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Abstract: Dynamics of blood chemicals often reflects metabolic states of patients and has hence been broadly used
as disease markers, e.g. oral glucose tolerance test is a standard method to diagnose diabetes that is typically caused
by pancreatic insufficiency. In order to reveal metabolic system involving many chemical species, and its variabil-
ity among patients, we need statistical analysis of multi-subject and multi-condition observations. In this study, we
propose a sparse VARX model with standard Kalman-Smoother method. The sparse Vector Auto-Regressive with eX-
ogenous input (VARX) model resolved the multi-subject, multi-condition structure and the Kalman-Smoother resolved
the problem of irregular-intervals in observations. We showed that the proposed method could identify the simulated
system that involved sparse variability among subjects.

1. Introduction
Recently, with the rising needs of treatment options of pancreas

diseases, further understanding of the pancreas functions has be-
come more and more important. Diabetes is a group of metabolic
diseases in which the blood sugar is of high level for a prolonged
period that can cause many acute complications and serious long-
term complications. Diabetes is considered to occur, because the
pancreas does not produce enough insulin or the cells of the body
do not respond properly to the produced insulin. The dynamics of
blood chemicals turn to be very important, since all the metabolic
compounds (e.g. glucose) from the cells and hormone produc-
tions (mainly insulin) from pancreas are released into our circu-
latory system, and hence involved in the homeostasis of the whole
body. As an example, the oral glucose tolerance test (OGTT) has
been commonly performed to diagnose diabetes, in which a stan-
dard dose of glucose is ingested by mouth, and blood levels are
measured several hours later. The test often needs to draw blood
several times and requires two hours or up to six hours, in order
to allow only the glucose (sometimes with insulin) levels to be
measured. In many cases, rich information from various chem-
icals in the metabolic system has been ignored, although it can
shorten the test time and also detect different types of diabetes.

The goal of our project is the identification of the metabolic
system consisting of blood chemicals, which is involved in glu-
cose induced pancreas functions, and its variability among in-
dividuals. Previously, Kuroda and colleagues have successfully

1 Graduate School of Informatics, Kyoto university, 36-1 Yoshidahon-
machi, Sakyo-ku, Kyoto-city, 606-8501, Japan

2 Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-
ku, Tokyo 113-0033, Japan

a) su-ds@sys.i.kyoto-u.ac.jp
b) oba@i.kyoto-u.ac.jp

modeled intracellular insulin pathway[1] and found two different
patterns of insulin activity in circulatory system[2]. This study
is an attempt to analyze sequential data of blood chemicals for
identifying the metabolic system controlled by pancreas as an en-
docrine gland. In this study, we have faced several challenges.
The first challenge is due to multiple subjects and multiple con-
ditions in the blood chemical analysis. The “common” features
over all the subjects and conditions are of course very important
for diagnosing diseases, while the “individual” features of each
subject or dosing condition also provides important information
for personalized treatment programs, reasonable eating habits ad-
visement, and other future research directions. The second chal-
lenge is an irregular-interval observation in data sampling. Con-
sidering both the health of subjects and the experimental cost,
blood sampling often cannot be frequent or equal. So, the time
courses of observations become of irregular intervals. This also
requires sophisticated treatment of the time-series.

Auto-Regressive (AR) model is a type of random process that
specifies the output values depending on its own previous values,
and has been used to describe various time-series found in na-
ture and economics. Vector AR(VAR) model of more than one
stochastic differential equations has been used in analyzing se-
quential data of medicine and physiology, such as RNA and DNA
sequence[3][4][5]. There are many disadvantages in the VAR
model: the output values can only depend on its own previous
values; it is also weak against missing observations or nonlinear
factors of the dynamics. VAR models can incorporate nonlinear
factors inside the dynamics. There are two basic ways to make
a VAR model nonlinear: One is to add nonlinear terms into the
VAR model (then it becomes a Vector Auto-Regressive with eX-
ogenous variable (VARX) model)[6], and the other is to use an
ARX model[7] with state-dependent radial basis functions[8].
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Referring to the previous study by Kuroda and others[2], we
used a sparse VARX model with standard Kalman-Smoother
method in this study. To solve the multi-subject, multi-condition
problem, we assumed the parameter matrix of each condition
of each individual as a sum of common, condition dependent,
and individual dependent parameter matrices in the sparse VARX
model. With this assumption and the sparse estimation of the
parameters, this block structure not only increased the accuracy
but also provided important information for studying the influ-
ence of individuals and conditions. Irregular-interval-observation
of the time-course was found to significantly affect the estima-
tion of regular VARX models. In order to handle this prob-
lem, we assumed that an irregular-interval time-course obtained
by the actual blood sampling had been sub-sampled from a
regular-interval time-course so that there were missing observa-
tions within it. Based on this assumption, we introduced stan-
dard Kalman-smoother into the state-space model and found that
this modification was effective in dealing with irregular-interval
time-courses. Among the blood chemicals, glucose and insulin
are seen as corner stones, since they are the triggers of anabolism
and catabolism; so we focused on these species. Nonlinear terms
that had been introduced to the ODE model by Kuroda and oth-
ers were also added into our VARX model to increase the repro-
ducibility of important blood chemicals.

2. Methods
In this study, we developed a combined model of a sparse

VARX model and standard Kalman-Smoother and applied it to
the dataset of time-sequences of blood chemicals. We expected
the VARX model represents quantitatively the metabolic dynam-
ics of blood chemicals, whereas sparse regularization resolves
multi-subject and multi-condition structure of the experimental
data. Moreover, we expected the Kalman-smoother resolves the
problem of irregular interval observations. Before explaining our
proposed model, we briefly introduce the VARX model.

2.1 VARX model
A vector auto-regressive (VAR) model of order p (VAR(p)) is

defined as

y(t) =

p∑
i=1

Wiy(t − i) + ε(t) (1)

where y(t) is a k × 1 variable vector at time t = 1, ...,T , Wi is a
k × k matrix representing in total time-invariant coefficients, p is
the order, and ε(t) is a k×1 vector of white noise. All the variables
in the VAR above are treated individually and symmetrically over
the vector; each variable has an equation explaining its evolution
based on the previous values of its own and the other variables.
A VAR model only requires a list of variables that hypothetically
affect each other temporally as a prior knowledge, but includes
different prior relationship between variables from those in struc-
tural models like simultaneous equations.

Sometimes, we additionally consider exogenous input f(t) that
affects the VAR dynamics of eq.(1) which is formally written as
follows:

y(t) =

p∑
i=1

Wix(t − i) + ε(t) (2)

where x(t) is a k′ × 1 variable vector that includes y(t) itself, the
exogenous input f(t), and other extended terms yext(t), represent-
ing some non-linear effects. The time-invariant coefficient Wi

becomes a k × k′ matrix. We call this extended model a VARX
model. The extended terms yext(t) and the exogenous input f(t)
should be designed to reflect background knowledge of the sys-
tem .

2.2 Sparse VARX model
We propose a sparse model as an extension of the VARX(1)

model to analyze metabolites data obtained by multi-subject and
multi-condition measurements. Provided that we have a multi-
subject and multi-condition metabolomics dataset Y = {yi j(t) ∈
Rk, i = 1, · · · ,NS , j = 1, · · · ,NC} where NS and NC are the num-
bers of individual subjects and dosing conditions, respectively.
To deal with this dataset, we assume a VARX model for each
individual i and dosing condition j:

yi j(t) = Wi jxi j(t − 1) + ε i j(t) (3)

where Wi j is a k × k′ matrix of time-invariant coefficient parame-
ters for each individual i and dosing condition j. xi j(t) is the same
with x(t) in eq.(2), except for the dependence on individual i or
dosing condition j. ε i j(t) is a residual noise.

In our sparse VARX model, we assume either of the following
four sub-model structures among subjects i = 1, ...,NS and dos-
ing conditions j = 1, ...,NC . The first model is
Wi j = A
saying that the parameters are common over all the individuals
and dosing conditions; this is called model A. And, the second
one is
Wi j = A + Bi

saying that the parameters are common over different dosing con-
ditions but different between individuals; this is called model AB.
The third one is
Wi j = A + Bi + D j

saying that there are individual effect Bi and dosing effect D j, in
total, called model ABD. Finally, the most complicated model is
Wi j = A + Ei j

saying that there are both individual and dosing effects Ei j, called
model AE.
We assume all the matrices: A, Bi, D j and Ei j, are sparse. In or-
der to obtain sparse solutions for them, we applied the following
L1 regularization[9][10]:

Reg(W) = |A| +
∑

i

|B| +
∑

j

|D| +
∑

i j

|E| (4)

where |A| denotes the sum of absolute values of all the elements
of matrix A.

2.3 VARX model with Kalman-Smoother
Usual AR and VARX models assume time-sequences with

equal intervals, thus missing observations or observations with
irregular intervals make the analysis with AR/VARX difficult. To
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Fig. 1 Comparison of smoothed results among different variance for ob-
servation noise; three different value of Vmiss was compared. Hori-
zontal and vertical axes denote the time and value of time sequence,
respectively. Black “o” and red “x” denote observation and truth
values. Notice that we set the values of missing observations at ze-
ros. Blue dash lines denote smoothed results. The observed val-
ues are available every ten minutes except for missing moments,
at {70, 80, 90, 100, 110}. (a) smoothed result for Vmiss = 0, (b)
smoothed result for Vmiss = Vobs, (c) smoothed result for Vmiss
equals a very large value

deal with irregular interval observations, we introduce Kalman-
Smoother algorithm with a state-space modeling. Kalman-
Smoother is an algorithm to estimate unknown system variables,
given a series of measurements along time which may contain
observation and system noises; the estimates are expected to be
more precise than those based on a single measurement alone.
We consider the following state space model.

x̄i j(t) = Wi jxi j(t − 1) + ε i j(t) (5)

yi j(t) = x̄i j(t) + ηi j(t) (6)

where x̄i j(t) is a k × 1 dimensional vector whose values are the
same with the top k elements of the vector xi j(t). ηi j(t) is an obser-
vation noise whose variance V(t) may depend on time. We set the
variance V(t) = Vmiss for a time-point t at which the observation
yi j(t) was regarded as missing and V(t) = Vobs otherwise, where
Vmiss and Vobs are fixed hyper-parameters. In Fig. 1, if we set
Vmiss = 0, smoother will totally trust the observation, then state
space model is exactly the same with the VARX model, eq.(2), in
total; if Vmiss = Vobs, the missing points will be treated equally
as normal observations, This still greatly affects the accuracy of
estimation method; if Vmiss = a very large value (1e10 in our sim-
ulation), smoother will have no trust to the observations (set as
zero values) and choose the system prediction, make the dynamic
smoothed.

This formalism, however, brings us a new problem that we
have to deal with both unknown VAR model parameters and
missing observations at the same time. To this end, expectation-
and-maximization (EM) algorithm[11][12] was introduced into
this framework. We regard xi j(t) as a hidden variable vector if
V(t) > 0, and let X be the set of all hidden variables. We can

(a) (b)

Fig. 2 A demonstration of Kalman-Smoother with comparison to simple
AR model. (a) and (b) correspond to two different time-interval pat-
terns, sparse and connected, produced by simulations, respectively.
The top panels show the observed and the estimated time sequences,
in which horizontal and vertical axes denote time and normalized
concentrations of blood chemicals, respectively. Red, black dash,
and blue lines denote ground truth series, estimation by AR, and that
by Kalman-Smoother, respectively. Black “o” denotes a single obser-
vation. The observed values are available every ten minutes except
for missing moments, at {60, 80, 100, 120, 140} in the sparse case (a)
and at {90, 100, 110, 120, 130} in the connected case (b). The bot-
tom panels show estimation errors of the missing observations cor-
responding to the two cases above. Blue bars depict the errors by
Kalman-Smoother, and red bars by AR.

estimate a posterior distribution of the hidden variables X by a
Kalman-Smoother algorithm if the parameter value of W is given.
On the other hand, we can calculate maximum likelihood estima-
tion of the parameter W if the posterior distribution of the hidden
variable X is given. Although the latter maximum likelihood es-
timation is done with an L1 regularization, simultaneous estima-
tion of X and W can be performed with an alternate optimization
procedure, i.e., the EM algorithm, in total.

In the E-step, posterior density q(X) is calculated for each
individual and condition independently by standard Kalman-
Smoother[13][14] with parameters of the VARX(1) model and
partially missing observations (An irregular interval observations
in real blood sampling experiment can be seen as regular interval
observations with missing points),

q(X) = p(X|Y, Ŵ) (7)

where X, Y, and Ŵ are internal (system) variables, observa-
tions, and the parameters of the VARX(1), respectively. The
objective of the standard Kalman-Smoother algorithm is to ob-
tain the marginal probability γ(x(t)) = p(x(t)|y(1), · · · , y(T )) =

N(xt |µ̂(t), V̂(t)) for each t = 1, · · · ,T .
In the M-step, parameter matrix W is estimated by minimiza-

tion of the following objective function:

L(W,Y) = Err(Y,W) + λReg(W) (8)

Quadratic error function Err is defined by

Err(Y,W) =
1
2

T∑
t=2

(Y(t) −WX(t − 1))2 (9)
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As described in section 2.2, the L1-norm regularization term is
given by

Reg(W) = |A| +
∑

i

|B| +
∑

j

|D| +
∑

i j

|E| (10)

λ denotes a regularization coefficient whose value is determined
by a cross-validation procedure.

Kalman-Smoother is expected to estimate the unknown system
variables more accurately than the simple AR model, especially
when the observations consist of unequal-interval observations
or missing observations. Fig. 2 demonstrates that the Kalman-
Smoother provided a better estimation of the unknown variables
than the AR model in the both cases of discrete and connected
missing observations.

2.4 Hyper-parameters and cross-validation
The proposed method requires not only an appropriate setting

of regularization hyper-parameter λ but also model selection from
the four options, A, AB, ABD, and AE. In order to determine
the best hyper-parameter setting and model, we compared cross-
validation error that was defined as follows. In each sub-task in
the cross-validation, we picked a time sequence of five continu-
ous time points, regarded the observed values at these five time
points as artificial missing values, estimated the parameters and
all the missing values, and assessed the error of the estimation
of the missing values by comparing with the ground truths (ac-
tual observations). We calculated the cross-validation error for
every combination of possible values of the regularization hyper-
parameter, and model structures, to determine the best combina-
tion. Note that we picked up five succession of time points in the
cross-validation process, because we wanted to see fitting perfor-
mance over large time gap, rather than to see one for interpolation
of small gaps; the latter seems much easier than the former.

3. Experiment Data
An artificial dataset of the concentration of certain blood

plasma chemicals, was generated in order to test the performance
of the proposed method at a condition including sufficient amount
of data. Another advantage would be availability of ground truth.
We generated the artificial data by an application of the VARX(1)
model with a given set of parameters and initial conditions. The
dataset contained 20 time points of 10 chemical species from 20
individuals and in 2 different dosing conditions. All the values of
chemical concentrations were normalized so that minimum and
maximum values of each chemical became one and zero, respec-
tively. The 10 chemical species we used in our experiment are
Glucose, Insulin, GIP(Active), Alanine, Leucine, Tyrosine, Total
ketone body, Pancreatic glucagon, Citrate, and Succinate, which
are important hormone and typical metabolites of catabolism.
The information of subjects was blinded. Dosing conditions were
separated into two types: bolus and ramp. The bolus denotes a
standard Oral Glucose Tolerance Test (OGTT), namely, the sub-
ject took a dose of 75g glucose in a time after 2 hours fasting. In
the ramp condition, the subject kept a series of small dose por-
tions of total 75g glucose over 2 hours after 2 hours fasting. The
parameter matrix Wi j for each individual i = 1, ..., 20 and each

dosing condition j ∈ {bolus, ramp} was prepared as follows. The
common parameter A was set consistently with the one estimated
from the real data described in the previous subsection. We set
the parameter matrices Bi at zero matrices for 10 individuals and
sparse random matrices for the other 10 individuals. This set-
ting of Bi, i = 1, ..., 20 reflected an assumption that many subjects
had identical characters and the others had their own characters
in some coefficients being deviated from the population average.
We set D j at zero matrices for both of the two dosing conditions
because there was no plausible assumption for preparing different
metabolic systems in the two dosing conditions.

4. Results
To evaluate our method, we performed one experiment based

on the artificial dataset, we estimated the parameters of the four
model structures, and optimized hyper-parameter λ of the L1-
norm regularization with respect to the cross-validation error for
each model structure. We also estimated the parameters of three
model structures and compared the parameters with the ground-
truth values of the VARX(1) models that had generated the data.
Table 1 shows the cross-validation error for these settings.

Table 1 Comparison of cross-validation error among the four model struc-
tures and various settings of regularization hyper-parameter λ.
Bold text denotes the smallest error in the four models.

λ 0.3 0.1 0.06 0.03 0.01 0.001
AE 8.60E-04 2.91E-04 2.06E-04 8.69E-05 2.55E-05 7.17E-05
ABD 8.59E-04 2.79E-04 1.82E-04 8.22E-05 2.08E-05 6.86E-05
AB 8.58E-04 2.81E-04 1.84E-04 8.46E-05 2.37E-05 6.67E-05
A 8.63E-04 3.25E-04 2.54E-04 2.17E-04 1.68E-04 3.84E-04

As we expected, good performances were obtained by models
AB and ABD than those by models A and AE. Too simple (sub-
model A) and too complicated (sub-model AE) models could not
perform better. Based on the large difference in the performance
between models AB and A, we speculate individual characters,
which are represented by matrices Bi, i = 1, ..., 20, had strong
influence on the results. There was improvement in the perfor-
mance by model ABD to by AB, possibly because we have some
false positive elements in the matrices D j.

In Fig. 3, we compared the true and estimated values of the
parameter matrices A, B, and D, with a particular interest in re-
producibility of the sparse structure of the true matrices. We also
show the numbers of true positives, true negatives, false positives,
and false negatives, to examine the accurate reproduction of the
binary structure of the true sparse matrices. Seeing Fig. 3, we
found that the estimated matrices were sparser than the true ones.
The precision rate of the estimation of matrix A to detect non-
zero parameter values was as high as 81%. There were zero and
three false positives in estimation of matrices Bi (Fig. 3(b)) and
D j (Fig. 3(c)), respectively. In the simulation, VARX coefficients
Wi j of five out of ten subjects were set same with the average and
those of two dosing conditions were also the same. Because of
this sparse settings of individual-based and condition-based ma-
trices, the low false positives in the result were preferable, reflect-
ing the sparseness in the real data generation process.

We visualized the ground truth and the estimated parameters
of sub-model ABD in Fig. 4. The figure shows that sparseness
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Fig. 3 Comparison between true and estimated parameter values for ma-
trices A, B, and D of sub-model ABD. Horizontal and vertical axes
denote the true and the estimated parameters, respectively. Notice
that matrix D and half of the matrix B is set empty for our method to
detect the sparseness of the matrices. Numbers of true positives, true
negatives, false positives, and false negatives to detect non-zero en-
try in the matrices are shown in each panel. (a) comparison of matrix
A(common), (b) comparison of matrix B(individuals), (c) compari-
son of matrix D(dosing conditions)

Table 2 Improvement of model fitting by introducing the extended vari-
ables. Cross validation errors in the reproduction of time-
sequences of the two important chemicals, glucose and insulin.

Chemicals Terms Model A Model AB Model ABD

Glucose Non-extended 7.7E-5 5.7E-6 3.6E-6
With extended 5.8E-5 4.9E-6 3.2E-6

Insulin Non-extended 5.2E-5 7.4E-6 4.5E-6
With extended 3.5E-5 5.0E-6 3.1E-6

of the estimated matrices well reflected that of the ground truth,
although the estimation was a little sparser than the truth. All the
empty matrices of individual differences were correctly detected
(Fig. 4(b)).

Our method detected a few false positive elements in the ma-
trices D j; however, the values were very close to zero, the true
value.

5. Discussion
In our VARX model, two extended terms were added to the set

of cause variables y, in order to allow the model to better fit to
dynamics of important molecules, glucose and insulin. Compar-
ison shows that the extended terms contributed to improving the
accuracy.

We also added the terms that represent the absorption of oral
glucose, in which bolus condition values were taken from the
Elashoffs model, and ramp condition values were the dose aver-
ages. These terms, however, did not lead to substantial improve-
ment of our models, possibly because condition difference was
not considered when estimating the parameters. Since condition-
dependent estimation may exhibit further improvement, it re-
mains as our future study.

According to the cross validation, model structure ABD

showed the slight advantage in the accuracy over model AB (see
Table 1). The estimated matrix D was also found very sparse
with few small values, being comparable with the ”ground truth”
which had been set empty. There is still a room to be discussed,
whether we can say that the dosing condition has little influence
to the dynamics of blood chemicals, based on these two experi-
mental results.

In Fig. 4, the estimation of matrix D was not good enough, be-
cause it did not reproduce the emptiness of matrix D so good as
in matrix B. There should be many possible reasons for this re-
sult; for example, arbitrary set up of the external input may have
been inappropriate, condition differences was not under the con-
sideration for the different external inputs, the react insulin flow
in the bolus condition was too strong for the extended terms to
absorb. Accordingly, there is still great room for improvement of
the estimation of matrix D.

6. Summary
In this study, we developed a time-sequence analysis method

that can deal with heterogeneous data coming from multiple indi-
viduals and multiple conditions, and also temporally complicated
observations with irregular intervals. As a typical experiment, we
considered a blood chemical monitoring to examine the dynam-
ics of the blood chemicals related with pancreas as an endocrine
gland. In specific, we proposed a sparse VARX model with the
Kalman-Smoother method. To represent individual and condition
dependent factors, the model parameters were divided into four
groups; common, individual-dependent, condition-dependent and
individual-condition-dependent ones. Extended terms were also
added to the model to improve the fitting to the dynamics of im-
portant blood chemical species (glucose and insulin in our case).
Sparse estimation based on the L1-norm regularization was effec-
tive in exacting the underlying sparse structures. Applications to
the artificial dataset suggested that some of our model structures,
like ABD and AB, showed the best performance, by incorporat-
ing appropriate dependence on the individuals. Through the sim-
ulation study, we found our sparse estimation could sufficiently
reproduce the underlying sparse dependence on the individuals
or conditions. There is still much room for improvement, espe-
cially in selecting the extended terms or construction of model
structures, such as introduction of layered models incorporating
clustered secondary features; they are remaining for future stud-
ies.
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