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1. Introduction

The desire to speed up secondary storage systems has
lead to the development of disk arrays which achieve per-
formance through disk parallelism. While performance im-
proves with increasing numbers of disks the chance of data
loss coming from catastrophic failures, such as head crashes
and failures of the disk controller electronics, also increases.
To avoid high rates of data loss in large disk arrays one in-
cludes redundant information stored on additional disks —
also called check disks — which allows the reconstruction of
the original data — stored on the so-called information disks
— even in the presence of disk failures. These disk array
architectures are known as redundant arrays of independent
disks (RAID) [3].

2. Erasure Codes

Erasure-correcting capability of disk arrays can be
achieved by employing erasure codes. Let k,c € N and let
GF(2) denote the field with two elements. Then an erasure
code is defined by a linear injection 7 : GF(2)F — GF(2)**¢
such that an information z € GF(2)* appears unchanged in
the first k bits — the so-called information bits — of the corre-
sponding code vector v(z). The remaining c bits are referred
to as check bits which can be computed as the parity of sub-
sets of information bits. Each such code can be defined in
ternas of a cx (k+c)-parity check matriz, H = [C|I], where I
denotes the ¢X ¢ identity matrix and C is a cx k matrix. The
codewords in the code are the vectors y € GF(2)**° satisfy-
ing the equation Hy = 0. Note, that the first k columns of
H correspond to the information bits and the last ¢ columns
to the check bits (see also Fig. 1).

An unreadable bit of a code vector is called an erasure. It
is a well known fact that a code can correct a set of t erasures
iff the corresponding ¢ columns of H are linearly indepen-
dent considered as vectors over GF(2) [3]. An erasure code
which can correct any ¢ erasures will be abbreviated as t-
EC. In view of the RAID-application there are the following
two important metrics in erasure codes. One metric is the
update penalty, which is the number of check disks whose
contents must be changed if an information disk is changed.
In terms of the matrix H it can be defined as the maxi-
mum over the weights of the columns of H. It follows easily
that the update penalty of an t-EC is at least t. Another
metric is the check bit overhead, which is the ratio c/k of
the number of check bits to information bits. Good erasure
codes have high erasure correcting capabilities, whereas the
update penalty as well as the check bit overhead should be
low. (See [3] for further details.)
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3. Two-dimensional Parity Codes

In the rest of the paper we will investigate some specific
erasure codes. Let k = ¢2 for some £ € N, so that the
k information bits can be arranged in a two dimensional
array. Associate to each row and each column a check bit
containing the parity of that row or column, i.e., ¢ = 2£. The
so defined code is called 2-dimensional parity code which is
easily seen to be a 2-EC with an optimal update penalty 2.
In [3] is proved that this code can even correct most of the
3-erasures as well and has — with respect to this even higher
erasure-correcting capability — optimal check disk overhead
among all such codes. As illustration we present the case
£ = 2. For example, information disk 1 is associated to the
check disks a and c.
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Fig. 1: 2-dim. parity code and its parity check matrix.

A 2-dimensional parity code can be modeled by the com-
plete bipartite graph K;, = (U, V, E) in the following way.
The point set of K ¢ is partitioned into the two sets U and
V both having cardinality £. Assign the points of U to the
£ check bits corresponding to the rows and the points of V'
to the £ check bits corresponding to the columns. By defi-
nition, in K, any point of U is connected with any point
of V by exactly on edge constituting the edge set F, ie.,
|E| = £2.

Now, any of the k = #2 information bits a b
can be mapped to exactly one edge of F

determined by the row and column of the 1 4
corresponding check bits assigned to the

points of the edge. This graph-theoretical ¢ d
modeling of the parity codes will be help-  Fig. 2: Code
ful for our following investigations. as graph.

4. Cluttered Orderings

In a RAID system disk writes are expensive operations
and should therefore be minimized. When writing on a sin-
gle information disk one also has to recompute the parity
information and change the contents of all check disks in-
volved. This overhead is expressed by the update penalty as
defined in Section 2. In many applications there are writes
on a small fraction of consecutive disks — say d disks — where
d is small in comparison to k, the number of information
disks. - In this case a write can be implemented as an effi-
cient read-modify-write which can be described as follows [2].
First the d information disks are read followed by all of their
associated check disks. In the case when check disks over-
lap, the physical read only takes place once. All of the new
parity is computed and then this new parity and the new
information is written back to the disks. Once again, the
shared check disks are only physically written once. There-
fore, to minimize the number of operations when writing
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to d consecutive information disks one has to minimize the
number of check disks — say f — associated to the d infor-
mation disks. In other words, the order of the information
disks — or the order of the corresponding columns of the
parity check matrix — plays a crucial role for the efficiency
of the RAID system. In view of the interpretation of 2-
dimensional parity codes as bipartite graphs, we will use a
graph-theoretical approach to model this problem similar to
[2].

Let G = (V,E) be a graph with n = [V| vertices and
edge set E = {eo,e1,---,em—1} . Let d < m be a posi-
tive integer, called a window of G, and 7 a permutation on
{0,1,---,m — 1}, called an edge ordering of G. Then, given
a graph G with edge ordering © and window d, we define
Vf’d to be the set of vertices which are connected by an
edge Of {6"(,;), eﬂ-(i+1), Tty er(i+d—l)}, 0 S i S m — 1, where
indices are considered modulo m. The cost of accessing a
subgraph of d consecutive edges is measured by the number
of its vertices. An upper bound of this cost is given by the
d-mazimum access cost of G defined as max;|V;"%|. An or-
dering 7 is a (d, f)-cluttered ordering, if it has d-maximum
access cost equal to f. In view of the RAID-application one
is interested in minimizing the parameter f. The following
example shows a (3, 4)-cluttered ordering of K3 3.
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Fig. 3: (3,4)— cluttered ordering of K3 3.
5. Cluttered Orderings for 2-dim. Parity Codes

Cohen, Colbourn and Froncek [2] investigated the full
2-code and describe a cyclic construction for a cluttered
ordering of the complete graph corresponding to the full 2-
code. In the following, we continue our investigation of the
2-dimensional parity code and describe how to construct
a (d, f)-cluttered ordering of the complete bipartite graph
Kg, with some small f. There are two fundamental con-
cepts involved. Firstly, we introduce the notion of a wrapped
p-labelling for a bipartite graph. Secondly, we define the
concept of an f-movement.

Let H = (U,V, E) be a bipartite graph and £ = |E|. A
pair of mappings (pv,ov), pu : U = Ze¢, pv 1 V — Zy, is
said to be a wrapped p-labelling of H, if there are non-empty
subsets X,Y C U, X’,Y' C V and an i € Z; coprime to ¢
satisfying condition (i) and either condition (ii) or condition
(i)

(i) Each element of Z, occurs exactly once in {pv(z)—pv(y)
(mod &) |z € U,y €V, (z,y) € E}

(i) pr(X’) = pu(X)+iand pv(¥Y’) = pv(Y)+i (mod ).

(i) pu(X") = pv(Y)+iand pv(Y’) = pu(X)+i (mod £).

If one takes £ copies of H, say H(i), 0 < ¢ < {, provides
each of them with a labelling p(i) := p+ ¢ - £, and identifies
vertices with the same label, then it is not hard to show that
one gets a partition of the complete bipartite graph K¢ ¢ into
¢ isomorphic copies of H. We refer to [1] for further details.

Next, we introduce the concept of an f-movement. Let
G be an bipartite graph partitioned into two isomorphic
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bipartite subgraphs H = (U,V,E) and H' = (U',V', E’)
with [U| = ‘U,]v ;Vl = 'Vlla E = {60:611""83—1}7 and
E’ = {ep, €}, --,€p_1}. Given two permutations 7— and 74
of the index set {0, 1, ...,£—1}, one can define the following
£+ 1 bipartite subgraphs of G. Let Hp := H and inductively
H; := (Ui,W,Ei),l <1< F; = (Ei_l \{e,,_(i_l)}) U
{er. -1y} Let U; be the set of vertices in U UU’ contained
in some edge of F; and, similarly, V; the set of vertices in
V UV’ contained in some edge of E;. It is easy to see that
Hy = H’. Then the pair of permutations (m—, 7} ) is called
an f-movement from H to H' if maxo<i<e(|Us| + [Vi]) = f,
where f := |U]| + |V|.

Now, the next theorem gives some sufficient conditions
for the existence of a (d, f)-cluttered ordering of K, .. We
refer to [1] for a proof.

Theorem 5.1. If there is a wrapped p-labelling of a bipar-
tite graph H = (U, V, E) withd =€ = |E| and f = |U|+|V]|
and if there is an f-movement from H(0) to H(1) as defined
above, then there exists a (d, f)-cluttered ordering.

We conclude this paper with some specific construction.
For hi,h2 € N, we define the bipartite graph H(h1,h2)
(U, V,EYby U= {u;:1=1,2,...,ha+ he}, V={vs: 7=
1,2,...,ha+hi}and F = {{us,v;} : 1 <i< h,1 <5<
ha} U{{ts, vhpts} 1 1 <7 < S ha} Uf{uny s, v} : 1< <
7 < ha}. In [1] we show that there is a suitable f-movement,
f = 2(h1 + h2), such that one gets the following theorem.

Theorem 5.2. If there is a wrapped p-labelling for
H(h1,h2), then there erists a (d, f)-cluttered ordering for
the complete bipartite graph Ke¢, where d = (hy + h2)(h1 +
h2 +1)/2 and f = 2(h1 + h2).

In [1] we give some examples for wrapped p-labellings
for small values h1 and ke leading to (d, f)-cluttered order-
ings by Theorem 5.2. Finding suitable wrapped p-labellings
leading to small [ is an ongoing research project of the au-
thors.

6. Conclusion

Starting with the RAID application we have introduced
erasure codes. Of special interest are the two-dimensional
parity codes which can be modeled by the complete bipartite
graph. Minimizing disk operations when writing to consecu-
tive disks lead to the concept of cluttered orderings. Using
some appropriate mathematical modeling — the p-labellings
and f-movements — we gave some sufficient conditions for
the existence of such orderings and concluded with some
example. This paper gives some nice example for the inter-
action between real applications and mathematics.
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