FIT2005 (55 4 [OERHBZERHTIA—5 L)

C-035
A Study of a Hardware Control Language
Ivan A. Mantchovskit Shigeyuki Oharat

ABSTRACT

In the computer field, hardware and software are often the two faces of the same “coin” called a device. Writing
software is intrinsically dependant on the hardware specifications. However, these specifications are often incomplete
and written in non-formal languages. It is difficult for software programmers to write code to control this hardware
based on such specifications. This paper discusses a language that is used for defining how hardware is controlled.

Keywords

Hardware restrictions, Device drivers, Specifications language

1. Introduction

Many different kind of devices have penetrated our lives and the trend is expected only to escalate. The new devices
need some software to control it. The software to control a piece of hardware is generally known as a device driver.
Writing device drivers involves much knowledge and it is very error prone. Most of the time, device drivers are
designed by system programmers who rely on the specifications given to them by a hardware development team.
These specifications are often written in a natural language and are not standardized. This allows for mistakes and
misunderstanding. Moreover, these specifications mainly concentrate on describing some registers but say nothing
about hardware control restrictions. Without a clear understanding of these hardware restrictions, programmers may
design device drivers that are correct from the point of view of the programming language but that are incorrect from
the point of view of the hardware restrictions. These kinds of mistakes cannot be checked by the compiler and they
can lead to very serious consequences, even to the destruction of the device. This paper discusses a Hardware Control
Language (HCL). This language is a specification language that describes the hardware restrictions

2. Hardware Restrictions

2.1 Definition of Hardware Restrictions

We define hardware restrictions as any kind of physical or time limitations that influence the proper function of a
device.

2.2 Examples of Hardware Restrictions

Here, we introduce some hardware restrictions both for actuators and for sensors as examples of basic hardware
restrictions. The same examples may be used for compound devices using a combination of actuators and sensors.

Let us imagine that we have an application that sends different commands to a motor via a device driver. If this
application requests an increase in the motor speed the driver will translate this request into appropriate signals and
the motor will revolve faster. This works perfectly till we reach a certain limit after which the motor will be damaged.
This is an example of a physical restriction.

Another example is when the above program requests from the motor that it turns left but after that changes its
request for a right turn. This is also a very common situation but it will fail if the interval between these two
commands is too short. This is because the motor is influenced by the laws of inertia and it cannot respond to
commands given in a shorter than a given limit time. This is an example of a time restriction.

Motors are examples of actuators but we can see similar hazards for sensors. For example, let us consider a heat
sensor. If the temperature rises above some threshold value, the sensor will give incorrect values and may cause
damage to the whole system if its driver does not react to this situation. In this case, the driver should recognize this
hardware restriction and when the temperature becomes close to the device limits, it should take appropriate actions.

3. HCL
3.1 Overview of HCL

The HCL is used to state these hardware restrictions in a clear and unambiguous way. It should be used as an
important source of information before beginning to write any device driver. Its usage is especially important for

t Department of Electronics, School of Engineering, Tokai University
* Professor, Department of Information Media Technology, School of Information Technology and Electronics, Tokai
University

261

FIT2005 (55 4 EIBHREIERH T +—35 L)

double checking of safety critical systems, as car navigation, air-plane steering system, etc. By checking for hardware
restrictions abuses, the HCL can guard devices against damages and thus can save money.
3.2 Usage of HCL,

To be useful, the HCL needs to have the appropriate tools that will integrate it in the device driver development
cycle. Here, we explain the general model for the use of the HCL.

Because the makers of a device should know its limits better than any one else, they are supposed to write the
device specification in the HCL. Once the hardware specification in the HCL is ready it is passed to the system
programmers who use it during device driver development process.

System programmers use the HCL as illustrated in Figure 1. The HCL source is first passed to the Documentation
and Label Generator (DLG). The DLG creates a documentation paper in easy to read and understand form. It also
creates Check Labels (CL).

System programmers then code the device driver source. Because there is no standard naming scheme for device
drivers it can be difficult for the Device Driver Consistency Check Tool (DDCCT) to check the device driver source
without some hints. The role of such hints is played by the CLs that system programmers must use during the device
driver coding stage.

After device driver source is coded, it is passed to the DDCCT for a test of the consistency with the specification. If
the source fails, DDCCT creates a warning message, and returns the source for another revision by the programmer.
In the returned source, the failed sections are specially marked and commented, so the programmer can find the
mistakes easier. If the test is successful, DDCCT returns the device driver source with a success message. All the
labels are changed to comments that can be used for future reference. From now on, the device driver source can be
compiled by the appropriate compiler for the language it was written in, e.g. C language compiler.

Documentation
f?f Source Code of
.................. I Device X the Device

Source Code of
the Device

S ﬁ i V Driver for Driver
pec1f(;:: ions Devic
Device X m * .
written in HCL DLG E> Cé% !

Comment 2

Figure 1 HCL Usage

4. Conclusion and Future Work

This paper presented an introduction to the hardware control language. The next step will be to implement this
language and make some tests on how much it reduces the risk for creating device drivers that may damage the
device.

5. References

[1] J. Rushby, "Critical System Properties: Survey and Taxonomy", Technical Report CSL-93-01, SRI International,
Feb. 1994.

[2] Che-Fn and Virgil, “A Specification and Verification Method for the Prevention of Denial of Service”, IEEE
Trnsactionson Software Engineering, June 1990

[3] Jan Jiirjens, "Abstracting from Failure Probabilities", 2001

262

