with jealousy. Player i sanctions player j when player i recog-
nizes that player j in O(i) has the larger payoff than the payoff
of player i. However, because player i cannot sanction player j

without damage, player i also gets injured a little. Player i, de-
pending on the probability of 1/n(i) (n(i) > 0), decides whether
he/she sanctions player j or not in ascending order regarding j

(this reason is described later in this section). The function of
this probability can be regarded as the heterogeneous sensitivity
to the difference of payoff like Iwasa and Lee’s graduated punish-
ment [18]. Note that n(i) indicates the total number of players in
O(i) that satisfies the condition p(i) < p( j). We can express this
scenario with the following Eq. (3) utilizing the payoff of sanc-
tioning player i (p(i)′) and sanctioned player j (p( j)′). Note that
r (0 < r < 1) is the coefficient of sanction, and of course player
i cannot sanction player j when p(i)(1 − rn(i)) < 0. Therefore,
p(i)′ and p( j)′ cannot be negative.

p(i)′ = p(i) − rp(i)
p( j)′ = p( j) − rp(i)

(3)

The decrease in the payoff due to sanctioning the opponent and
sanctioned by the opponent is calculated independently, and even-
tually p(i)′ = 0 in the case of p(i)′ < 0. After the payoff of all
players changes due to all sanctioning and sanctioned activities,
as the following Eq. (4), player i chooses the strategy of player
jmax in i ∪ O(i) for the strategy of player i of the matches of the
next generation. When more than one player has the same max-
imum payoff, player i randomly chooses the strategy of one of
them. Each strategy of all players is synchronously updated.

s(i)′ = s( jmax) jmax ∈ i ∪ O(i)
p( jmax)′ = max(p′ ∈ i ∪ O(i))

(4)

This study also utilizes the lattice of the scale-free topology of
N = 100, e = 4 (the average of e(i)) for the sensitivity analysis.
Note that e is expressed as the following Eq. (5).

e =
1
N

∑

1≤i≤N

e(i) (5)

The construction of the lattice of the scale-free topology fol-
lows the method by Barabási and Albert [19], i.e., starting with

Fig. 2 This figure depicts the degree distribution that indicates how many
players with a certain number of neighbor players around each player
(e(i)) exist in the lattice of the scale-free topology when N = 100,
e = 4.
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m0 = 5 players of a complete graph, at every time step we add a
new player with m = 2 edges that link the new player to m dif-
ferent players already present in the lattice until the total number
of players (N) reaches 100. A new player will be connected to
player u depending on the connectivity ku of that player, so that
Pu(ku) = ku / Σv kv (v: the number of players already present in
the lattice). Therefore, players of small i turn into high degree
players. Note that Fig. 2 indicates the degree distribution of the
constructed lattice of the scale-free topology that indicates how
many players with a certain number of neighbor players around
each player (e(i)) exist in the lattice. In order to sanction those
high degree players with large payoff in the lattice of the scale-
free topology, player i sanctions player j in O(i) in ascending
order regarding j with the probability 1/n(i) as noted before.

3. Results

This study employs three values of the average total number
of neighbor players around each player (e), i.e., e = 4, 8 and 16
based on Santos and Pacheco’s study [20]. The total number of
players (N) is 100 because they describe that their results are ro-
bust even in the small community of 100 players. The parameter
b in the payoff matrix A is set to 1.5. This is the medium value
in the range of b (1 < b ≤ 2) [16]. As mentioned before, 10% of
all players are defectors, and others are cooperators in the initial
state. The coefficient of sanction (r) is 0.15 because the result of

Fig. 3 This figure shows the number of cooperators, the number of defec-
tors, and the average payoff of all players within 300 generations
regarding both cases without sanction (a) and with sanction (b) when
e = 4. The average payoff of all players in the 300 generation is 2.24
in the case without sanction, while it is 3.52 in the case with sanction.
Note that error bars are SD (standard deviation).

r = 0.15 indicates the stable evolution of cooperation, i.e., stan-
dard deviation (SD) of the number of cooperators is the smallest
value among the results of r = 0.05, 0.1, 0.15 and 0.2 in the case
of e = 4. The following results of the number of cooperators,
the number of defectors, and the average payoff of all players up
to 300 generations are the average of 20 independent simulation
runs, and basically have error bars of SD.

As shown by Santos and Pacheco [20], when the initial ratio of
the number of defectors to the number of cooperators equals one
to one, a small b (≤1.175) is necessary for the evolution of co-
operation (please refer to the following discussion as well). The
aim of this study is to show that the sanction with jealousy has an
effect on the evolution of cooperation in the case of large b where
defectors are advantageous. To this end, the initial percentage of
the number of defectors should have a small value. In addition,
Masuda and Aihara [21] set the initial percentage of the number
of defectors at 2, and show that the small-world topology is the
optimal structure when we consider the speed at which coopera-
tion evolves. Therefore, the initial percentage of the number of
defectors of 10 in this study is not actually a small value when
discussing the evolution of cooperation.

Firstly, the author shows both results with and without sanction
regarding e = 4 (Fig. 3). We find that in the case with sanction,
the number of cooperators is quite large in comparison with the
case without sanction. Of course, the average payoff of all play-

Fig. 4 This figure shows the number of cooperators, the number of defec-
tors, and the average payoff of all players within 300 generations
regarding both cases without sanction (a) and with sanction (b) when
e = 8. The average payoff of all players in the 300 generation is 7.36
in the case without sanction, while it is 7.92 in the case with sanction.
Note that error bars are SD (standard deviation).
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Fig. 5 This figure shows the number of cooperators, the number of defec-
tors, and the average payoff of all players within 300 generations
regarding both cases without sanction (a) and with sanction (b) when
e = 16. In the case with sanction, the average payoff of all players
in the 300 generation is a lot larger than that without sanction in all
simulation runs. Note that error bars are SD (standard deviation).

ers in the 300 generation with sanction is higher than that without
sanction (2.24 without sanction vs. 3.52 with sanction).

Secondly, Fig. 4 indicates both results with and without sanc-
tion regarding e = 8. In the case without sanction, each number
of cooperators and defectors shows almost no change within 300
generations. On the other hand, in the case with sanction, the
number of cooperators gradually increases and eventually reaches
near 100 in the 300 generation, while the number of defectors
gradually decreases and eventually reaches around 0 in the 300
generation. In addition, the average payoff of all players in the
300 generation with sanction is slightly large in comparison with
that without sanction (7.36 without sanction vs. 7.92 with sanc-
tion).

Finally, Fig. 5 exhibits both results with and without sanction
regarding e = 16. The result without sanction indicates that all
players quickly become defectors. On the other hand, in the case
with sanction, all players become cooperators in all simulation
runs within 140 generations, and in this case, of course, the aver-
age payoff of all players in the 300 generation is a lot larger than
that without sanction.

As for the sensitivity analysis, when N = 100, e = 4, the initial
percentage of the number of defectors is 50%, and those defec-
tors are randomly scattered in the lattice for each simulation run,
the averaged percentage of the number of defectors is finally un-
der 4% in 17/20 simulation runs regarding the case with sanction

Fig. 6 This figure shows the number of cooperators, the number of defec-
tors, and the average payoff of all players within 300 generations
regarding the case with sanction when N = 100, e = 4, and the
initial percentage of the number of randomly scattered defectors is
50% for each simulation run. Graph (a) shows the case where the
number of defectors increases (3/20 simulation runs), while Graph
(b) shows the case where the number of cooperators increases (17/20
simulation runs). Note that error bars are SD (standard deviation).

(see Fig. 6).
When N = 1000, e = 4, the initial percentage of the number

of defectors is 10%, and those defectors are randomly scattered
in the lattice for each simulation run (see Fig. 7), the time series
change of the number of cooperators, the number of defectors,
and the average payoff of all players indicates nearly the same
trend as Fig. 3 (N = 100, e = 4) regarding both cases without
sanction and with sanction. This result means that the size of
the lattice does not affect those values, and follows Santos and
Pacheco’s study [20] that shows the robustness of their results by
exhibiting each result of N = 1000 (large) and N = 100 (small).

Figure 8 shows the result of the lattice of the scale-free topol-
ogy [19] where N = 100, e = 4, and the initial percentage of
the number of defectors is 10%, i.e., the distribution of defec-
tors is the same as Fig. 1. As Santos and Pacheco [20] show that
the lattice of the scale-free topology has an effect on the emer-
gence of cooperation, the result without sanction of the lattice
of the scale-free topology maintains the number of cooperators
and keeps the number of defectors low. However, the result with
sanction of the lattice of the scale-free topology apparently ex-
hibits a larger number of cooperators and fewer defectors in time
series. Therefore, the introduction of the sanction with jealousy
activates the effect of the lattice of the scale-free topology on the
maintenance of the number of cooperators and the suppression of
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Fig. 7 This figure shows the number of cooperators, the number of defec-
tors, and the average payoff of all players within 300 generations
regarding both cases without sanction (a) and with sanction (b) when
N = 1000, e = 4, and the initial percentage of the number of ran-
domly scattered defectors is 10% for each simulation run. Note that
error bars are SD (standard deviation). The time series change of the
number of cooperators, the number of defectors, and the average pay-
off of all players indicates nearly the same trend as Fig. 3 (N = 100,
e = 4).

the number of defectors. In addition, when we utilize the com-
pletely random rewired regular lattice of N = 100, e = 4, and the
initial percentage of the number of randomly scattered defectors
is 50% for each simulation run, defectors prevail in the lattice in
18/20 simulation runs in the case without sanction, while in the
case with sanction, they become advantageous in 10/20 simula-
tion runs. The introduction of the sanction with jealousy appar-
ently suppresses the advantage of defectors. These results of the
sensitivity analysis show that the sanction with jealousy tends to
have a boosting effect on the evolution of cooperation in various
parameters.

4. Discussion

As described in the introduction, Dreber et al. [2] propose that
punishment causes the loss of the average payoff of all players.
Rand and Nowak [5] also propose that punishment is an ego-
centric tool to protect a player itself because punishment pro-
motes antisocial behavior through natural selection. Furthermore,
Nowak [22] proposes that punishment is not a mechanism for
the evolution of cooperation but enhances the level of coopera-
tion emerging from other mechanisms (e.g., indirect reciprocity,
group selection, or network reciprocity). As this study shows
in the results, however, the sanction with jealousy suppresses an

Fig. 8 This figure shows the number of cooperators, the number of defec-
tors, and the average payoff of all players within 300 generations
regarding both cases without sanction (a) and with sanction (b) when
N = 100, e = 4, the lattice is the scale-free topology, and the initial
percentage of the number of defectors is 10%, i.e., the distribution of
defectors is the same as Fig. 1. Note that error bars are SD (standard
deviation). The result without sanction (a) maintains the number of
cooperators and keeps the number of defectors low. However, the
result with sanction (b) apparently exhibits a larger number of coop-
erators and a lower number of defectors in time series.

egocentric behavior and is effective in both the evolution of co-
operation and the rise of the average payoff of all players. The
results on the regular lattice in the case with sanction (Figs. 3 (b),
4 (b), and 5 (b)) indicate that the larger e induces a larger num-
ber of cooperators and a lower number of defectors. This is be-
cause the larger e leads to the higher payoff of each player, i.e.,
the stronger power of sanction of each player. The sanction with
jealousy is the myopic punishment because it is effective in each
player and their neighbor players, reduces the advantage of de-
fectors, and smooths the difference of payoff among players.

In the case without sanction, the number of cooperators is ap-
proximately equal to the number of defectors in the case of e = 4,
the number of cooperators does not change too much in the case
of e = 8, and defectors apparently dominate the lattice in the case
of e = 16. This trend indicates that some increase in e enhances
the construction of the clusters of cooperators that prevent the
invasion of defectors, while the excessive increase in e induces
the situation where defectors easily invade many more clusters of
cooperators.

Contrary to the Santos and Pacheco’s study [20], when N =

100, the initial ratio of defectors is 50%, and those defectors are
randomly scattered in the lattice for each simulation run, in the
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case of e = 4 and b = 1.175, the introduction of the sanction with
jealousy leads almost all players to cooperators in 18/20 simula-
tion runs. Furthermore, in the case of e = 16 and b = 1.1, the
sanction with jealousy realizes almost total cooperation in 14/20
simulation runs. These results also exhibit that the sanction with
jealousy has an effect on the evolution of cooperation under the
condition where defectors easily prevail in the lattice.

The reason why the author includes probabilistic factor in the
sanction with jealousy is to avoid overpunishing that is not neces-
sary to fix cooperation [23]. Overpunishing means that the payoff
of defectors is reduced not by a fixed penalty, but by a sanction
proportional to the number of punishers. In fact, in the case of
N = 100, e = 4, and the same initial percentage of the num-
ber of defectors as Fig. 1, when player i respectively sanctions
player j in O(i) that satisfies the condition p(i) < p( j), i.e., each
player sanctions all other related players, in the 300 generation,
the average number of cooperators is 54, the average number of
defectors is 46, and the average payoff of all players is 2.28 for 20
simulation runs. Those values are much smaller than each value
indicated in Fig. 3 (b).

Of course, the author considers the improvement of the sanc-
tion with jealousy. For instance, when the difference of payoff
between each player and their opponents is large, they sanction
their opponents at the high probability. Furthermore, the author
plans to consider the different coefficient r between sanctioning
and sanctioned players. For example, it may be difficult for sanc-
tioning players to reduce the high payoff of sanctioned players be-
cause they may have a kind of power due to their high payoff. In
addition, it is necessary to investigate whether players who sanc-
tion with jealousy can survive through evolution (through “sur-
vival of the fittest”) when others do not employ such behavioral
patterns.

5. Conclusion

This study presents both the negative [1], [2], [3], [4], [5] and
the positive [6], [7], [8], [9], [10], [11], [12], [13], [14] discus-
sions regarding the effectiveness of punishment. Contrary to
these previous discussions, the author proposes an alternative no-
tion of punishment “sanction with jealousy” that these previous
discussions do not cover. The results of this study reveal that not
only the sanction with jealousy facilitates cooperation, but also
it solves the flaw of punishment that the discussions of negative
point of view [2], [5] designate. In the future works, the author
continues to improve the sanction with jealousy as noted in the
discussion.
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