
Electronic Preprint for Journal of Information Processing Vol.24 No.3

Regular Paper

Dictionary learning by Normalized Bilateral Projection

Taro Tezuka1,a)

Received: September 27, 2015, Accepted: January 7, 2016

Abstract: Dictionary learning is an unsupervised learning task that finds a set of template vectors that expresses input
signals by sparse linear combinations. There are currently several methods for dictionary learning, for example K-
SVD and MOD. In this paper, a new dictionary learning method, namely K-normalized bilateral projections (K-NBP),
is proposed, which uses faster low rank approximation. Experiments showed that the method was fast and when the
number of iterations was limited, it outperforms K-SVD. This indicated that the method was particularly suited to large
data sets with high dimension, where each iteration takes a long time. K-NBP was applied to an image reconstruction
task where images corrupted by noise were recovered using a dictionary learned from other images.

Keywords: dictionary learning, sparse coding, bilateral projections, image reconstruction

1. Introduction

Sparse coding aims to express the input vector as a linear com-
bination of a small number of template vectors [2], [9]. It is now
intensively being studied in various fields in computer science,
including signal processing, machine learning, and pattern recog-
nition. In fact, sparse coding generalizes some of the most widely
used methods in data processing. For example, in Fourier ex-
pansion and wavelet analysis, sinusoidal functions and wavelets
can be considered as template vectors, so when the observed
data is approximated using few sinusoidal functions or wavelets
with relatively large coefficients, they are actually being sparsely
coded [14], [21]. Finding template vectors is in fact an effective
way for data mining and data aggregation.

Sparse coding mathematically corresponds to finding sparse
vector x which fulfills an underdetermined system of linear equa-
tions y = Dx, where y is the input vector. A sparse vector is a
vector having mostly zero entries and only a few non-zero en-
tries. Matrix D is usually called a dictionary, since each column
of D represents a template vector. It is also sometimes called a
codebook. D must sparsify not just one input vector y but many
others as well. Therefore a matrix Y , whose column vectors are
input vectors, and an equation Y = DX were used. The goal is to
find a matrix X that is sparse. Hereafter Y will be called the input
matrix, and X the source matrix.

Whether input matrix Y can be transformed into sparse X or
not depends on dictionary D. The goodness of D is problem
specific, i.e., it depends on Y . In dictionary learning, D is op-
timized using Y . Thus far, there have been several proposals for
dictionary learning, most notably K-SVD (K-singular value de-
composition) [1]. K-SVD, however, requires long computation
time when the dimension of the input vector increases, due to
singular value decomposition (SVD) that is computed in each
step of the main iteration in K-SVD. To overcome the problem,

1 University of Tsukuba, Tsukuba, Ibaraki 305–0006, Japan
a) tezuka@slis.tsukuba.ac.jp

this paper proposes K-normalized bilateral projections (K-NBP),
which replaces SVD in K-SVD with bilateral random projection
of normalized vectors. The method was described earlier by the
author in Ref. [22]. This paper improved the method by intro-
ducing statistical standardization, and also applied it to an image
reconstruction task.

The rest of the paper is organized as follows. Section 2 dis-
cusses the background to this research. Section 3 proposes the
method, and Section 4 presents the results obtained from experi-
ments. Section 5 discusses related work and Section 6 concludes
the paper.

2. Background

This section provides the background to the method proposed
in this paper. First, K-SVD, which is one of the most commonly
used methods of dictionary learning, will be described. Then bi-
lateral random projections, which is a newly proposed method for
low rank approximation, will be introduced.

2.1 Dictionary Learning
In what follows, Ai: denotes the i-th row vector of matrix A

and A: j denotes the j-th column vector of matrix A. Given input
matrix Y ∈ Rm×n, dictionary learning seeks a dictionary D ∈ Rm×k

and a sparse matrix X ∈ Rk×n which fulfills Y = DX. The columns
of D are called atoms. They are usually normalized using �2-
norm, so that ‖D:h‖ = 1 for all h.

One of the most widely used dictionary learning methods, K-
SVD, is outlined in Algorithm 1. It starts with a randomly gener-
ated dictionary, and iteratively applies two stages, i.e., (1) sparse
coding and (2) a dictionary update, for a set number of itera-
tions. Dictionary D stays fixed in the sparse coding stage, and
the optimal X is sought for. Any method of sparse coding can
be used, e.g., orthogonal matching pursuit (OMP) or basis pur-
suit (BP) [8]. Both D and X are revised in the dictionary update
stage. The main goal is to minimize the norm of the error matrix,
E = Y−DX. Its Frobenius norm, ‖E‖F , defined as the square root

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Algorithm 1 K-SVD
Input: Input matrix Y ∈ Rm×n

Output: Estimated dictionary D ∈ Rm×k and estimated source matrix X ∈
Rk×n

Set D randomly

for t = 1 to τ

Sparse coding stage:

Get sparse X that fulfills Y = DX

Dictionary update stage:

for h = 1 to k

Eh ←− Y −∑ j�h D: jX j:

Obtain Ωh using Xh:

Ẽh ←− EhΩh

By applying SVD to Ẽh, get U:1, V:1, and λ1

D:h ←− U:1

Revise the non-zero entries of Xh: by λ1VT
:1

end

end

of the sum of the squares of its entries, is used in K-SVD.

‖E‖F = ‖Y − DX‖F (1)

= ‖Y −
k∑

j=1

D: jX j:‖F

=

∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎜⎜⎝Y −
∑
j�h

D: jX j:

⎞⎟⎟⎟⎟⎟⎟⎠ − D:hXh:

∥∥∥∥∥∥∥∥
F

= ‖
⎛⎜⎜⎜⎜⎜⎜⎝Y −

∑
j�h

D: jX j:

⎞⎟⎟⎟⎟⎟⎟⎠ − D:hXh:‖F

= ‖Eh − D:hXh:‖F
Here, Eh is defined as Y −∑ j�h D: jX j:. This reduces the prob-

lem to find the rank-1 approximation to Eh for each h. When this
approximation is conducted, Xh: must stay sparse. In order to do
this, a smaller matrix Ẽh defined below is introduced, so that the
zero entries of Xh: are not revised. Set ωh of integers is introduced
for this purpose. ωh is often called “support”.

ωh =
(
q|1 ≤ q ≤ n, Xhq � 0

)
(2)

ωh lists the indices of the non-zero entries of Xh:. Using this,
projection matrix Ωh is defined as follows. Let |ωh| indicate the
number of elements in |ωh|. For i = 1, . . . , |ωh|, the (wh(i), i)-th
entries of Ωh are 1, and all other entries are 0. Finally, define
Ẽh = EhΩh, and Ẽh is then approximated by a product of a col-
umn vector and a row vector. In other words, Ẽh is approximated
by a rank 1 matrix. In K-SVD, singular value decomposition
(SVD) is used for this low rank approximation. Let Ẽh = UΛVT

be SVD. Then, Eh � λ1U:1VT
:1. Finally, U:1 is substituted into

D:h, while λ1VT
:1 is substituted into the non-zero entries of Xh:.

The use of SVD constrains K-SVD in terms of computation
time. Since Ẽh ∈ Rm×|ωh | matrix, the complexity of SVD is
O(min{m′2n′,m′n′2}). It means that the computation time rapidly
increases as the dimensions of the input vectors, m, or the num-
ber of input vectors n, increases. The low rank approximation
part of K-SVD is therefore replaced with a method that uses less
computation time than SVD.

Algorithm 2 Bilateral random projections
Input: Matrix M ∈ Rm×n

Output: Low rank approximation L ∈ Rm×n

Generate random matrices A1 ∈ Rn×r and A2 ∈ Rm×r

for s = 1 to ρ

W1 ←− MA1

W2 ←− MT A2

A1 ←− W2

A2 ←− W1

end

L←− W1(AT
2 W1)−1WT

2

2.2 Bilateral Random Projections
Bilateral random projections (BRP) is a method of low rank

approximation that was recently proposed by Zhou and Tao [23],
[24]. Their motivation was to implement a system that decom-
posed the input matrix into the sum of three matrices, namely a
sparse matrix, a low rank matrix, and a noise matrix.

The low rank approximation of matrix M ∈ Rm×n in BRP is
obtained using bilateral projections starting from random matri-
ces. Let r be the required rank. The overall algorithm is indi-
cated in Algorithm 2. First, two random matrices, A1 ∈ Rn×r and
A2 ∈ Rm×r, are generated. In practice, random values sampled
from a Gaussian distribution can be assigned to each entry of the
matrices. These matrices are used to iteratively project M to r-
dimensional subspaces, by W1 = MA1 and W2 = MT A2. Finally,
low rank approximation is obtained by L = W1(AT

2 W1)−1WT
2 .

When r = 1, this is the power iteration for computing eigen-
vectors, since the left and right singular vectors of M correspond
to eigenvectors of MMT and MT M. It can also be considered as
a form of alternating projections [5], where A1 and A2 are alter-
natingly projected using M and MT .

3. Method

In this paper, a new dictionary learning method, k-normalized
bilateral projections (K-NBP), is proposed. The name comes
from its principal feature that not only atoms D:h but also source
row vectors Xh: are normalized.

3.1 Update Rule
Instead of using computationally costly SVD, K-NBP conducts

low rank approximation by bilateral random projections. Pro-
jected vectors are normalized and substituted to D:h and Xh:. For
the normalization step to be justified, the �2-norm of source vec-
tor Xh: must equal to 1. The assumption becomes approximately
true when input matrix Y is normalized and standardized. Let Xh:

be the standardized source vector, i.e., each of its entries follows
a standard Gaussian distribution. The expected �2-norm of this
vector is

√
n. By dividing Xh: by

√
n, a vector whose expected

�2-norm is 1 can be obtained. Algorithm 3 carries out both stan-
dardization and normalization for the input matrix together.

3.2 Standardization and Normalization
In order for source vector Xh to have norm 1, input matrix Y

is standardized and normalized in K-NBP before the main loop
starts. First, the entries of Y are standardized using the sample

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Algorithm 3 Standardization and normalization stage for K-NBP
Input: Input matrix Y ∈ Rm×n

Output: Standardized and normalized input matrix Ỹ ∈ Rm×n

Calculate mean μ and std.dev. S of all entries of Y

for i = 1 to m

for j = 1 to n

Ỹi, j ←− (Yi, j − μ)α/S √n

end

end

Algorithm 4 Dictionary update stage of K-NBP

Input: Standardized and normalized input matrix Ỹ ∈ Rm×n, estimated dic-

tionary D ∈ Rm×k, and estimated source matrix X ∈ Rk×n

Output: Revised D ∈ Rm×k and X ∈ Rk×n

for h = 1 to k

Eh ←− Ỹ −∑ j�h D: jX j:

Ẽh ←− EhΩh

Obtain Ωh using Xh:

Generate random vector A1 ∈ R|ωh | and A2 ∈ Rm

W1 ←− ẼhA1

W2 ←− ẼT
h A2

for p = 1 to ρ

W1 ←− ẼhW2

W2 ←− ẼT
h W1

end

if ‖W1‖ � 0

D:h ←− W1/‖W1‖
else

D:h ←− 0

end

if ‖W2‖ � 0

Revise non-zero entries of Xh: by WT
2 /‖W2‖

end

end

mean and sample standard deviation. Here, an approximation as-
suming all the entries were sampled from i.i.d. Gaussian distri-
butions was used. A more sophisticated way of standardization
must be carried out when this cannot be assumed. When the di-
mensions of the input matrix are large enough, however, standard-
ization using the sample mean and sample standard deviation is
assumed to be an acceptable approximation.

Input matrix Y is multiplied by a coefficient α in the prepro-
cessing stage to cope with strong stochastic dependencies in ob-
servations. For an ideal case where the entries follow independent
Gaussian distributions, α = 1 can be used. The actual value of α
is optimized using the given data set.

For normalization, each entry of input matrix Y is divided by√
n, where n is the number of columns of Y . Since ‖Y‖�2 scales

by
√

n with respect to n, it is divided by
√

n.

3.3 Dictionary Update
Algorithm 4 describes the dictionary update stage of K-NBP.

As in bilateral random projections, W1 and W2 are obtained by
projecting with Ẽh and ẼT

h , respectively. After repeating the pro-
jections for a set number of times ρ, W1/‖W1‖ is substituted into
D:h, and WT

2 /‖W2‖ is substituted into the non-zero entries of Xh:.
Note that the approximation of SVD proposed by Rubinstein et
al. uses WT

2 /‖W1‖ instead of WT
2 /‖W2‖ [18]. Note also that this

normalization is distinct from the normalization commonly used
in the power iteration to obtain eigenvectors, since the proposed
method normalizes the vector right before it is substituted into
the source matrix, and is therefore part of the dictionary update
stage but not of power iteration. When Ẽh is a m′ × n′ matrix on
average, the complexity of the whole dictionary update stage is
O(km′n′ρ).

Although K-NBP contains an internal loop where bilateral pro-
jections are repeated, the overall computation time for high di-
mensional signals is expected to be less than that K-SVD, since
K-NBP does not contain costly computation of SVD, which is
repeatedly conducted in K-SVD.

4. Evaluation

K-NBP and K-SVD were compared using both synthetic and
real data. Parameters that had to be adjusted were τ, which is the
number of iterations in the main loop and ρ, which is the number
of iterations in the low rank approximation. The optimal values
for these parameters were sought for in the experiments.

4.1 Synthetic Data
4.1.1 Experimental Setup

The following experiments were conducted based on the
scheme used by Aharon et al. for evaluating K-SVD [1]. Input
matrix Y is generated in the following way. First, dictionary
D ∈ R20×50 is randomly generated, by sampling each entry from
the uniform distribution over [−1, 1], and then normalizing each
column using the �2-norm, i.e., set all h to ‖D:h‖ = 1. Sparse
source matrix X ∈ R50×1500 is generated by randomly assigning 3
non-zero entries to each of its columns. The value is assigned by
sampling from the standard Gaussian distribution, i.e., N(0, 1) for
each of these non-zero entries. This is different from the original
setting by Aharon et al. where they used a uniform distribution.
This was to make the standardization of the input matrix simpler
and more reliable. K-NBP and K-SVD were compared by using
this input matrix Y .

OMP was used for both K-NBP and K-SVD in the sparse cod-
ing stage. For K-NBP, each entry of random matrices A1 and A2

is sampled from the standard Gaussian distribution. Aharon et al.
carried out experiments by setting the number of iterations in the
main loop to 80, i.e., they used τ = 80 [1]. Elad and Aharon pro-
posed to iterate it to 180 times [8] in another work where K-SVD
was applied to image processing. This indicates that the appro-
priate value of τ depends on the types of applications and the size
of input vectors.

The method was evaluated based on the number of successfully
estimated atoms [1]. This was defined as the number of cases that
an estimated atom came closer to an atom than the threshold in
the original dictionary. The level of closeness was measured us-
ing the inner product. Let D̂ be the estimated dictionary and D

be the original (correct) dictionary. When there is D:h′ such that
|〈D̂:h,D:h′ 〉| ≥ θ, atom D̂:h was judged to be successfully esti-
mated. Aharon et al. used θ = 0.99, but here the case where
θ = 0.95 was also considered. α was set to 1 in this experiment.
4.1.2 Results

In the first experiment, the value of ρ (the number of itera-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Fig. 1 Successfully estimated atoms for θ = 0.99 as number of iterations in
low rank approximation was changed.

Fig. 2 Successfully estimated atoms for θ = 0.99 as number of iterations in
main loop was changed.

tions in low rank approximation) was changed to see how large
it should be in order to obtain sufficiently accurate results. The
number of iterations in the main loop was set to τ = 20, while ρ
was changed from 0 to 20. The threshold was set to θ = 0.99. Fig-
ure 1 plots the average number of successfully estimated atoms
as ρ was changed. Each average is for 100 trials. The result in-
dicates that the number of successfully estimated atoms has not
changed much for ρ ≥ 5.

In the second experiment, the value of ρ was set to 5 while τ,
the number of iterations in the main loop, was changed from 0
to 80. The number of iterations in low rank approximation was
set to ρ = 5. The threshold was set to θ = 0.99. Figure 2 plots
the average number of successfully estimated atoms for 100 tri-
als. The solid blue line is for K-NBP, and the dashed black line
is for K-SVD. The red dotted line, which runs very close to K-
SVD (dashed black line), plots the results for the approximate
K-SVD proposed by Rubinstein et al. [18]. The number of itera-
tions in the low rank approximation of approximate K-SVD (this
value is denoted by υ) was set to 3, since they suggested that a
single iteration performed satisfactorily. Note that the number of
atoms in this experiment was set to 50. The results indicate that
although K-NBP does not reach the level of accuracy obtained by
K-SVD, it nevertheless reaches a certain level of accuracy much
faster. This means that when either the sparse coding stage or
the dictionary update stage takes a very long time, K-NBP has an
advantage over K-SVD.

Figure 3 plots average performance when the threshold was
set to θ = 0.95. K-NBP converged to a value very close to that of
K-SVD and the approximate K-SVD in this case, but was much
quicker. Therefore, K-NBP can be considered to be a good choice

Fig. 3 Successfully estimated atoms for θ = 0.95 as number of iterations in
main loop was changed.

Fig. 4 Average computation time for different methods and stages.

Table 1 Average computation time for different methods and stages for a
single step of the main loop (in seconds).

Stage K-NBP approx. K-SVD K-SVD
Sparse coding 0.7510 0.7515 0.7350

Dictionary update 0.0447 0.0433 0.3583

when either only rough approximation is needed or it takes too
much time to run K-SVD. K-NBP achieves 80 percent average
recall after 26 iterations, while K-SVD and approximate K-SVD
require 45 iterations. If 80 percent recall is the goal, K-NBP im-
proves the efficiency by 1.7 compared to K-SVD.

Figure 4 and Table 1 compare the computation times for the
sparse coding stage and dictionary update stage for K-SVD, K-
NBP, and the approximate K-SVD by Rubinstein et al. [18]. The
time is the total number of k iterations in the dictionary update
stage. The experiments were carried out using an Intel Core i7
2.90 GHz processor. The time indicated here is the CPU time for
running MATLAB programs. For computation, Intel MKL Basic
Linear Algebra Subroutines (BLAS) and Linear Algebra Package
(LAPACK) libraries were used.

The number of trials was 100, with τ = 80, ρ = 5, and υ = 3.
Therefore, the value was the average of 80 × 100 = 8, 000 CPU
time recordings. The blue part at the bottom of the figure in-
dicates the average time for one execution of the sparse coding
stage. The light green part at the top indicates the average time for
one execution of the dictionary update stage. The results indicate
that K-NBP was much faster than the original K-SVD, and was
comparable to the approximate K-SVD. In addition, it shows that
the sparse coding stage (OMP) took much longer than the dic-
tionary update stage of any of the methods compared here. This

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

feature was also reported by Rubinstein et al. [18], and suggests
that if the computation time of the sparse coding stage cannot be
reduced further, it is important to reduce the number of iterations
in the main loop in order to reduce the total computation time.
K-NBP is more suited than K-SVD or the approximate K-SVD
to achieve this purpose. It should also be noted that the compu-
tation times for OMP and SVD rapidly increases as functions of
the data size. It means that K-NBP is more effective with large
amounts of data.

4.2 Real Data
K-NBP was compared to K-SVD using real data, specifically

images. The experiment was designed following the scheme used
by Aharon et al. when evaluating K-SVD [1]. Fifteen images of
cameras contained in Caltech-256 [12] were broken down into
11, 000 local image blocks, each of which had 8×8 pixels. These
training data were of the same size as those used in the evaluation
of K-SVD [1]. Each block B corresponded to a column of input
matrix Y .

Dictionary D ∈ R64×441, consisting of 441 atoms, was trained
for input matrix Y ∈ R64×11000 using K-NBP, K-SVD, and the
approximate K-SVD. The first column (atom) of D in all three
methods was always set to be a normalized constant vector, i.e.,
having the same value for all components. The maximum num-
ber of non-zero coefficients was set to 10 for the OMP used with
dictionary learning. The maximum tolerated error in OMP was
‖(0.02)1‖, where 1 indicates a vector with all components equal to
1. This means that an error of ±0.02 was tolerated for each pixel.
As OMP was conducted within the subspace of non-corrupted
pixels, each atom was normalized in this space.

The trained dictionaries were tested in the following way. An
image that was not contained in the training set was used as a
test image. These images were corrupted and then the trained
dictionaries were evaluated based on how well the original image
could be recovered. The test image consisted of 1, 369 blocks
in the experiment. Randomly selected pixels were corrupted for
each block, for ratio r of all the pixels. r was set to 0.5 in the
experiment. This means that half of all the pixels were corrupted.

The corrupted pixels were reconstructed with dictionary D.
The non-corrupted pixels remained as-is, i.e., they were not re-
vised. Note that the system recognized which pixels were cor-
rupted in this experiment. Such information is not always avail-
able in many applications, but this is the evaluation scheme used
in Ref. [1], and for the sake of comparing the proposed method
with K-SVD, this assumption was considered to be valid.

The system conducts OMP for each block B in the subspace
spanned by the non-corrupted pixels in B, and sparse vector xB is
obtained. The non-zero components of this vector correspond to
a small set of atoms that are used to approximate block B. The
maximum number of non-zero components of xB is set to 10 in
OMP. Finally, the corrupted pixels of B are revised by the corre-
sponding components of DxB. The resulting reconstructed block
is expressed by B̃.

As in [1], RMSE (root mean squared error) was used for mea-
suring the reconstruction error. RMSE is defined by

Fig. 5 RMSE for α ∈ [10, 200].

Fig. 6 RMSE for α ∈ [200, 1000].

√
‖B − B̃‖2F/64 (3)

where ||−||F indicates the Frobenius norm and 64 is the number
of pixels in a block to evaluate how successful image reconstruc-
tion had been. The lower the value of RMSE, the better the image
had been reconstructed.

The value of α used in Algorithm 3 was optimized before ac-
tual evaluation. α is a parameter by which the input matrix was
multiplied with in the preprocessing stage. Since it depends on
the statistical properties of data, a feasible value must be found
for each type of data. Figures 5 and 6 plot RMSE as the value of
α was changed. The number of repetitions in the main loop, i.e.,
τ, was set to 5. The results indicate that K-NBP performs well
in a wide range of α. α was set to 200 in the experiments that
followed.

In order to see if this setting is applicable for other sets of im-
ages as well, the same test was carried out using another set of im-
ages, namely those of dragonflies, available at Caltech-256 [12].
The result is indicated in Figs. 7 and 8. Shapes of the graphs
closely resemble those in prior figures, except for the scale of the
y-axis. Here also, setting α = 200 is an appropriate option.

Figure 9 shows the atoms obtained by K-NBP on 11000 blocks
of local images, each with 8 × 8 pixels, at τ = 10 and ρ = 5.
The atoms in this figure are presented visually. The values of
each of their components are represented by the intensities of
corresponding pixels. Such images are often called basis im-
ages. They capture local features of images at different frequen-
cies and orientations, and resemble receptive fields of neurons in
vision [15], [16].

The test images were reconstructed with OMP by using these
atoms. Figure 10 has examples of the original, corrupted, and re-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Fig. 7 RMSE for α ∈ [10, 200] for dragonfly images.

Fig. 8 RMSE for α ∈ [200, 1000] for dragonfly images.

Fig. 9 Atoms (basis images) obtained from set of 8 × 8 image blocks.

Fig. 10 Original, corrupted and reconstructed images using K-NBP (from
left to right).

constructed images. Although high frequency components such
as edges are blurred, overall reconstruction is successful.

Figure 11 plots RMSE as the number of repetitions in the main
loop in the dictionary learning stage is changed. Ten test images
were used. When there were fewer repetitions, K-NBP provided

Fig. 11 RMSE when number of main iterations was changed.

Fig. 12 RMSE when numbers of blocks were changed.

better results than K-SVD and the approximate K-SVD. This is
roughly the same as the results obtained for the synthetic data.

Finally, the value of α for image data did not need to be
changed for different sizes of input matrix Y . It amounted to
changing the size and number of blocks in images. This was a
very useful property since once α was determined from one data
set, it could also be applied to other data sets of the same type. In
other words, α needed to be optimized just once for each type of
data set.

Figure 12 plots RMSE as the number of blocks was changed.
This corresponds to changing the number of columns in Y . α was
set to 200 and τ = 10 and ρ = 5. Ten test images were used. The
graph indicates that although the values of RMSE differ for dif-
ferent numbers of blocks, these are consistent with the changes in
RMSE of K-SVD and the approximate K-SVD. Note that these
two methods do not use α. K-NBP with α = 200 outperforms
K-SVD and the approximate K-SVD for a wide range of block
sizes.

Figure 13 plots RMSE as the size of blocks were changed. The
x-axis is the width of a block. For example, if the value is 4, the
block size is 4 × 4. Changing this value corresponds to changing
the number of rows in Y . Similar to when the numbers of blocks
were changed, the change in the value of RMSE is consistent with
the change in the RMSE of K-SVD and its approximation, which
means α does not need to be changed as much.

These results indicate that the optimal value of α depends more
on the statistical properties of the input matrix, rather than its size.
Theoretical analysis on how optimal α is determined based on the
statistical properties of data, and a systematic way of finding a

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Fig. 13 RMSE when the size of blocks were changed.

feasible value is part of future work.

5. Related Work

Sparsity has recently been extensively discussed in the lit-
erature as one of the fundamental concepts in data process-
ing [14], [21]. Sparse coding is also widely being used in vari-
ous applications including image denoising [6], [8], blind source
separation [11], and sensing [7].

There has been some work that has modified K-SVD to make
it faster and more scalable. Peng and Hwang proposed the use
of the proximal method to improve it [17]. Rubinstein et al. used
bilateral projections to approximate SVD [18]. Their methods are
different from the one proposed in this paper, since normalization
of the source vector is not involved.

Chang et al. proposed a single-pass algorithm for K-SVD [3].
It makes K-SVD applicable to a large data set by dissolving the
need to repeatedly access data. In contrast, this paper proposes a
method of reducing reconstruction error using a geometric prop-
erty of the data distribution. The two techniques can be combined
to increase the performance in both ways. Developing a single-
pass version of K-NBP would be an interesting topic to explore.

Mairal et al. proposed task-driven dictionary learning, where
knowledge about the task was exploited. They have developed
algorithms for online dictionary learning based on stochastic gra-
dient descent [13]. Dai et al. proposed simultaneous codeword
optimization (SimCo) that generalized two commonly used dic-
tionary learning methods, i.e., the method of optimal directions
(MOD) and K-SVD, and that also allowed simultaneous updates
of atoms and source vectors [4]. Spielman et al. developed an
algorithm called Exact Recovery of Sparsely-Used Dictionar-
ies (ER-SpUD) that stochastically recovered the dictionary and
source matrix [20]. Sadeghi et al. have recently proposed a fast
approximation to dictionary learning based on convexifying the
dictionary learning problem [19].

6. Conclusion

In this paper, K-NBP, a new method of dictionary learning was
proposed, which replaces SVD in K-SVD with bilateral projec-
tions. The experiments showed that the use of bilateral projec-
tions produces good results-SVD while reducing the total com-
putation time. K-NBP is a promising option to satisfy the cur-
rently increasing demands to apply dictionary learning to large

scale data.
K-NBP was tested using the image reconstruction task. K-

NBP, however, is a very general method that could also be applied
to other types of data. In future work the method will be tested
for other tasks in data analysis.

One interesting generalization of K-NBP is to use a structured
projection or structured random projections instead of random
projections. If there is some background knowledge about the
distribution of data, it could be incorporated into the projection
step. This could be very effective for certain application domains.

K-NBP does not improve the efficiency in terms of space, i.e.
memory usage. One way to overcome this limitation in K-NBP
is to develop a single-pass algorithm [3], which can potentially
increase the number of images that could be processed.

Also, faster convergence may be achieved by modifying the bi-
lateral projection step so that is more suited to the purpose of dic-
tionary learning. For example, it may be effective to introduce a
learning rate to control the randomness inherent in the algorithms.
The adequacy of the normalization stage, namely dividing the in-
put matrix by

√
n, still requires further theoretical investigations.

For example, the dimension of Ẽh is a random variable and must
be analyzed using a stochastic framework.

Acknowledgments This work was supported in part by the
Japan Society for the Promotion of Science (JSPS) KAKENHI:
Grant Numbers 21700121, 25280110, and 25540159.

References

[1] Aharon, M., Elad, M. and Bruckstein, A.: K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation, IEEE
Trans. Signal Processing, Vol.54, No.11, pp.4311–4322 (2006).

[2] Bruckstein, A., Donoho, D.L. and Elad, M.: From sparse solutions of
systems of equations to sparse modeling of signals and images, SIAM
Review, Vol.51, Issue 1, pp.34–81 (2009).

[3] Chang, K., Lin, C., Chen, C. and Hung, Y.: Single-Pass K-SVD for Ef-
ficient Dictionary Learning, Circuits, Systems, and Signal Processing,
Vol.33, pp.309–320 (2014).

[4] Dai, W., Xu, T. and Wang, W.: Simultaneous codeword optimization
(SimCO) for dictionary update and learning, IEEE Trans. Signal Pro-
cessing, Vol.60, No.12, pp.6340–6353 (2012).

[5] Deutsch, F.: Best approximation in inner product spaces, Springer,
Berlin (2011).

[6] Dong, W., Li, X., Zhang, L. and Shi, G.: Sparsity-based image denois-
ing via dictionary learning and structural clustering, 2011 IEEE Conf.
on Computer Vision and Pattern Recognition, pp.457–464 (2011).

[7] Donoho, D.L.: Compressed sensing, IEEE Trans. Information Theory,
Vol.52, No.4, pp.1289–1306 (2006).

[8] Elad, M. and Aharon, M.: Image denoising via sparse and redundant
representations over learned dictionaries, IEEE Trans. Image Process-
ing, Vol.15, No.12, pp.3736–3745 (2006).

[9] Elad, M.: Sparse and Redundant Representations, Springer, Berlin
(2010).

[10] Field, D.J.: What is the goal of sensory coding?, Neural Computation,
Vol.6, No.4, pp.559–601 (1994).

[11] Gribonval, R. and Zibulevsky, M.: Sparse component analysis,
Comon, P. and Jutten, C. (ed.), Handbook of Blind Source Separation:
Independent Component Analysis and Applications, Elsevier, Oxford,
pp.367–420 (2010).

[12] Griffin, G., Holub, A. and Perona, P.: Caltech-256 object category
dataset, Caltech Technical Report, No.CNS-TR-2007-001 (2007).

[13] Mairal, J., Bach, F. and Ponce, J.: Task-driven dictionary learning,
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.34, No.4,
pp.791–804 (2012).

[14] Mallat, S. and Wavelet, A.: Tour of Signal Processing—The Sparse
Way, Academic Press, Oxford (2009).

[15] Olshausen, B.A. and Field, D.J.: Emergence of simple-cell receptive
field properties by learning a sparse code for natural images, Nature,
Vol.381, pp.607–609 (1996).

[16] Olshausen, B.A. and Field, D.J.: Sparse coding of sensory inputs, Cur-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

rent Opinion in Neurobiology, Vol.14, pp.481–487 (2004).
[17] Peng, G. and Hwang, W.: A proximal method for the K-SVD dictio-

nary learning, Proc. 23rd IEEE International Workshop on Machine
Learning for Signal Processing (2013).

[18] Rubinstein, R., Zibulevsky, M. and Elad, M.: Efficient implementa-
tion of the K-SVD algorithm using batch orthogonal matching pursuit,
Technical Report - CS Technion (2008).

[19] Sadeghi, M., Babaie-Zadeh, M. and Jutten, C.: Dictionary learning
for sparse representation: A novel approach, Proc. 39th International
Conf. Acoustic, Speech and Signal Processing, pp.3601–3604 (2014).

[20] Spielman, D.A., Wang, H. and Wright, J.: Exact recovery of sparsely-
used dictionaries, Proc. 25th Conf. Learning Theory, pp.37.1–37.18
(2012).

[21] Starck, J., Murtagh, F. and Fadili, J.M.: Sparse Image and Signal Pro-
cessing, Cambridge University Press, Cambridge (2010).

[22] Tezuka, T.: A dictionary learning algorithm for sparse coding by
the normalized bilateral projections, Proc. 24th IEEE International
Workshop on Machine Learning for Signal Processing (MLSP2014),
Reims, France (2014).

[23] Zhou, T. and Zhao, D.: GoDec: Randomized low-rank and sparse
matrix decomposition in noisy case, Proc. 28th International Conf.
Machine Learning, pp.33–40 (2011).

[24] Zhou, T. and Tao, D.: Bilateral random projections, Proc. 2012
IEEE International Symposium on Information Theory, pp.1286–1290
(2012).

Taro Tezuka is an associate professor
at the Faculty of Library, Information
and Media Science in the University of
Tsukuba. He got his Ph.D. in informat-
ics from Kyoto University in 2005. He
worked in Ritsumeikan University prior to
joining the University of Tsukuba in 2011.
He was a visiting researcher at the Naval

Academy Research Institute in France from 2014 to 2015. He is
currently working on sparse coding and dictionary learning for
image processing.

c© 2016 Information Processing Society of Japan

