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Computation of Upper and Lower Bounds ofL, Error of
Multiview Triangulation Using Linear Matrix Inequalities

a) b) 1,0)
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Abstract: This paper proposes several methods for computing upper and lower boulngerobr of multiview tri-
angulation. The multiview triangulation is to find the point that minimizes the sum of reprojection errors calculated
by points on the image plane observed by multiple cameras. We first shdw thtimization for multiview trian-
gulation is reduced to the ones with nonconvex matrix inequality constraints, which are hard to solve. By relaxing
the nonconvex matrix inequality constraints, we derive conditions for computing lower bouhgsoptimal error.

The conditions are represented by linear matrix inequalities (LMI), and they are easy to solve. On the other hand,
by tightening the nonconvex matrix inequality constraints, we derive conditions for computing upper bouds of
optimal error, which are also represented by LMI. These methods are easily implemented by MATLAB using tools for
LMI such as SeDuMi and YALMIP. The proposed methods are evaluated through numerical examples.

Keywords: multiview triangulation L, optimization, Linear Matrix Inequality (LMI)

a useful one to overcome the problems. LMIs method is based

on the idea that an original non-convex feasible set can be ap-
In the field of 3D reconstruction, multiview triangulation prob- proached by hierarchal convex relaxations to a convex feasible

lems as a much more important problem than most, have been enset [6]. On the other hand, the method proposed by Endo shows a

gaged in research accordingly. In recently years, a feasible wayway to compute an upper boundlof error. It is a approximation

of working with these problems which has been found relies on method that the relation to the optimum is not clear. Holding the

minimizing the sums of squarek -norm) reprojection error [1]. purpose of overcoming the disadvantages in Endo’s paper, a idea

1. Introduction

Furthermore, in a special situation that thenorm of reprojec- that computing but only upper bound, but also lower bound is
tion error equals zero, the reconstructed 3D-point is the same withthought out. Our proposed method is based on the idea proposed
the real one. To summarize, finding the global minimunigf in [7] which is also a kind of LMIs method. Instead of calculat-

norm of reprojection error is the main problem in 3D reconstruc- ing L, error directly, computation upper and lower bounds is a
tion, which is defined as multiview triangulation problem. To be easier approach for multiview triangulation problems. And with
more precisely, the multiview triangulation problem is to find the upper and lower bounds, the relation to the optimum can be clear.
point that minimizes the sum of reprojection errors calculated by Especially, when there is noftiérence between upper and lower
points on the image plane observed by multiple cameras. Thisbounds, they are equal to optimum.
is also the main problem in this paper. And we daltnorm of
reprojection error ak, error for short.
With the aim of minimizingL, error, due to the local mini- 2.1 Problem formulation
mum problem, global minimum is mordheiently to achieving As the simplest model of multiview triangulation for achieving
purpose [2]. In recently years, a large numbers of methods have3D reconstruction, we consider two-view triangulation in this re-
been proposed besides the method by using bundle adjustmenport. The method for generdl-view triangulation is derived in a
[3] proposed byr.Kahl andR.Hartley[2]. However, just in three  similar fashion. The_,-norm of the reprojection error, which we
views, this type of solution is under degree 47 [4], not to men- call L, error, is represented by:
tion; much less higher degree polynomials are required with more
views. High degree make the problem toéidult to calculate in 2 o Axi
this approach.[5] E(X) = Z “X‘ T ox+d
In addition, Linear Matrix Inequalities (LMIs) method is also =t

2. Multiview Triangulation Problem
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Theobjective function (1) is rewritten as follows:
2
o o X
5 [ %ch - A %di - by ]l 1
E00 =2, 5 ZH A
i=1 [ cd d ]\ ‘
i 1 1
3
whereU; € R>4, V; e R4 andX e R* aregiven by
T
Ui=[%c -A %di-bl|. vi=[d d]. X=[x" 1].
4

For ease of notation, we rewri¥by X, and thus, the problem
of our concern becomes to fintle R* that m|n|m|zesz H ”

Note that, since the norm is the Euclidean norm, the following
equality holds:

UiX 2

ViX
UaX

V2X

> el -

Notealso that the problem is reduced to check the following con-
dition for a giveny.

Equivalent Condition for 2-view triangulation (Condition 0):
There existX € R* satisfying

®)

UiX 2

ViX
UZX

VoX

I\

(6)

The minimumy satisfying the above condition is the optimal
value of the 2-view triangulation problem, aKdhat attains opti-
mal value is the optimal solution. If there exi$ts R* satisfying
the above conditiony is set to be a smaller value, and then, turn
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2.3 Conditions for computing L, error using matrix in-
equalities
In [7], based on Schur complement, an equivalent condition to
Condition 0 has been given as follows:
Condition 1:
There existy = YT € R4 andX e R* satisfying the following
conditions:

ViYV] | 0 UiX
0 VoYVIT UX| =0, (10)
XTul XUl 2
Y =XxX'. (12)

Condition 1 is very hard to check because it includes a
quadratic term of decision variables, i.¥.= XXT. In [7], Endo
has introduced the following condition:

Condition 2:

Y = XX holds, whereY = YT € R** andX e R* are the
optimal solutions of the following LMI1 Problem:

minimize traceY)

subject to
ViYV] | 0 U3 X
0 VoYM UpX| =0, (12)
* * ,y2
Y X
> 0. 13
T 1}_ (13)

(12) and (13) are linear constraints with respect to the decision
variablesX andY. In other words, Condition 2 is a linear matrix
inequality constraint. Therefore, it is easy to check.

Here, it should be noted thatf andY satisfy Condition 2 for
somey, they also satisfy Condition 1 for the sameTherefore,
condition 2 is a sfficient condition of Condition 1. This implies
that the following relation holds:

miny < min
y631y yeszy

(14)

wheresS; is a set ofy satisfying Condition.

to check the condition again. If the above condition does not hold  Since mlny mlny =: voptiS the optimal value of the original
YES

for any X € R%, y is set to be larger, and then, turn to check

the condition again. Such a procedure is nothing but a bisection

method.

2.2 Schur complement argument

Schur complement plays a central role to derive the results in

this paper, which shows that, for symmetric matri@easndR, the
following three conditions are equivalent:

. s

0 | R] >0, @)
(ii) Q- SORlST g] >0, (8)
[0 0
(iii) 0 R STle] >0, 9)

whereA > 0 implies that matriA is positive semi-definite.
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problem, ymlny |sysan upper bound ofqp. We refer toygnlzry as
Endo’s upper bound, and defibk: := 52'527

With method proposed in [7], an upper bound of optimum of
L, error can be calculated. However, the relation between the

upper bound and the optimum is not clear.

3. Computation of Upper and Lower Bounds
Using Linear matrix Inequalities

3.1 Computation method for a lower bound derived from
rank one LMI

In order to overcome the insufient result of [7], an idea of
computing not only upper bound but also lower bound to esti-
mate optimum have been thought out. By further applying Schur
complement to (10), we obtain the following condition:
Condition 3:

There existy = YT
conditions:

e R¥* andX e R* satisfying the following
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from Condition 3:
Condition 6:
Y = XX holds, whereY = YT € R** andX € R? are the
optimal solutions of the following LMI Problem:
It should be noted that there existse R* satisfying (16), if minimize tracey)
and only ifY is positive semidefinite and its rank is one. There-  subject to
fore, we can obtain the following equivalent condition:

ViYVT | 0 U
21Vit vy 1 T T
- Y >0 15
0 V2YV2TI} [Uz] [Ul U2] - (15)

y=xX". (16)

Condition 4: y? VlYOVlT ! v Yole] - [Bl]v[ug ull=0. (23)
There existsY = YT e R*“ satisfying the following condi- 2% 2
tions: [)ZT ﬂ >0, (24)
.
i Vl\:)Vll Vz\;)VZTI} - [Bj Y[UI U;] =0, (7) Since Condition 6 is a shicient condition of Condition 3, we
Y=0, (18) have
rank(Y) = 1.  (19) miny > mmy Yopt: (25)

y€Se YES:
The set of the constraints (17), (18), and (19) is referred to as  We denote the this upper bound by, i.e.,U; := mlny

rank one LMI. It is straightforward that Condition 4 is equivalent
to Conditions 0, 1, and 3. 3.3 Summary

As a necessary condition, (19) can be ignored because it is a In summary, with these methods proposed in this report, we

non_-convex _c.ons_tralnt \{VhICh is very hard to solve. And the fol- can get two upper bounds and one lower bounds as follows:
lowing condition is obtained:

Condition 5: type ofbound condition
There existsY = YT ¢ R¥“ satisfying the following condi- upper bound | Condition 2(Ug); Condition 5 U1); Condition 6 U);
tions: lower bound Condition 5(L);

Table1l Relation between Condition and Bounds

> [VAY V]I 0 ] B [Ul] v [UT UT] .0 (20) The smaller the dierences between upper and lower bounds is
0 AA U, 1 2= (especially there is no fierence between them), we can estimate
Y>0. 1) theL, error more clearly. As a conclusion, in these bounds com-

puted in this report, we should choose the smallest upper bound
Here, it should be noted that Condition 5 is a necessary condi-amongUg, U1, andU- to minimize the diference between upper
tion of original problem. This implies that the following relation  and lower bounds.

holds: . . . .
4. Simulation and consideration
miny < min 22
yeSs | = yesy (22) 4.1 Kahl's example for three-view triangulation
Sinceyopt = mm% mlny is a lower bound ofp. We denote In this section, we have used the example which is given in
7€Ss chapter 5 of [8] to evaluate our proposed methods. However, with
the lower bound b)L i.e.,,L:=miny. ) i
¥€Ss the aim of evaluating our proposed method, we have completed

Since Condition 5 only includes LMI constraint, it is easy to
check by MATLAB using tools for handing LMI constraints such
as SeduMi and YALMIP.

program to solve the conditions for searching upper and lower

bounds. Programs are completed by MATLAB using tools for

handing LMI constraints such as SeDuMi and YALMIP [9].
Otherwise, the hardware of the computer which is used to run

3.2 Computation method for upper bounds by using LMIs our program is as follows:

Condition 5 itself is merely a condition for computing a lower

bound ofyp, but the solutionl that attains minimuny satisfy- CPU Intel(R) Core(TM)i7-3770 CPU @ 3.40GHz 3.40GHy
ing Condition 5 is used for calculating an another upper bound. | MEMORY 7.89GB
. i, ] MATLAB ver. MATLAB R2011b
If rank(Y) = 1, Y satisfies Condition 4. Therefore, the obtained Table 2 Properties of computer

v is the optimum, an& € R* satisfyingY = XXT is the optimal
solution. On the other hand, when ra¥ké 1, X € R* that min-

_ Example: Triangulation
imizes||Y — XXT|, sayX, would be a good approximation of the

Considering the following camera triplet:

optimal solution. Sinc&(X) must be larger thagpgyy, Uy = E(X) 1 0 olo 1 -1 -1lo
is an upper bound. P,=|0 1 0/0]|: P,=| 1 0 -1]1
The rank ofY, as well asX € R that minimizeq|Y - XXT|, is 0 0 ol1 0 o0 1 ‘ 1
calculated by singular value decompositionyof o -1 olo
With a method in a similar fashion to the derivation of Condi- P;=| 0 0 -1]|1
tion 2 from Condition 1, we can obtain the following condition -1 -1 0 ‘ 1
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P, € R¥“: i-th camera matrix. running time, the results we get can be a good element for com-

With camera matriXP, we can compute the necessary parame- paring with our methods just as Schur in 3 orders which is pro-
tersU;, V; (i=1,2,3) by our completed program. And assume that posed in past time and worked well in the example in section
the measured image point in each view is at the origin (which is 4.1. And the result of comparing among three types of orders for
no restriction since it can be accomplished by changing coordi- convex relaxation such as first convex relaxation, second convex
nate systems). relaxation and third convex relaxation, and our proposed methods

In the report [8], with this example, the reprojection error has besides Condition 2, Condition 6, Condition 7, has been given as
been got by using 3 formulations such as Polynomial, Schur, Bun-follows:
dle. They are all famous methods for solving multiview trian- Table 4: Average upper bound bf error . The method corre-
gulation problems proposed in recent years. On the other handsponding relationship with the name showing in following table
through our proposed method by using this example, we can getis like this: (1) The existing method using first convex relaxation
three upper bounds and a lower bound introduced in this report.called Kahl 1; (2) The existing method using second convex re-
And the results we have got is shown in Table 3 for comparing laxation called Kahl 2; (3) The existing method using third con-

with other 3 formulation clearly: vex relaxation called Kahl 3; (4) Method for computing an up-
per bound proposed by Endo in [7] callel¢; (5) Our proposed
Formulation | reprojectiorerror | variables method 2 as Condition 5 callddy; (6) Our proposed method 3
Polynomial 0.157291 1286 ..
Schur 0157782 36 as Condition 6 calletl;
Ue 0.157247 12
Us 0.156871 9 Noise Kahl 1 Kahl 2 Kahl 3 Ue U, U,
U, 0.156325 9 0 0.00987 | 0.00809 | 0.00359 | 0.00344 | 3.72E-12 | 0.00636
Bundie 0.155998 3 0.01 | 0.0102 | 0.00842 | 0.00388| 0.00379| 0.00057 | 0.00738
L 0.152554 9 0.02 | 0.0112 | 0.00939 | 0.00481| 0.0046 | 0.00334 | 0.00784
Table 3 Data from the triangulation example by our proposed method 0.03 | 00131 | 0.0112 | 0.00631] 0.0063 | 0.0044 | 0.00806
0.04 | 0.0159 | 0.0138 | 0.00865| 0.00886 | 0.00705 | 0.01089
0.05 | 0.0199 | 0.0176 | 0.0119 | 0.0123 | 0.01116 | 0.01123
0.06 | 0.0239 | 0.02144 | 0.01533| 0.01576| 0.01521 | 0.01271

Table 4 Reprojection error by using 6 methods for computing upper bound

In summary, as we see in this example, in the group which in 0-0.06 levels of noise

includes the upper bounds, the reprojection error which is com-

puted by using Condition 6 is the smallest. As a conclusion, the

method we proposed as Condition 6 may be better than other

methods. Reprojection error under 0-0.06 levels of noise
However, this is just a simplest example, our method should be 002

further evaluated through more numerical examples.

4.2 Numerical evaluation under Kahl’s setting e e
Before evaluating our proposed methods under Kahl's setting, e —_//

we should explain the synthetic data in similar to the one sup- :'::f

posed in [8] by Kahl. All simulated data was generated in the T o 0.2 0.03 004 005 006

following manner. Uniformly random 3D points with coordinates ——Kahl1 ——kani2 Kahl3 =——Us ut uz

within [-1,1] units were projected to cameras with focal lengths
of 1 pixel. The position of cameras were randomly, bout the must
be at distances of 5 units from the origin in average. The cameras
viewing directions were also random, though biased towards the
origin. In addition, the image coordinates were corrupted by zero- Considering the results we have obtained through numerical
mean Gaussian noise with varying levels of standard deviation.[8] evaluation: Comparing with the method proposed by Kahl in 3
This evaluation is main for 3-views triangulation problems, so order, our proposed method as Condition 6 for computing the up-
that in each experiment, 3 camera matrix were chosen. And with per bound may works out the smallest upper bound under Kahl's
the purpose of getting more ideal results, in this report, we will do setting. And in high level of noise, our proposed method 3 may
500 times with each level of noise and calculating the mean valuebe better than ours.
which is seen as the final result, the function is both suitable for However, as one and the only lower bound, there is no another
reprojection error and running time. lower bound to compare with. Further, we have used the upper
4.2.1 Comparison inL, error bound which are worked well in the experiments done in our re-
Regarding bisection method, minimization problems are port for comparison. And the lower bound of reprojection error
solved, then verify whether the optimum of minimization prob- which is computed by using our proposed method as Condition 5

JFig. 1 Reprojection error by using 6 methods for computing upper bound
in 0-0.06 levels of noise

lem satisfiesy = XX or not. We assume that = XXT is satis- is shown as follows:
fied when the maximum singular value ¥ XX is lower than Table 5: Relation among upper and lower bounds. The method
1.0x10719, corresponding relationship with the name showing in following

Running our program for computing reprojection error and table is the same as Table 4. And the only one which has not

© 2016 Information Processing Society of Japan 4
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mentioned in Table 4 is lower bound named method 1.
running time(s)
Noise L Uz U, 20
0 7.28E-11| 3.72e-12 | 0.00636 18
0.01 0.00029 | 0.000596 | 0.00738 16
0.02 0.00090 | 0.003343| 0.00784 14 —kehiz
0.03 | 0.002531| 0.00316 | 0.0081 12 —kahiz
0.04 | 0.00565 | 0.007045| 0.01089 0 Kzh!3
0.05 0.00595 | 0.01116 | 0.0112 B I
0.06 0.00790 | 0.01521 | 0.03715 6 —Uours2
Table 5 Reprojection error of computing lower bound in 0-0.06 levels of 4= = Uourss
noise 2
o
0.01 0.02 0.03 0.04 0.05 0.06 MNoise

Fig. 3 Running time of each time in 0-0.06 levels of noise

Reprojection error

1.60E-02
1.40E-02 /
1.206-02 / Noise 0 0.01 0.02 0.03
R /’% Running time | 2.887267 | 2.906455| 2.918779| 2.922616
yayi Method 2 Noise 0.04 0.05 0.06
800805 / —— Method 3 Running time | 2.925816 | 2.936469 | 2.936727
8.008-03 lower bound Table 7 Running time of computing lower bound in 0-0.06 levels of noise
4.00E-03
2.00E-03 / R .
. __,/ Based on the running time, we know that our proposed meth-
001 002 003 00: 005 008 ods is faster than the method proposed by Kahl in order 3 which
Hoise is works well in computing upper bound. On the other hand, the
Fig.2 Lower bound in 0-0.06 levels of noise comparing with upper bound ones proposed by us is much slower than Kahl’'s method in order
1.

During computing the upper bound by using proposed method 5
2, an amazing event had been appeared. That is, bad result which
is too large even over 100 had been appeared randomly. It is In this report, we have proposed several methods for comput-
so inconceivability that one more experiment had been done bying upper and lower bounds b error of multiview triangulation

using the same reprojection matrix. Through many times of ex- problems. In detail, two methods for computing upper bounds
periments, we obtained the result which is similar to the mean. such as the Condition 6 and Condition 7 introduced in the report,

However, we do not know the reason, we guess is may be caus@nd one method for calculating lower bound which is introduced

by property of computer. As a solution, we repeated each exper-as Condition 5. . ,
Our proposed methods are represented by convex linear matrix

iment in each level of noise three times, and choose rather stablgnequalities ?LMD, and they are easily implemented by MATLAB
results which are the same in the same condition as the final re-using tools for handling LMI constraints such as SeDuMi and
YALMIP. In this report, we not only proposed our methods for
sult. solving multiview triangulation problems, but also evaluating our
4.2.2 Comparison in running time methods by comparing with Kahl's and Endo’s methods which
S . are proposed in recently years. And we have chosen a simple vir-
On the other hand, running time is also an important element ;5| gigital example which is given in chapter 5 of Kahl's paper

for evaluating methods and algorithm. And we have obtained the and more numerical examples by using synthetic data which are
randomly. With the results, we have realized that our proposed

Conclusion

running time of each formulations just as follows: method as Condition 6 for computing upper bound is relative use-
fulness than other methods in low level of noise. And our method
Noise | Schurl | Schur2 | Schur3 | Bisection Us U, as Condition 7 works well in high level of nose. On the other

0 197862 | 3.75806 | 14.5084 | 449283 | 3.03734| 3.04215] hand, the method as Condition 9 is the only one for computing
001 204065 [ 431047 139983 427755 | 3156 | 390315 lower bound, even though thefirence between it and smallest
: : : : : . : bound is little, it need to validatelectiveness. Further research

0.02 | 1.93444 | 4.90249 | 15.1640| 4.44759 | 3.24482 | 3.88599 | jn finding out the much more lower bound which we would like
0.03 | 1.01903| 4.800 | 17.3896| 4.34463 | 3.04950 | 3.77990] to deal with in the future.

0.04 | 1.95725| 4.85883 | 18.470 | 4.40703 3.172 | 3.65978
0.05 | 2.04979| 4.83403 | 17.9507 | 4.48659 | 3.20582 | 3.63482
0.06 | 2.05859 | 4.7921 | 18.5777| 4.41527 3.187 | 3.61142 | References
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