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Computation of Upper and Lower Bounds ofL2 Error of
Multiview Triangulation Using Linear Matrix Inequalities

ZhenjiaoWang1,a) Yoshimichi Ito2,b) Noboru Babaguchi1,c)

Abstract: This paper proposes several methods for computing upper and lower bounds ofL2 error of multiview tri-
angulation. The multiview triangulation is to find the point that minimizes the sum of reprojection errors calculated
by points on the image plane observed by multiple cameras. We first show theL2 optimization for multiview trian-
gulation is reduced to the ones with nonconvex matrix inequality constraints, which are hard to solve. By relaxing
the nonconvex matrix inequality constraints, we derive conditions for computing lower bounds ofL2 optimal error.
The conditions are represented by linear matrix inequalities (LMI), and they are easy to solve. On the other hand,
by tightening the nonconvex matrix inequality constraints, we derive conditions for computing upper bounds ofL2

optimal error, which are also represented by LMI. These methods are easily implemented by MATLAB using tools for
LMI such as SeDuMi and YALMIP. The proposed methods are evaluated through numerical examples.

Keywords: multiview triangulation,L2 optimization, Linear Matrix Inequality (LMI)

1. Introduction

In the field of 3D reconstruction, multiview triangulation prob-
lems as a much more important problem than most, have been en-
gaged in research accordingly. In recently years, a feasible way
of working with these problems which has been found relies on
minimizing the sums of squares (L2-norm) reprojection error [1].
Furthermore, in a special situation that theL2-norm of reprojec-
tion error equals zero, the reconstructed 3D-point is the same with
the real one. To summarize, finding the global minimum ofL2-
norm of reprojection error is the main problem in 3D reconstruc-
tion, which is defined as multiview triangulation problem. To be
more precisely, the multiview triangulation problem is to find the
point that minimizes the sum of reprojection errors calculated by
points on the image plane observed by multiple cameras. This
is also the main problem in this paper. And we callL2-norm of
reprojection error asL2 error for short.

With the aim of minimizingL2 error, due to the local mini-
mum problem, global minimum is more efficiently to achieving
purpose [2]. In recently years, a large numbers of methods have
been proposed besides the method by using bundle adjustment
[3] proposed byF.Kahl andR.Hartley[2]. However, just in three
views, this type of solution is under degree 47 [4], not to men-
tion; much less higher degree polynomials are required with more
views. High degree make the problem too difficult to calculate in
this approach.[5]

In addition, Linear Matrix Inequalities (LMIs) method is also
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a useful one to overcome the problems. LMIs method is based
on the idea that an original non-convex feasible set can be ap-
proached by hierarchal convex relaxations to a convex feasible
set [6]. On the other hand, the method proposed by Endo shows a
way to compute an upper bound ofL2 error. It is a approximation
method that the relation to the optimum is not clear. Holding the
purpose of overcoming the disadvantages in Endo’s paper, a idea
that computing but only upper bound, but also lower bound is
thought out. Our proposed method is based on the idea proposed
in [7] which is also a kind of LMIs method. Instead of calculat-
ing L2 error directly, computation upper and lower bounds is a
easier approach for multiview triangulation problems. And with
upper and lower bounds, the relation to the optimum can be clear.
Especially, when there is no difference between upper and lower
bounds, they are equal to optimum.

2. Multiview Triangulation Problem

2.1 Problem formulation
As the simplest model of multiview triangulation for achieving

3D reconstruction, we consider two-view triangulation in this re-
port. The method for generalN-view triangulation is derived in a
similar fashion. TheL2-norm of the reprojection error, which we
call L2 error, is represented by:

E(X) =
2∑

i=1

∥∥∥∥x̃i − Ai X+bi

cT
i X+di

∥∥∥∥2 (1)

where∥ · ∥ denotes the Euclidean norm,X ∈ R3 is a coordinate
of a 3D-point X, which is to be estimated, ˜xi ∈ R2 is the observa-
tion of X in the image projected onto thei-th camera.Ai ∈ R2×3,
bi ∈ R2×1, cT

i ∈ R1×3, anddi ∈ R1×1 are block matrices ofi-th
camera matrixPi given by:
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Ai bi

cT
i di

 =


pi
11 pi

12 pi
13 pi

14

pi
21 pi

22 pi
23 pi

24

pi
31 pi

32 pi
33 pi

34

 = Pi . (2)

Theobjective function (1) is rewritten as follows:

E(X) =
2∑

i=1

∥∥∥∥∥∥∥∥∥∥∥∥∥
[

x̃icT
i − Ai x̃idi − bi

] X

1


[

cT
i di

] X

1



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=

2∑
i=1

∥∥∥∥Ui X̄
Vi X̄

∥∥∥∥2 .
(3)

whereUi ∈ R2×4, Vi ∈ R1×4 andX̄ ∈ R4 aregiven by

Ui =
[
x̃icT

i − Ai x̃idi − bi

]
, Vi =

[
cT

i di

]
, X̄ =

[
XT 1

]T
.

(4)

For ease of notation, we rewritēX by X, and thus, the problem

of our concern becomes to findX ∈ R4 that minimizes
2∑

i=1

∥∥∥∥Ui X
Vi X

∥∥∥∥2.

Note that, since the norm is the Euclidean norm, the following
equality holds:

2∑
i=1

∥∥∥∥Ui X
Vi X

∥∥∥∥2 =
∥∥∥∥∥∥∥∥∥∥

U1X
V1X
U2X
V2X

∥∥∥∥∥∥∥∥∥∥
2

. (5)

Notealso that the problem is reduced to check the following con-
dition for a givenγ.
Equivalent Condition for 2-view triangulation (Condition 0):
There existsX ∈ R4 satisfying

γ2 ≥

∥∥∥∥∥∥∥∥∥∥
U1X
V1X
U2X
V2X

∥∥∥∥∥∥∥∥∥∥
2

. (6)

The minimumγ satisfying the above condition is the optimal
value of the 2-view triangulation problem, andX that attains opti-
mal value is the optimal solution. If there existsX ∈ R4 satisfying
the above condition,γ is set to be a smaller value, and then, turn
to check the condition again. If the above condition does not hold
for any X ∈ R4, γ is set to be larger, and then, turn to check
the condition again. Such a procedure is nothing but a bisection
method.

2.2 Schur complement argument
Schur complement plays a central role to derive the results in

this paper, which shows that, for symmetric matricesQ andR, the
following three conditions are equivalent:

(i)

 Q S

ST R

 ⪰ 0, (7)

(ii)

Q− S R−1ST 0
0 R

 ⪰ 0, (8)

(iii)

Q 0
0 R− ST Q−1S

 ⪰ 0, (9)

whereA ⪰ 0 implies that matrixA is positive semi-definite.

2.3 Conditions for computing L2 error using matrix in-
equalities

In [7], based on Schur complement, an equivalent condition to
Condition 0 has been given as follows:
Condition 1:

There existY = YT ∈ R4×4 andX ∈ R4 satisfying the following
conditions: 

V1YVT
1 I 0 U1X

0 V2YVT
2 I U2X

XTUT
1 XTUT

2 γ2

 ⪰ 0, (10)

Y = XXT . (11)

Condition 1 is very hard to check because it includes a
quadratic term of decision variables, i.e.,Y = XXT . In [7], Endo
has introduced the following condition:
Condition 2:

Y = XXT holds, whereY = YT ∈ R4×4 and X ∈ R4 are the
optimal solutions of the following LMI1 Problem:

minimize trace(Y)
subject to 

V1YVT
1 I 0 U1X

0 V2YVT
2 I U2X

∗ ∗ γ2

 ⪰ 0, (12)

 Y X

XT 1

 ⪰ 0. (13)

(12) and (13) are linear constraints with respect to the decision
variablesX andY. In other words, Condition 2 is a linear matrix
inequality constraint. Therefore, it is easy to check.

Here, it should be noted that ifX andY satisfy Condition 2 for
someγ, they also satisfy Condition 1 for the sameγ. Therefore,
condition 2 is a sufficient condition of Condition 1. This implies
that the following relation holds:

min
γ∈S1

γ ≤ min
γ∈S2

γ (14)

whereSi is a set ofγ satisfying Conditioni.
Since min

γ∈S0

γ = min
γ∈S1

γ =: γoptis the optimal value of the original

problem, min
γ∈S2

γ is an upper bound ofγopt. We refer to min
γ∈S2

γ as

Endo’s upper bound, and defineUE := min
γ∈S2

γ.

With method proposed in [7], an upper bound of optimum of
L2 error can be calculated. However, the relation between the
upper bound and the optimum is not clear.

3. Computation of Upper and Lower Bounds
Using Linear matrix Inequalities

3.1 Computation method for a lower bound derived from
rank one LMI

In order to overcome the insufficient result of [7], an idea of
computing not only upper bound but also lower bound to esti-
mate optimum have been thought out. By further applying Schur
complement to (10), we obtain the following condition:
Condition 3:

There existY = YT ∈ R4×4 andX ∈ R4 satisfying the following
conditions:
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γ2

V1YVT
1 I 0

0 V2YVT
2 I

 − U1

U2

Y [UT
1 UT

2

]
⪰ 0, (15)

Y = XXT . (16)

It should be noted that there existsX ∈ R4 satisfying (16), if
and only ifY is positive semidefinite and its rank is one. There-
fore, we can obtain the following equivalent condition:
Condition 4:

There existsY = YT ∈ R4×4 satisfying the following condi-
tions:

γ2

V1YVT
1 I 0

0 V2YVT
2 I

 − U1

U2

Y [UT
1 UT

2

]
⪰ 0, (17)

Y ⪰ 0, (18)

rank(Y) = 1. (19)

The set of the constraints (17), (18), and (19) is referred to as
rank one LMI. It is straightforward that Condition 4 is equivalent
to Conditions 0, 1, and 3.

As a necessary condition, (19) can be ignored because it is a
non-convex constraint which is very hard to solve. And the fol-
lowing condition is obtained:
Condition 5:

There existsY = YT ∈ R4×4 satisfying the following condi-
tions:

γ2

V1YVT
1 I 0

0 V2YVT
2 I

 − U1

U2

Y [UT
1 UT

2

]
⪰ 0 (20)

Y ⪰ 0. (21)

Here, it should be noted that Condition 5 is a necessary condi-
tion of original problem. This implies that the following relation
holds:

min
γ∈S5

γ ≤ min
γ∈S4

γ. (22)

Sinceγopt = min
γ∈S4

γ, min
γ∈S5

γ is a lower bound ofγopt. We denote

the lower bound byL, i.e.,L := min
γ∈S5

γ.

Since Condition 5 only includes LMI constraint, it is easy to
check by MATLAB using tools for handing LMI constraints such
as SeduMi and YALMIP.

3.2 Computation method for upper bounds by using LMIs
Condition 5 itself is merely a condition for computing a lower

bound ofγopt, but the solutionY that attains minimumγ satisfy-
ing Condition 5 is used for calculating an another upper bound.

If rank(Y) = 1, Y satisfies Condition 4. Therefore, the obtained
γ is the optimum, andX ∈ R4 satisfyingY = XXT is the optimal
solution. On the other hand, when rank(Y) , 1, X ∈ R4 that min-
imizes

∥∥∥Y− XXT
∥∥∥, sayX̃, would be a good approximation of the

optimal solution. SinceE(X̃) must be larger thanγopt, U1 := E(X̃)
is an upper bound.

The rank ofY, as well asX ∈ R4 that minimizes
∥∥∥Y− XXT

∥∥∥, is
calculated by singular value decomposition ofY.

With a method in a similar fashion to the derivation of Condi-
tion 2 from Condition 1, we can obtain the following condition

from Condition 3:
Condition 6:

Y = XXT holds, whereY = YT ∈ R4×4 and X ∈ R4 are the
optimal solutions of the following LMI Problem:

minimize trace(Y)
subject to

γ2

V1YVT
1 I 0

0 V2YVT
2 I

 − U1

U2

Y [UT
1 UT

2

]
⪰ 0, (23) Y X

XT 1

 ⪰ 0. (24)

Since Condition 6 is a sufficient condition of Condition 3, we
have

min
γ∈S6

γ ≥ min
γ∈S3

γ = γopt. (25)

We denote the this upper bound byU2, i.e.,U2 := min
γ∈S6

γ.

3.3 Summary
In summary, with these methods proposed in this report, we

can get two upper bounds and one lower bounds as follows:

type ofbound condition
upper bound Condition 2(UE); Condition 5 (U1); Condition 6 (U2);
lowerbound Condition 5(L);

Table 1 Relation between Condition and Bounds

The smaller the differences between upper and lower bounds is
(especially there is no difference between them), we can estimate
theL2 error more clearly. As a conclusion, in these bounds com-
puted in this report, we should choose the smallest upper bound
amongUE, U1, andU2 to minimize the difference between upper
and lower bounds.

4. Simulation and consideration

4.1 Kahl’s example for three-view triangulation
In this section, we have used the example which is given in

chapter 5 of [8] to evaluate our proposed methods. However, with
the aim of evaluating our proposed method, we have completed
program to solve the conditions for searching upper and lower
bounds. Programs are completed by MATLAB using tools for
handing LMI constraints such as SeDuMi and YALMIP [9].

Otherwise, the hardware of the computer which is used to run
our program is as follows:

CPU Intel(R) Core(TM)i7-3770 CPU @ 3.40GHz 3.40GHz
MEMORY 7.89GB

MATLAB ver. MATLAB R2011b
Table 2 Properties of computer

Example: Triangulation
Considering the following camera triplet:

P1 =


1 0 0 0
0 1 0 0

0 0 0 1

 ; P2 =


−1 −1 −1 0
1 0 −1 1

0 0 1 1


P3 =


0 −1 0 0
0 0 −1 1

−1 −1 0 1


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Pi ∈ R3×4: i-th camera matrix.
With camera matrixP, we can compute the necessary parame-

tersUi , Vi (i=1,2,3) by our completed program. And assume that
the measured image point in each view is at the origin (which is
no restriction since it can be accomplished by changing coordi-
nate systems).

In the report [8], with this example, the reprojection error has
been got by using 3 formulations such as Polynomial, Schur, Bun-
dle. They are all famous methods for solving multiview trian-
gulation problems proposed in recent years. On the other hand,
through our proposed method by using this example, we can get
three upper bounds and a lower bound introduced in this report.
And the results we have got is shown in Table 3 for comparing
with other 3 formulation clearly:

Formulation reprojectionerror variables
Polynomial 0.157291 1286

Schur 0.157282 86
UE 0.157247 12
U3 0.156871 9
U2 0.156325 9

Bundle 0.155998 3
L 0.152554 9

Table 3 Data from the triangulation example by our proposed method

In summary, as we see in this example, in the group which
includes the upper bounds, the reprojection error which is com-
puted by using Condition 6 is the smallest. As a conclusion, the
method we proposed as Condition 6 may be better than other
methods.

However, this is just a simplest example, our method should be
further evaluated through more numerical examples.

4.2 Numerical evaluation under Kahl’s setting
Before evaluating our proposed methods under Kahl’s setting,

we should explain the synthetic data in similar to the one sup-
posed in [8] by Kahl. All simulated data was generated in the
following manner. Uniformly random 3D points with coordinates
within [-1,1] units were projected to cameras with focal lengths
of 1 pixel. The position of cameras were randomly, bout the must
be at distances of 5 units from the origin in average. The cameras’
viewing directions were also random, though biased towards the
origin. In addition, the image coordinates were corrupted by zero-
mean Gaussian noise with varying levels of standard deviation.[8]

This evaluation is main for 3-views triangulation problems, so
that in each experiment, 3 camera matrix were chosen. And with
the purpose of getting more ideal results, in this report, we will do
500 times with each level of noise and calculating the mean value
which is seen as the final result, the function is both suitable for
reprojection error and running time.
4.2.1 Comparison inL2 error

Regarding bisection method, minimization problems are
solved, then verify whether the optimum of minimization prob-
lem satisfiesY = XXT or not. We assume thatY = XXT is satis-
fied when the maximum singular value ofY − XXT is lower than
1.0x10−10.

Running our program for computing reprojection error and

running time, the results we get can be a good element for com-
paring with our methods just as Schur in 3 orders which is pro-
posed in past time and worked well in the example in section
4.1. And the result of comparing among three types of orders for
convex relaxation such as first convex relaxation, second convex
relaxation and third convex relaxation, and our proposed methods
besides Condition 2, Condition 6, Condition 7, has been given as
follows:

Table 4: Average upper bound ofL2 error . The method corre-
sponding relationship with the name showing in following table
is like this: (1) The existing method using first convex relaxation
called Kahl 1; (2) The existing method using second convex re-
laxation called Kahl 2; (3) The existing method using third con-
vex relaxation called Kahl 3; (4) Method for computing an up-
per bound proposed by Endo in [7] calledUE; (5) Our proposed
method 2 as Condition 5 calledU1; (6) Our proposed method 3
as Condition 6 calledU2;

Noise Kahl 1 Kahl 2 Kahl 3 UE U1 U2

0 0.00987 0.00809 0.00359 0.00344 3.72E-12 0.00636
0.01 0.0102 0.00842 0.00388 0.00379 0.00057 0.00738
0.02 0.0112 0.00939 0.00481 0.0046 0.00334 0.00784
0.03 0.0131 0.0112 0.00631 0.0063 0.0044 0.00806
0.04 0.0159 0.0138 0.00865 0.00886 0.00705 0.01089
0.05 0.0199 0.0176 0.0119 0.0123 0.01116 0.01123
0.06 0.0239 0.02144 0.01533 0.01576 0.01521 0.01271

Table 4 Reprojection error by using 6 methods for computing upper bound
in 0-0.06 levels of noise

Fig. 1 Reprojection error by using 6 methods for computing upper bound
in 0-0.06 levels of noise

Considering the results we have obtained through numerical
evaluation: Comparing with the method proposed by Kahl in 3
order, our proposed method as Condition 6 for computing the up-
per bound may works out the smallest upper bound under Kahl’s
setting. And in high level of noise, our proposed method 3 may
be better than ours.

However, as one and the only lower bound, there is no another
lower bound to compare with. Further, we have used the upper
bound which are worked well in the experiments done in our re-
port for comparison. And the lower bound of reprojection error
which is computed by using our proposed method as Condition 5
is shown as follows:

Table 5: Relation among upper and lower bounds. The method
corresponding relationship with the name showing in following
table is the same as Table 4. And the only one which has not
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mentioned in Table 4 is lower bound named method 1.

Noise L U1 U2

0 7.28E-11 3.72e-12 0.00636
0.01 0.00029 0.000596 0.00738
0.02 0.00090 0.003343 0.00784
0.03 0.002531 0.00316 0.0081
0.04 0.00565 0.007045 0.01089
0.05 0.00595 0.01116 0.0112
0.06 0.00790 0.01521 0.03715

Table 5 Reprojection error of computing lower bound in 0-0.06 levels of
noise

Fig. 2 Lower bound in 0-0.06 levels of noise comparing with upper bound

During computing the upper bound by using proposed method
2, an amazing event had been appeared. That is, bad result which
is too large even over 100 had been appeared randomly. It is
so inconceivability that one more experiment had been done by
using the same reprojection matrix. Through many times of ex-
periments, we obtained the result which is similar to the mean.
However, we do not know the reason, we guess is may be cause
by property of computer. As a solution, we repeated each exper-
iment in each level of noise three times, and choose rather stable
results which are the same in the same condition as the final re-
sult.
4.2.2 Comparison in running time

On the other hand, running time is also an important element
for evaluating methods and algorithm. And we have obtained the
running time of each formulations just as follows:

Noise Schur1 Schur2 Schur3 Bisection U1 U2

0 1.97862 3.75806 14.5084 4.49283 3.03734 3.94215
0.01 2.04065 4.31047 13.9983 4.27755 3.156 3.90315
0.02 1.93444 4.90249 15.1640 4.44759 3.24482 3.88599
0.03 1.91903 4.899 17.3896 4.34463 3.24950 3.77990
0.04 1.95725 4.85883 18.470 4.40703 3.172 3.65978
0.05 2.04979 4.83403 17.9507 4.48659 3.20582 3.63482
0.06 2.05859 4.7921 18.5777 4.41527 3.187 3.61142

Table 6 Running time by using 6 methods for computing upper bound in
0-0.06 levels of noise

Fig. 3 Running time of each time in 0-0.06 levels of noise

Noise 0 0.01 0.02 0.03
Running time 2.887267 2.906455 2.918779 2.922616

Noise 0.04 0.05 0.06
Running time 2.925816 2.936469 2.936727

Table 7 Running time of computing lower bound in 0-0.06 levels of noise

Based on the running time, we know that our proposed meth-
ods is faster than the method proposed by Kahl in order 3 which
is works well in computing upper bound. On the other hand, the
ones proposed by us is much slower than Kahl’s method in order
1.

5. Conclusion

In this report, we have proposed several methods for comput-
ing upper and lower bounds ofL2 error of multiview triangulation
problems. In detail, two methods for computing upper bounds
such as the Condition 6 and Condition 7 introduced in the report,
and one method for calculating lower bound which is introduced
as Condition 5.

Our proposed methods are represented by convex linear matrix
inequalities (LMI), and they are easily implemented by MATLAB
using tools for handling LMI constraints such as SeDuMi and
YALMIP. In this report, we not only proposed our methods for
solving multiview triangulation problems, but also evaluating our
methods by comparing with Kahl’s and Endo’s methods which
are proposed in recently years. And we have chosen a simple vir-
tual digital example which is given in chapter 5 of Kahl’s paper
and more numerical examples by using synthetic data which are
randomly. With the results, we have realized that our proposed
method as Condition 6 for computing upper bound is relative use-
fulness than other methods in low level of noise. And our method
as Condition 7 works well in high level of nose. On the other
hand, the method as Condition 9 is the only one for computing
lower bound, even though the difference between it and smallest
bound is little, it need to validate effectiveness. Further research
in finding out the much more lower bound which we would like
to deal with in the future.
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