FIT2005 (554 EIE8HMZFREGET +—5 L)

L-043

Simulation of Adaptive Network against Flash Crowds

Chenyu Pan! Merdan Atajanov'

1. Introduction

With the rapid spread of information and ubiquitous
access of browsers, flash crowds, triggered by a sudden,
unanticipated surge in user request rates, overwhelm-
ing the target web site temporarily unavailable, have
become the bane of many Internet websites.

In this paper, we focus on modeling and simu-
lating a self-tuning adaptive network, FCAN, which
dynamically transits system structure between peer-
to-peer(P2P) and client-server(C/S) configurations to
reach the optimum efliciency in protecting website from
flash crowds. FCAN has been previously introduced
elsewhere [1, 2]. As an updated and improved version,
this paper modifies the basic design of FCAN by adding
volunteer clients as peer members to assist P2P func-
tions and introduces the conception of implicit P2P
overlay. Moreover, the paper presents the preliminary
simulation results to confirm the design.

The rest of the paper follows as: Section 2 analyzes
the motivation of the research. Section 3 presents the
improved design. Simulation results are analyzed in
Section 4. Discussions are described in Section 5 and
the last is the conclusion.

2. Motivation

There are several approaches to handle the flash
crowds. A straightforward but costly approach is to
provision the accessibility based on peak demand or
increase the server locations by CDN service. How-
ever, since the duration of flash crowds is relatively
short, these server-side solutions result the provisioned
resource idle most of the time and are not justified to
small websites.

An alternative is to have the clients form a P2P over-
lay to share the hot objects among themselves. The
limitations of this schema is losing client transparency
and remaining low efficiency when facing the leaving of
flash crowds [3].

Our idea of FCAN is to adapt the network struc-
ture between P2P and C/S configurations. FCAN em-
ploys an Internet-wide infrastructure of cache proxy
servers to perform P2P functions in dealing with the
flash crowds effects and gets it out of the way when
normal C/S architecture works well. Through this way
the unjustified overprovision can be avoided and the
overheads caused by P2P functions can be minimized.
Besides, building P2P overlay on the cache proxy layer
also remains the client transparency.

3. Design Description

Given the short duration of flash crowds, FCAN re-
mains C/S architecture at most of the time and enables
cache proxies to perform P2P search only during flash
crowds. To some extent, FCAN organizes a group of
forward cache proxies into a temporary and wide-area
based layer of reverse cache proxy.

Figure 1 shows the changing architecture of FCAN.
Different from our previous design [1}, to better provide
the service, we also welcome the participations from

tSaitama University
tKyushu Sangyo University

Toshihiko Shimokawa?!

105

Norihiko Yoshidat

volunteer clients as peer members. In the figure, Mem-
ber Server, Member Peers, including Member Cache
Proxy (CP) and volunteer client, and special DNS are
shown in deep color to distinguish from other clients
who connect to the web server directly or through com-
mon cache proxy.

P2P cloud

[]

OO

a) Non-flash-crowd

b) Anti-flash-crowd

Figure 1: Changing architecture

In peaceful time, Member Server and Member Peers
do little more than what normal ones do. Once a flash
crowd comes, Member Server detects the increase in
traffic load. It modifies its home DNS entries to the
address of P2P cloud, here the address of P2P cloud is
a list of the address of all available Member CP. Then
Member Server triggers all Member Peers to form the
P2P cloud through which all requests are conducted
instead of bugging the origin server. And the modi-
fied DNS entries are propagated through Internet to
make subsequent client requests redirected from origi-
nal server.

In addition, research 4] shows over 60% of objects are
new to a flash crowd, which may not been cached at the
beginning stage. Member Server pushes these objects
to the cloud by connecting to just one or two Member
Peers. The pushed objects will soon be propagated
among the cloud because of the P2P functions and the
high demands.

For detail design issues, please refer our previous pa-
pers [1, 2].

4. Implementation Overview

We put special wrappers to intercept the requests
on normal web servers and cache proxies, and employ
special DNS server to form FCAN network system.

The implementation of wrappers mainly includes
P2P overlay construction, load observation, and adap-
tive triggering. P2P overlay construction should be fast
started and stopped with the change of the network
conditions. Different from our previous researches, we
introduce the implicit P2P overlay which can be ei-
ther applied with first generation, such as PROOFS|3],
or second generation P2P system, such as Tapestry/[5].
The relationship among peers are built through normal
communication processes and are not removed even af-
ter the transition. Member peers exchanges the ex-
istence through Member Server and maintains an im-
plicit P2P overlay continuously. The overlay is invoked

FIT2005 (55 4 EEEMBIFERET I +— 5 L)

to be explicit only during flash crowds and the P2P
search is enabled as well. Load observation measures
the system condition and provides the adaptive trigger-
ing with the observed data. The load observation on
peer reports the real time traffic load of itself to Mem-
ber Servers periodically through IP address based com-
munication, while the load observation on server col-
lects the traffic information of itself as well as the whole
P2P cloud and makes a global decision for adaptive
triggering. Adaptive triggering is a server-triggered
adaptation.

All the wrappers will be designed as a module for
the popular Apache web server and Squid cache proxy.
Both Apache and Squid are built from a modular de-
sign, which is easy to add new features. Thus con-
verting normal elements with Member features should
require no more than compiling a new module into
Apache or Squid and editing a configuration file.

To implement special DNS server, we adopt TEN-
BIN system [6]. TENBIN is our research product, and
already used in practice, for example, “Ring Servers”
and “LIVE! ECLIPSE” projects. With TENBIN, we
can dynamically modify DNS lookup entries and con-
figure special policy to achieve load balance among P2P
cloud. The details of TENBIN have already been pre-
sented elsewhere [6].

5. Preliminary Simulation

In this section, we present the preliminary simulation
results. The simulator is a home-grown, thread-based,
java program and mainly composed of five parts:

1. A package of core classes including the main roles
of system such as Member Server.

. A flash crowds traffic generator which models a
flash crowd with shock level and three phases,
ramp-up phase, sustained load phase and ramp-
down phase.

. Underlying network architecture which supports
high-level application with the TCP and UDP
communication and creates unique network ad-
dress for each node.

. Network monitors which collects the load informa-
tion from active roles periodically and writes the
load data to the log files.

. Console User Interface which enables parameters
configuration and runs test case for simulator user.

5.1 Configure Parameters

Table 1 shows the detail parameters configuration.
‘We configure the network composed of ten Member CP
and one Member Server. Clients are created and dis-
appeared during the running of simulation.

There is no hot object copy on any Member CP at
the beginning. The P2P search algorithm remains a
TTL scoped one and the neighbor-ship isn’t removed
after a flash crowd is over so that the implicit P2P
overlay continues.

Given a normal request rate 8 requests per second,
the threshold is set to 20 requests per second. However,
the server may still suffer from increased high request
rate for several seconds since the transition takes some
time to complete. And the restore C/S threshold is set
to the value of 80% of the P2P threshold.

We configure the shock level of flash crowd to 10,
thus the peak load reaches to 10 * 8 requests/second.

106

Table 1: Simulation Parameters

Description [Value |
Number of peers 10
Number of peers receiving push object | T

P2P search ttl 2

P2P search fanout 1
Number of flash objects 1
Number of common objects 9
Shock Level of flash crowd 10
Normal traffic rate (req/sec) 8
Threshold for alarm (req/sec) 20
Threshold for restore (req/sec) 0.8%20
Starting time of flash crowd (sec) 10

———Serverwith FCAN |
Server without FCAN

Number of Requests

0 T T

20 %
Time (second)

Figure 2: Comparison of load on servers

We start the flash crowd at the 10th second and the
ramp-up duration 11 , sustained load duration 12, ramp-
down duration 13 are computed by following formula-
tion.

11 = Math.log(10)/Math.log(1+shocklevel) * 10;

12 = Math.log(1+shocklevel) /Math.log(10) * 10;

13 = Math.log(1+shocklevel} /Math.log(10) * 10;
5.2 Simulation results

Figure 2 illustrates the comparison of two servers
which suffered from modeled flash crowd traffic sim-
ulated by traffic generator, where the traffic duration
was 508, flash crowd started at the 10th second, the
ramp-up phase lasted for 9.6s, starting from 8 req/sec
to 80 req/sec, the 80 req/sec sustained load phase
lasted for 10.4s and the ramp-down phase lasted for
10.4s. Compared with the server without FCAN, the
server with FCAN controls the request rate under 30
requests/second and the load degraded during the flash
crowd period because the P2P cloud cached objects for
the clients. Therefore, the adaptive transition does al-
leviate the flash traffic from server side.

The two transition points are around the time of 14s
and the time of 40s, as Figure 3 shows. At the time of
12s the number of requests on Member Server exceeded
the threshold 20 and reached 23. It took 2 seconds to
complete the transition. At the time of 14s P2P cloud
began to receive the redirected client requests. The
time for restoring the system from P2P to C/S config-
uration is relatively short. At the time of 39s the aver-
age load on P2P cloud drop to 1.5, below the threshold
1.6. One second passed, it restored the system and no

FIT2005 (58 4 ETEERIFREG I+ —5 L)

Table 2: Detail data at transition points

[Time | MS [CPi] CP2] CP3] CP4] CP5[CP6] CP7] CPg| CP9] CPO)
12 [23 JO JO JO JO [0 JO JO [0 [O [0
13 (29 [0 [0 [0 |0 [0 |0 [0 [0 [0 [0
4 |11 |3 |1 |4]9 [T |3 |1 [2 [3 [0
3 12 13 [1 [1 J0 [2 [2 [T [2 [2 [1
40 [11 [0 [0 [0 [0 JO0 [0 |0 JO O [0

Table 3: Comparison of Handled Requests by each individual

FC [T MS] CP1

CP2

CP3] CP4] CP5] CP6] CP7] CP8] CP9] CPO

Total requests

473 1 140 | 128

166 | 176 | 156 | 130 | 140 | 137 | 167 | 144

Peak request rate 80 29 |13 | 10

11 14 115 |11 15 | 11 11 | 14

Ave. request rate (50s) 9.46] 2.80

2.56

3.32] 3.52] 3.12] 2.60] 2.80] 2.74] 3.34] 2.88

Number of Requests

R B s s e A e e
0 4 8 12 18 20 24 28 32 B 4 4 48
Time (second)

Figure 3: Average load on peers

subsequent request was redirected to the cloud. Ta-
ble 2 lists the detail request load information of each
individual at those two transition points.

Table 3 gives the handled request information of
Member Peers as well as Member Server. The FC col-
umn is the modeled flash crowd traffic that impact on
the normal server without FCAN. From these data, we
can draw the conclusions that: 1) the load distributed
among P2P cloud is balanced by each peer, 2) each
member role is under an acceptable average load and
3) server protected by FCAN is free from the sustained
high flash traffic.

6. Discussions
6.1 Mixed-Mode Operations

In reality, each cache proxy serves for several con-
tent servers, and there is a case that any server suffers
from flash crowds while the others do not. Therefore,
each Member CP has the functionality of mixed-mode
operations for the normal C/S mode and the anti-flash-
crowd P2P mode. The modes are switched according
to requested contents.

6.2 Peer Load Control

Each Member Peer spares a part of its CPU cycles
and disk space to deal with the redirected requests. We
should limit the load on any participating peer so as not
to overload it as a secondary victim of a flash crowd.
Thus, the capacity of P2P cloud absorbing flash traffic

107

is directly proportional to the number of Member Peers
which participate into the task of load distribution.

7. Conclusion

This paper updates the design of Flash Crowds
Adaptive Network, discusses the implementation is-
sues and presents the preliminary simulation results.
The results validate the system’s correctness. The next
steps in this research involve the closer study of pos-
sible solution to non-cacheable objects, detailed com-
ponent designs for wrappers, and a real network based
evaluations.

References
(1] C. Pan, M. Atajanov, T. Shimokawa and N.

Yoshida. Design of Adaptive Network against
Flash Crowds. FIT2004. September 2004.

[2] C. Pan, M. Atajanov, T. Shimokawa and N.
Yoshida. Flash Crowds Alleviation via Dynamic
Adaptive Network. 1C2004. October 2004.

[3] A. Stavrou, D. Rubenstein and S.Sahu. A
lightweight, robust P2P system to handle flash
crowds. IEEE Journal on Selected Areas in Com-
munications, Vol.22, No.1,January 2004.

[4] J. Jung, B. Krishnamurthy, and M. Rabinovich.
Flash crowds and denial of service attacks: Char-
acterization and implications for CDNs and web
sites. In Proceedings of the 11th International
World Wide Web Conference, pp. 252-262. IEEE,
May 2002.

[5] B. Y. Zhao, J. Kubatowicz, and A. D. Joseph.
Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing. U. C. Berkeley
Technical Report UCB/CSD-01-1141, April, 2001.

[6] T. Shimokawa, Y. Koba, I. Nakagawa, B.
Yamamoto and N. Yoshida. Server Selection
Mechanism using DNS and Routing Infor-
mation in Widely Distributed Environment
(in Japanese).Trans. IEICE, Vol.J86-B, no.8,
pp.1454-1462 (2003)

