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Abstract: We analyze the increasing threats against IoT devices. We show that Telnet-based attacks that target IoT
devices have rocketed since 2014. Based on this observation, we propose an IoT honeypot and sandbox, which at-
tracts and analyzes Telnet-based attacks against various IoT devices running on different CPU architectures such as
ARM, MIPS, and PPC. By analyzing the observation results of our honeypot and captured malware samples, we show
that there are currently at least 5 distinct DDoS malware families targeting Telnet-enabled IoT devices and one of the
families has quickly evolved to target more devices with as many as 9 different CPU architectures.
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1. Introduction

Since years, it is known that many Internet of Things (IoT) de-
vices are vulnerable to simple intrusion attempts, for example,
using weak or even default passwords [1]. In 2012, Carna bot-
net [2] revealed that there were more than 1.2 million open de-
vices that allowed logins with empty or default credentials. In
January 2014, an Internet-connected fridge was discovered as a
part of a botnet sending over 750,000 spam e-mails [3]. In De-
cember 2014, online DDoS services (i.e. booters) knocked down
Sony and Microsoft’s gaming networks, presumably powered by
thousands of compromised IoT devices such as home routers [4].
From an attacker’s point of view, IoT devices are attractive play-
grounds, as–as opposed to PCs–they are 24/7 online, have no an-
tivirus installed, and weak login passwords give attackers an easy
access to powerful shells (such as BusyBox [5]). Seeing these
trends, we believe that IoT devices are an important new area of
security research.

In this paper, we investigate the threat of IoT device compro-
mises in the masses. We first analyze Telnet-based scans in dark-
net, revealing that attacks on Telnet have rocketed since 2014.
Moreover, by grabbing Telnet banners and web contents of the
attackers, we show that the majority of attacks indeed stem from
IoT devices.

Motivated by this, we propose IoTPOT, a novel honeypot to
emulate Telnet services of various IoT devices to analyze ongoing
attacks in depth. IoTPOT consists of a frontend low-interaction
responder cooperating with backend high-interaction virtual en-
vironments called IoTBOX. IoTBOX operates various virtual en-
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vironments commonly used by embedded systems for different
CPU architectures. During 81 days of operation, we observed
481,521 download attempts of malware binaries from 79,935 vis-
iting IP addresses. We also confirm that none of these binaries
could have been captured by existing honeypots that handle the
Telnet protocol such as honeyd and Telnet password honeypot
because they are not able to handle different incoming commands
sent by the attackers.

We manually downloaded 106 distinct malware samples and
found out that they run on 11 different CPU architectures. Among
106 collected samples, 88 samples were new to the database of
VirusTotal [6] (as of 2015/06/26) showing a gap of capturing util-
ities for this type of threat. Out of 18 samples in VirusTotal, 2
of them were not detected by any of the 57 antivirus software of
VirusTotal (as of 2015/06/26).

In order to analyze these captured malware binaries, we pro-
pose IoTBOX, the first malware analysis environment for IoT de-
vices. IoTBOX supports 8 CPU architectures, spanning MIPS,
ARM, and PPC. The sandbox analysis of 25 samples by IoTBOX
revealed that the samples are used to perform 11 different types of
DDoS attacks, port 23 scans and scans on UDP (port 123, 3143)
and TCP (port 80, 8080, 5916).

Finally, combining the observations results of IoTPOT with the
sandbox analysis by IoTBOX, we confirm that i) there are at least
five distinct malware families spreading via Telnet, ii) their com-
mon behavior is performing DDoS and the further propagation
over Telnet, iii) some families evolve quickly, updating frequently
and shipping binaries for a variety of CPU architectures, even in
the limited observation period of 81 days.

Following is the summary of our contributions:
1) We point out a huge increase of Telnet-based attacks and the

Part of the results of this paper will be presented at the 9th USENIX
Workshop on Offensive Technologies (WOOT’15).
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involvement of IoT devices.
2) To analyze the scope and variety of the attacks, we propose

a novel honeypot called IoTPOT, which mimics IoT devices
and captures Telnet-based intrusions.

3) We further analyze the threats and propose IoTBOX, which
enables us to run the captured malware on 8 different CPU
architectures.

4) We reveal that there are at least five DDoS malware families
targeting IoT devices.

5) We analyze the architectures of IoT botnets and point out
that there are at least 8 different types of botnet architectures
including the worm type botnet.

The rest of the paper is organized as follows: Section 2 explains
our preliminary investigations on Telnet-based attacks. Section 3
describes IoTPOT and Section 4 IoTBOX. In Section 5, we de-
scribe the overview of ongoing attacks revealed by our analysis.
In Section 6, related works are presented. Finally, in Section 7
the conclusion and future works are explained.

2. Investigation on Telnet-based Attacks

Until now, there are only anecdotal reports on Telnet-based
compromises. In this section, we investigate how the situation
of Telnet-based compromises has changed. To this end, we ana-
lyze a darknet of NICTER [7], Japan’s darknet monitoring system
that monitors over 209,000 IP addresses presently.

Figure 1 shows the traffic on 23/TCP since 2005, both in
terms of packets and source IP addresses per day (averaged over
all IP addresses in the darknet). The data shows a recent in-
crease of scans for Telnet. According to the previous study [8],
the large peak in the end of 2012 is caused by the activities of
the Carna botnet, created by an anonymous hacker for Internet
Census by compromising a large number of IoT devices such as
routers [2]. Since 2014, even after the deactivation of the Carna
botnet, both the number of packets on 23/TCP and their senders
have rapidly increased and dominated the darknet – observing
more than 209,497 average scanning sources per day, which is
52.5% of all sources, in the darknet in the first week of March
2015.

We used p0f for passive OS fingerprinting [9] and determined
that among the scanning 29,844 hosts (sampled from 148 darknet
IP, 2015/03/05 to 2015/03/10), 91% of them runs Linux. We also
connected back to these hosts on 23/TCP and 80/TCP, collected
Telnet banners and web contents if any, and manually categorized
them by device types. For example, if there is a telling keyword
such as “DVR” in HTTP title, we categorize this device as Digital
Video Recorder (DVR). If not, we search on the Internet using the
HTTP title as keyword and carefully categorize devices by read-
ing available manuals. We also group device models of a particu-
lar device type by different HTTP titles. For example, HTTP titles
such as “NetDVrV1” and “NetDvrV3” will be counted as two de-
vice models of DVR device type. With this way, we found more
than 34 different types of IoT devices including 19 different mod-
els of the DVR, 16 models of IP Camera, 45 models of wireless
routers. Moreover, devices such as a metrological satellite, heat
pumps, a parking management system, a fire alarm system, solid
state recorders and a TV have scanned our darknet on 23/TCP.

Fig. 1 Packets and hosts on 23/TCP per day per darknet IP.

Table 1 Scanning hosts and device models.

Table 1 shows top ten attacking hosts and device models of in-
ferred device types. These results show that various IoT devices
are already involved in the ongoing attacks.

3. IoT Honeypot (IoTPOT)

Our preliminary investigation on Telnet-based attacks implies
that there are a number of IoT devices being compromised and
misused to search and attack other IoT devices. In order to study
these attacks in depth, we propose IoTPOT, a novel honeypot that
emulates interactions of the Telnet protocol and a variety of IoT
devices.

3.1 Telnet Protocol
Before explaining IoTPOT, we briefly revisit the Telnet proto-

col [10]. Figure 2 illustrates the interactions between client and
the server on Telnet. After the TCP 3-way handshake, the client
and the server can exchange Telnet options. Either the Telnet
server or the client can initiate a request such as “Do Echo”, a re-
quest for echo back and “Do NAWs” a request to Negotiate About
Window size (NAWs). After exchanging options, the server sends
a welcome message to the client, immediately followed by the
login prompt. For example, “BCM96318 Broadband Router” as
the welcome message and “Login:” as the login prompt. In this
paper, we call the above initial part of interactions banner inter-
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Fig. 2 Telnet protocol.

actions. Then, the client sends a pair of username/password to
log in to the server. We call this part authentication. Finally, if
the credentials are valid, the client logs in and instructs the server
using various shell commands. We call this part command inter-
actions.

3.2 IoTPOT Design
The Telnet protocol already highlights a few challenges for our

honeypot design. First, we need to support options that the at-
tacking clients choose to use. Second, we aim to provide a realis-
tic welcome message and login prompt, to deal with situations
where an attacker specializes in compromising certain devices
only. Third, we want to allow for logins, while we also want
to observe characteristics in the authentication interactions (e.g.,
sequences of usernames/passwords). Finally, independent from
the Telnet protocol, our honeypot should support multiple CPU
architectures to capture malware across devices. Our honeypot is
designed to support these features.

In order to emulate different devices, we collected these ban-
ners from the Internet by performing Telnet scans with the mass-
can tool [11]. From all collected banners, we prioritized banners
of hosts that have accessed our honeypot. Considering a self-
spreading nature of these attacks, these attacking hosts can also
be considered as already compromised victims, which should be
emulated by our honeypot.

In the next step, during the authentication, IoTPOT supports
various tactics. For example, it can be configured to reject any
authentication credentials to observe login attempts, to allow im-
mediate authentication regardless of the login, to accept only cer-
tain credentials, or reject the first attempts and eventually accept
a login. Finally, during a command interaction, the frontend re-
sponder of IoTPOT replies known commands from attackers and
unknown commands are redirected to backend embedded Linux
OSs of different CPU architectures. As each IoT device runs on a
different CPU architecture, we prepare a set of embedded Linux
OS on different CPU architectures to handle the interactions of
various devices.

Fig. 3 Overview of IoTPOT.

3.3 IoTPOT Implementation
Figure 3 is the overview of IoTPOT. The heart of IoTPOT is

Frontend Responder, which acts as different IoT devices by han-
dling incoming TCP connection requests, banner interactions, au-
thentication, and command interactions with a set of device pro-
files.

A device profile consists of a banner profile, an authentica-
tion profile, and a command interaction profile. Banner profiles
determine the responses of the honeypot for banner interactions,
namely Telnet options, a welcome message, and a login prompt.
Authentication profiles determine how to respond to incoming au-
thentication challenges. The command interaction profile deter-
mines the responses to incoming commands, consisting of a set
of commands and their corresponding responses.

When an incoming command is not known yet, Frontend Re-

sponder establishes a Telnet connection with a backend IoTBOX
and forwards the command to it. IoTBOX is a set of sandbox
environments that run Linux OS for embedded devices with dif-
ferent CPU architectures. When an incoming command does not
match with any commands in the command interaction profile,
thus unknown to Frontend Responder, it establishes a Telnet con-
nection with a backend IoTBOX and forwards the command to
it. IoTBOX is a set of sandbox environments that run Linux OS
for embedded devices with different CPU architectures. Namely,
if an unknown command from an attacker comes to Frontend Re-

sponder with the device profile of some device X assigned, we
forward the unknown commands to the sandbox running the CPU
architecture of the device X.

As described later, banner profiles are collected by banner
grabbing of IoT devices visiting to IoTPOT and their respective
CPU architectures are manually chosen by carefully reading a de-
vice manual and the maker’s website. If we cannot find explicit
CPU information of a particular IoT device, we refer to the list of
applications for each CPU architecture [12], [13], [14], [15], [16].

Frontend Responder forwards a response from IoTBOX to the
client. Note that the incoming commands forwarded to IoTBOX
may cause malware infections or a system alteration. Therefore,
we reset the OS image occasionally. Moreover, IoTBOX in IoT-
POT is used as a high interaction system to reply to commands
unknown to the Frontend Responder as a component of IoTPOT.
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We also use IoTBOX independently for analyzing captured mal-
ware binaries. The detailed explanation of IoTBOX is in Sec-
tion 4.

The Profiler parses the interaction between Frontend Respon-

der and IoTBOX, extracts the incoming command and the corre-
sponding response, and updates the command interaction profile
so that Frontend Responder can further handle the same com-
mand without interacting with IoTBOX. Another important func-
tion of Profiler is the collection of banners from devices on the
Internet. The Profiler operates in two banner grabbing modes:
active scan mode and visitor scan mode. In active scan mode,
Profiler scans different networks to collect banners from various
devices. In the visitor scan mode, it connects back to hosts who
visit our honeypot and grabs the banners.

The Downloader component examines the interactions for
download triggers of remote files, such as malware binaries. In
particular, we download from all URLs we observed via com-
mands such as wget, ftp, and tftp.

Finally, network communications between Frontend Respon-

der and IoTBOX are controlled by Manager implemented by ipt-
ables [17].

3.4 Observation Results
IoTPOT Setup: We operated IoTPOT in two different periods:
Trial operation period and stable operation period. In the trial
operation period from 2014/11/07 to 2015/03/31, we had tried
different configurations, device profiles, and assignment of IP ad-
dresses in a ad-hoc manner trying to understand the attackers’
behavior and discussing the proper setting of the honeypots. In
the stable operation period from 2015/04/01 to 2015/06/20, we
deployed IoTPOT on 87 IP addresses, used 29 banner profiles
assigning each to three IP addresses. We set authentication pro-
files to accept any challenges and prepared a single command
interaction profile, manually created from one of the most widely
exploited DVR brands [18]. The backend IoTBOX contained an
embedded Linux OSs of Debian [19] and OpenWrt [20] on 8 dif-
ferent CPU architectures emulated by QEMU [21]. Downloader
was not fully implemented so we manually downloaded and col-
lected malware binaries.
Summary of Observations: During 81 days of the stable opera-
tion, 180,581 hosts visited IoTPOT. Among them, 130,314 suc-
cessfully logged in and 79,935 attempted to download external
malware binary files. We observed 481,521 download attempts in
total. We manually downloaded 106 malware binaries of 11 CPU
architectures. Among 106 collected samples, 88 samples were
new to the database of VirusTotal (as of 2015/06/26). Out of 18
samples that were in VirusTotal, 2 of them were not detected by
any of the 57 antivirus software of VirusTotal (as of 2015/06/26).
General Flow of Telnet Attacks: We observed three typical
steps of compromise: 1) The first stage of attack is intrusion, in
which attackers attempt to login to our honeypot. The intrusion
normally starts from scanning the targets and then dictionary-
based authentication challenges. 2) The second stage after the
successful intrusion is infection, in which attackers send a series
of commands over Telnet to check and customize the environ-
ment, download and execute the external binaries. 3) The third

Table 2 Major log in patterns observed by IoTPOT.

stage after the infection is monetization, in which executed bina-
ries are controlled by the attackers through C&C to conduct the
intended malicious activities such as DDoS attacks and spread-
ing of malware. Note that we intend to observe the intrusion
and the infection by IoTPOT and after malware binaries are cap-
tured by IoTPOT, we conduct a sandbox analysis using IoTBOX.
Thus in this experiment, IoTBOX is utilized in two ways, as a
backend component of IoTPOT and as an independent sandbox
analysis environment for analyzing the obtained binaries. The
following subsections highlight some points noticed for each at-
tack stage. The overall relationships among attacks observed at
different stages are summarized in Section 5.1.
3.4.1 Stage 1: Intrusion

We recognize two major intrusion behaviors: login attempts
with a fixed or a random order of credentials. Table 2 shows
the major login patterns observed by IoTPOT. Fixed challenge
order, “Fixed Order,” in Table 2 means attackers try to login to
IoTPOT with a sequence of id and password pairs in a fixed or-
der. For example, in the case of a pattern name, “Fixed Order 1,”
the attacker’s challenge always starts from “root/root” as user id
and password to login to IoTPOT. Then, the pairs, “root/admin,”
“root/123,” “root/12345” come in a fixed order of sequence till it
reaches to “admin/admin.” Thus, for the fixed login sequences,
we can reasonably infer that these challenges are from malware
sharing the same implementation of dictionary attacks. “Fixed
order 2” in Table 2 is quite a long list, thus, we show only top
sequences. Random challenge order means attackers try to login
to IoTPOT with a sequence of id and password pairs in a random
order. Thus, in case of “Random Order 1,” it is not always true
that “root/admin” will come after “root/root.”
3.4.2 Stage 2: Infection

After successfully logged in to honeypot, attackers check and
customize the environment to prepare the download of a malware
binary by sending a series of commands over Telnet. Table 3
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Table 3 Patterns of command sequence observed by IoTPOT.

summarizes the 10 major patterns of command sequences ob-
served by IoTPOT. Note that some of the patterns were observed
only in the trial operation period for parameter tuning and we
do not have credible counts of these patterns. We believe most

Table 4 Clustering results of collected samples by characteristic strings in
the binaries.

infection activities are automated as exactly the same pattern of
commands are repeatedly observed and also the intervals between
the commands are very short.

We name each pattern by the characteristic string it contains.
For example, the patterns named ZORRO 1, ZORRO 2 and
ZORRO 3 all have the common string “ZORRO” in their com-
mand sequences. Moreover, we can see the attacker’s common
intension among them. Namely, all three patterns of ZORRO
try to remove many existing commands and files under /usr/bin,
/bin/, etc, and prepare a customized command for downloading
an external malware binary file. With this setup, other intruders
would have difficulty to abuse the system. A similar intension of
attackers can be seen in the case of a pattern named GAYFGT.
Although it does not alter the commands, instead it activates ipta-
bles [17] to drop incoming telnet connection requests. GAYFGT
also has a functionality to kill other existing malicious processes.
All these activities explained above come in a form of commands
over Telnet except that GAYFGT downloads and executes shell
script file to do it. Although there are diversities in attackers’
behavior at the infection stage, they all have a common goal of
downloading and executing malware binary file. One more com-
mon behaviors we found is checking whether the shell is usable
properly or not by echoing a particular string in all families. If
the appropriate reply for the echo command is not received, the
attacker stops the attacks.
Comparison with honeyd: We confirmed that honeyd [22] can-
not handle these commands in Table 3 and therefore cannot cap-
ture malware binaries observed by IoTPOT. Namely, honeyd
failed to respond to the very first few commands such as “cat
/bin/sh” in case of the ZORRO family and appropriate reply for
the first echo command of GAYFGT, nttpd and KOS family and
so the attacker stopped sending any further commands.
Clustering of binaries captured by IoTPOT: Within the first
39 days of operation of IoTPOT (From April 1, 2015 to May 9,
2015), the collected 43 samples are not obfuscated and relatively
easy to cluster by checking whether these binaries contain certain
characteristic strings or not. Namely, we classified the binaries
based on the hardcoded human readable strings contained in the
malware binaries such as strings for C&C commands, Linux com-
mands and file names. We analyze the strings in binaries using
the strings command of Linux. Table 4 summarizes results of
manual clustering of the collected samples based on the common
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strings in the binaries.
Within the last 42 days of operation of IoTPOT (From May

10, 2015 to June 20, 2016), the number of captured malware in-
creased more than double (Total 106 samples). Some of the bi-
naries are obfuscated and so the approach to cluster the binaries
using just strings command is then difficult. We need to find a bet-
ter way to cluster these obfuscated binaries. This will be future
works for us. Thus, for Bin 44 to Bin 106 of Appendix, sam-
ples we newly captured within the last 42 days, we cluster them
into the same group if the command sequence from an attacker is
similar to the previously categorized 43 samples.
3.4.3 Stage 3 Monetization

IoTPOT can only observe intrusion and infection stages ex-
plained in Section 3.4.1 and Section 3.4.2. Thus, in order to fur-
ther reveal how attackers are trying to monetize the compromised
devices, we analyze the malware binaries collected by IoTPOT
using IoTBOX as an independent malware sandbox. We show
the list of samples in the Appendix. The sandbox analysis results
of some of the binaries are described in Section 4.

4. IoT Sandbox (IoTBOX)

IoTBOX is used not only as high interaction systems in IoT-
POT but also as a stand-alone multi-architecture sandbox. The
design of IoTBOX used for two purposes is the same and only
routing policies are different for each purpose. So we discuss
about IoTBOX design in general first and then explain consec-
utively how we define routing policies for IoTBOX in IoTPOT
and IoTBOX as a stand-alone multi-architecture sandbox in Sec-
tion 4.1.

4.1 IoTBOX Design
IoTBOX supports 8 different CPU architectures, namely as

MIPS, MIPSEL, PPC, SPARC, ARM, MIPS64, sh4 and X86.
The design of IoTBOX is shown in Fig. 4. To support different
CPU architectures, we need a cross compilation environments.
We thus choose to run respective platforms (OS) on an emu-
lated CPU using QEMU [21], an open source processor emula-
tor. Then, we use the respective OpenWrt platform to run on
the emulated CPU environment. OpenWrt is a highly extensi-
ble GNU/Linux distribution for embedded devices of (typically

Fig. 4 Overview of IoTBOX.

OS of wireless routers) [20]. To install OpenWrt, we use Open-
Wrt Builtroot, which is a build system for the distribution and it
works on Linux, BSD or MacOSX. Next to OpenWrt, IoTBOX
also supports Debian Linux.

We design IoTBOX to be able to implement in a single phys-
ical machine. Thus we need a virtual network environment in
order to connect a physical interface of host machine with many
virtual interfaces of QEMU based virtual machines. The follow-
ing explains how we create a virtual networking environment in
a single physical machine.

We first create a virtual switch, which is a multiport Linux
bridge [23] that connects physical interface (eth0 of host ma-
chine) at one side of the bridge and many different virtual in-
terfaces (eth0 of each virtual machine) at the other side of the
bridge. In order to create a virtual switch, we first create a virtual
interface br0. As we want host only network, we do not bridge
br0 with eth0 right now.

Normally, the br0 interface does not need an IP address as it
is supposed to function as a virtual switch. But, in our case, as
we would like to manage our virtual switch to take part in layer
3 routing of IP packets, we assign an IP address to it. We assign
br0 to a local IP address, which will be the gateway of all virtual
machines.

We then try to connect br0 with virtual machines so that pack-
ets from a virtual machine can reach br0 and vice versa. But, vir-
tual machines’ NIC (eth0 in each virtual machine of Fig. 4) can
only process Ethernet frames. In non-virtualized environments,
the physical NIC interface (eth0 of host machine) will receive
and process the Ethernet frames. It will strip out the Ethernet re-
lated overhead bytes and forward the payload (usually IP packets)
further up to the OS. With the virtualization however, this will
not work since the virtual NICs would expect Ethernet frames.
We solve this by using tap interfaces. Tap interfaces are special
software entities which tell the physical NIC interface to forward
Ethernet frames as it is to virtual NICs. In other words, the virtual
machines connected to tap interfaces will be able to receive raw
Ethernet frames. We manage a virtual bridge connection of br0
to virtual NICs through tap interfaces by using Linux brctl [24].
We automate all these steps so that the virtual network connec-
tion can be done automatically whenever a new virtual machine
is added.

Now, br0 is connected to many virtual machines. We have dis-
cussed so far about layer 2 level connections. From the viewpoint
of layer 3, the br0 interface will be the same network with all vir-
tual machines and it will be the gateway for all virtual machines.
The interface, eth0 of host machine will be on a different net-
work and as we do not bridge it directly with br0, we connect br0
and eth0 through NAT (Network Address Translation) managed
by Access Controller. Access Controller implemented by ipta-
bles controls all networking related operations such as NAT and
outbound traffic from each virtual machine.
IoTBOX as a Stand-alone Multi-architecture Sandbox: In this
case, Access Controller controls NAT and outbound traffic from
each virtual machine such as C&C communication, the DNS res-
olution and the attack traffic such as DoS. We block all outgoing
DoS traffic from malware except allowing some DNS and HTTP
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Fig. 5 Observed attacks by IoTBOX.

traffic of a maximum of 5 packets per minute. 23/TCP scans are
redirected to Dummy Server, which is indeed IoTPOT. In this
way, we can monitor how the propagation over Telnet is done.

Analysis Report outputs the results of pcap analysis results for
every 24 hours showing total number of packets, the start time
and the end time of packet captures, data byte/bite rate, the av-
erage packet size and the rate and the total number of a victim
IP address for each attack. In addition, commands strings from
C&C are summarized if any.
IoTBOX as a High Interaction System in IoTPOT: In this case,
Access Controller will accept only an incoming connection from
Frontend Responder’s IP addresses and all outbound traffics from
high interaction systems except corresponding replies of com-
mands redirected by Frontend Responder will be blocked. Please
also note that what Manager in Fig. 3 is doing is exactly the same
as Access Controller we have discussed here.

4.2 Analysis Results by IoTBOX
Using IoTBOX, we analyzed 52 selected malware binaries of

8 CPU architectures. Because of limited resources of IoTBOX,
malware binary for popular CPU architectures of embedded de-
vices such as ARM, MIPS and MIPSEL focused more in analysis.
Please refer to Appendix for the information of analyzed malware
samples. Red colored samples show analyzed binaries.

We observed 25 of 52 malware binaries performed 11 different
types of DoS attacks and 3 different types of scans such as the
Telnet scan and scans on TCP ports such as 23, 80, 8080, 5916
and UDP port such as 123, 3143. The 5 samples cannot be exe-
cuted because of errors.

A summary of the observed attacks is illustrated in Fig. 5. Most
attacks we observed were UDP floods and many different types
of TCP floods. We also observed UDP floods against multiple

destination ports, which seemed to aim at flooding the target net-
work. Interestingly, we also observed a DNS water torture at-
tack [25], SSL attacks [26] and other two unknown DNS based
attacks in which a large number of queries to an unknown type
of DNS resource records (RR) were sent to an authoritative name
server of a popular ISP. Sample Bin 43 exhibits a unique func-
tionality of a fake web hosting. Namely, it starts hosting a web
page that looks like a top page of a popular Chinese search en-
gine “baidu.com.” In order to avoid any misuse of the fake web
page in a real attack, we carefully monitor if any incoming con-
nections appear although nothing has been seen yet. One more
point we notice is that Bin 13, 19, and 22 of Appendix have a
backdoor port 5000/UDP open for further remote control of the
compromised host because the initial intrusion route, the Telnet,
would already have been blocked by iptables during the infection
phase to prevent other attackers from compromising the host.

5. Analysis on Attacks

5.1 Overview of Observed Attacks
Figure 6 depicts the overview of Telnet-based attacks observed

by IoTPOT and IoTBOX. In order to understand the overview of
Telnet attacks observed by our honeypot, we make mappings be-
tween different patterns of intrusion and infection behaviors ob-
served by IoTPOT and monetization behaviors observed by mal-
ware analysis with IoTBOX. For example, the intrusion pattern
“Fixed Order 3,” which is shown in Table 2, is always followed
by the infection pattern “ZORRO 4,” explained in Table 3. Then,
infection pattern “ZORRO 4” ends up downloading one of the
binaries from certain clusters of binaries that contain common
strings, which will eventually exhibit a similar monetization be-
havior, namely DoS attacks. These mappings reveal that the re-
lated patterns and behaviors of attacks can be separated into five
major groups, referred to as five corresponding malware families.
We also notice that some families seem to spread more aggres-
sively than others. Namely, even within one month of operation,
the ZORRO family has updated its Telnet command sequences
twice. This family also has increased the diversity of binaries
from 7 architectures to 9 architectures dramatically to support
more CPU architectures.

Following are our findings.
1) We have observed five malware families whose intrusion,

infection, and malware binaries are independent from each
other.

2) From viewpoint of monetization, the different families share
the same goal of performing DoS attacks and scans. The
only exception is Bin 43 that starts to host a fake search en-
gine.

3) Some families seem to spread more aggressively than others.
Namely, as in Fig. 6, ZORRO, GAYFGT and nttpd familes
have updated command sequences twice during the obser-
vation period. Also, the GAYFGT family has increased the
diversity of binaries to support more CPU architectures.

5.2 Overview of an Attacking Botnet
5.2.1 Botnet Architectures

Figure 7 shows the overview of a botnet attacking IoTPOT.
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Fig. 6 Overview of Observed Attacks by IoTPOT and IoTBOX.

Basically, scanning hosts, we call as Scanners (S), perform In-
ternet wide Telnet scans in order to find hosts listening on Telnet
for further infections. After successful Telnet login, the intruding
host (I) intrudes the victim sending a sequence of commands over
Telnet in order to make the victim machine download the malware
binary from a malware download server (D). Downloaded binary
is run and after the infection, the victim receives commands from
Command and Control Server (C) to perform various DoS attacks
and scans. These S, I, D and C can be different hosts or the same

host. For example, a single host may perform as (S, I, D) or (D
and C) are single host while S and I are different hosts. By analyz-
ing S, I, D and C involving IoTPOT, we found 8 different botnet
architectures as follows:
1) Botnet relating to the ZORRO family has many host per-

forming scanning only and few I, D and C of different com-
binations (B1, B2, B3 of Fig. 7).

2) Botnet of GAYFGT and *.sh families have many hosts per-
forming both scanning and intruding while D and C are same
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Fig. 7 Botnet architectures.

or separate hosts. (B4 and B5 of Fig. 7).
3) The propagation of the nttpd family looks alike warm infec-

tion in which the attacking host itself is a scanner, an intruder
and a malware download server (B6 in Fig. 7). There are also
cases in which the scanning and the intruding host make vic-
tim infect by sending malware binary over Telnet. In such a
case, it is not necessary to download malware binary from a
malware download server (B7 in Fig. 7).

4) The botnet of KOS family has many hosts performing
both scanning and intruding while D and C are separate
hosts (B8 of Fig. 7). C can be connected by resolving the
“s6.kill123.com” domain. In order to resolve the domain,
the authoritative name server IP address of “S6.kill123.com”
is hard coded in nttpd malware (bin 44 of Appendix). This
authoritative name server is not reachable through normal
authoritative name server DNS stacks. In this way, attacker
set up an authoritative name server as part of his or her bot-
net.

6. Related Works

We implemented the first honeypot tailored for IoT devices,
IoTPOT, and to the best of our knowledge, there is still no hon-
eypot like IoTPOT that mimics IoT devices of many different
CPU architectures while listening on 23/TCP with the ability to
learn unknown command interactions. Although Honeyd [22] lis-
tens on 23/TCP, it is a low-interaction honeypot and cannot han-
dle not only Telnet options but also command interactions in-
teractively, as explained in Section 3.4.2. Although there is an-
other honeypot known as the Telnet password honeypot [27], its
main focus is collecting Telnet password and command interac-
tions are not supported. Other popular low interaction honeypots
such as Dionaea [28] and Nepenthes [29] do not support Telnet.
Kishimoto et al. [30] propose a novel honeypot that dynamically
assigns an IPv6 address to appropriate high interaction honey-
pots by checking the destination IP address of an incoming NS
message which includes the vendor information. SGNET [31]
is a honeypot system that has distributed low-interaction sen-
sors to handle known attacks. Its centralized backend high-

interaction honeypots handle unknown attacks redirected from
the distributed sensors. The conceptual mechanism of IoTPOT
is similar to SGNET and the IPv6 honeypot mentioned above. As
in SGNET, Frontend Responder of IoTPOT responds to known
attacks and unknown attacks are redirected to IoTBOX. As in the
IPv6 honeypot, it tries to deal with different hosts and devices.
The main difference between IoTPOT and these existing honey-
pots is that IoTPOT implements the functionality to perform an
automated active scanning of the attacking IP addresses to learn
their interactions, namely banner profiles. With this functional-
ity, we can obtain and enrich profiles for presumably vulnerable
and infected devices, which is essential for monitoring diverse
IoT threats. In other words, IoTPOT learns the banners from vul-
nerable devices to pretend to be themselves. Moreover, as an
initial goal, we highly focus on Telnet attacks which are emerg-
ing threats according to the recent observations of darknet as ex-
plained in Section 2, emulate the Telnet services of a large variety
of IoT devices to attract attacks, and succeed to observe the ongo-
ing attacks to the depth of capturing the malware binaries, which
are hardly included in a large malware database like Virus To-
tal. In order to analyze the captured malware binaries, we also
implemented IoTBOX, the first sandbox that runs malware of 8
different CPU architectures. Out of more than 15 surveyed sand-
box systems in Ref. [32], none support different CPU architecture
such as MIPS, ARM.

The main differences of the proposed method against existing
works are as follow:
1) IoTPOT implements the functionality to perform an auto-

mated active scanning of the attacking IP addresses to ob-
tain their banner profiles. With this functionality, we can
obtain and enrich profiles for presumably vulnerable and in-
fected devices, which is essential for monitoring diverse IoT
threats. In other words, IoTPOT “learns” the banners from
vulnerable devices to pretend to be themselves.

2) Although the mechanism is similar to existing honeypots,
we are the first to focus on a Telnet-based honeypot that can
handle banner interactions, authentication interactions and
command interactions till the depth of attacks where actual
malware binaries can be captured for a detailed analysis.

3) We propose IoTBOX, a multi-architecture malware sandbox
that is used as a high interaction system as a component of
IoTPOT and also independently used as a malware sandbox
for analyzing captured binaries.

4) We succeeded to report for the first time about details of cur-
rently menacing IoT threats targeting vulnerable IoT devices
over the world while capturing IoT malware that are hardly
included in the existing malware database of Virus Total. We
also reveal their monetization behaviors and architectures as
botnet.

7. Conclusion and Future Works

We have shown that IoT devices are susceptible to compro-
mises and increasingly are also the target of malware on the
masses. We identified five malware families, which show worm-
like spreading behavior, all of which are actively used in DDoS
attacks.
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Appendix
As future work, we plan to extend IoTPOT to support more

protocols that are likely the target of attacks, such as SSH. Fur-
thermore, we aim to extend the sandbox with capabilities to stim-
ulate even more architectures and environments that are common
on IoT devices.
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Table A·1 Malware binary files captured by IoTPOT.
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