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Software Reliability Measurement with Effect of Change-Point
by Using Environmental Function
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1. Introduction

Quantitative assessment of software reliability in an
actual testing-phase in a software development process
is one of the important activities for developing highly-
reliable software systems. Software reliability growth
model (abbreviated as SRGM) [1-3] is one of the
useful mathematical tools for quantitative assessment
of software reliability. Basicallyy, SRGMs are
developed by treating the software failure-occurrence
time-interval as random variables and under the
assumption that the stochastic characteristics of these
random variables are the same throughout testing-
phase. However, it is very difficult to say that this
modeling assumption does not enable us to reflect a
practical software failure-occurrence phenomenon
because we often observe a phenomenon that the
stochastic behavior of the software failure-occurrence
time-interval notably changes due to a change of
testing-environment on testing-activities, e.g., a change
of fault target, a change of testing-effort expenditure,
and so forth. Testing-time when such phenomenon is
observed is called change-point [4]. It is known that a
occurrence of the change-point influences accuracy of
SRGM-based software reliability assessment. Under
the background, software reliability growth modeling
with the effect of change-point has been discussed so
far [4-7]. In recent years, Inoue and Yamada [8,9]
proposed software reliability growth modeling
framework with the effect of change-point, and
discussed a software management issue for deriving
optimal shipping time and change-point from the point
of view of cost minimization. However, it is very
difficult to find research results, which discuss
software reliability growth modeling with a
relationship between the software failure-occurrence
time intervals before change-point and those after
change-point. In an actual testing-phase, it might be
natural to consider that there exists a relationship
between the time-intervals before the change-point and
those after the change-point because a same software
product is tested. And it is very important to know how
the stochastic characteristic of the software failure-
occurrence time-interval changes at the change-point
from the point of view of software development
management.
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In this paper, we discuss a new change-point
modeling framework for software reliability
assessment, in which we incorporate the relationship
between the software failure-occurrence time intervals
before change-point and those after change-point.
Concretely, we use an environmental function for
describing the relationship of the software failure-
occurrence time-intervals before and after the change-
point. Further, we check performance on software
reliability assessment based on our model, which are
developed based on our modeling framework in terms
of a statistical goodness-of-fit test and mean square
errors, and show examples of the application of our
model for software reliability assessment by using
actual change-point data.

2 . Change-Point Modeling Framework

Our change-point modeling framework is
developed based on the following basic modeling
framework for nonhomogeneous Poisson process
(NHPP)-based SRGMs in which the total number of
detectable faults is assumed to be finite [2,10-12]:

(1) Whenever a software failure is observed, the fault
which caused it will be detected immediately and
no new faults are introduced in the fault-removing
activities.

(2) Each software failure occurs at independently and
identically distributed random times with the
probability distribution, F(r)=Pr{T <} , where
Pr{4} represents the probability of event 4. And
the probability density function is denoted by 1 ().

(3) The initial number of faults in the software,
Ny(>0),isa random variable, and is finite.
Now, let {N(f),t >0} denote a counting process

representing the total number of faults detected up to
testing-time /. From the basic assumptions above, the
probability that m faults are detected up to testing-time
¢ under the assumption that N, = » is derived as

Pr{N(t)=m|N, =n}

=[" ){F(r)}”’{l—F(r)}""".
m
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Figure 1 Stochastic quantities for software failure-occurrence or fault-detection phenomenon.

Then we have a probability mass function that m faults
are detected up to testing-time ¢ as

Pr{N(t) = m}
n - n-m @
= Z (m){ F@}"{1- F(t)} " exp[-o]
_ M exp[-oF ()] (m=0,12,--"),
m:

)

in which it is assumed that the initial fault content
follows a Poisson distribution with mean @ . Eq. (1) is
equivalent to an NHPP with mean value function:

E[N()]= A®) = oF (1).

Now, we define stochastic quantities being related to
our change-point modeling framework in this paper as
shown in Fig. 1. We assume that the stochastic
quantities before and those after change-point have the
following relationships:

Y, =a(x)
T, =a(s,)
J, ()= K, (@)

@

respectively, where ¢(f) is a testing-environmental

function representing the relationship between the
stochastic quantities of the software failure-occurrence
times or time-intervals before change-point and those
after the change-point, J (r) and K,(t) the probability
distribution functions with respect to the random
variables § and T, , respectively. In this paper, we

assume that the testing-environmental function is given
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as [13]

a)=at (a>0), 3)
where ¢ is the proportional constant representing the
relative magnitude of the effect of change-point on the
software reliability growth process. Eq. (3) is one of
the examples for the testing-environmental function.
However, we can get to know the effect of the change-
point on the software reliability growth process simply
by assuming Eq. (3) as the testing-environmental
function.

At this time we need to derive a probability
distribution function of the first software failure-
occurrence after the change-point to develop mean
value function representing the number of fault
detected after the change-point. Suppose that # faults
have been detected up to the change-point and their
fault-detection times from the test-beginning (#=0) have
been observed as 0 <x, <x, <---<x, <7, where T

represents change-point. Then, the probability
distribution function of T, , a random variable

representing the time duration from the change-point to
the first software failure-occurrence after the change-
point, can be derived as

Ji(t) =Pr{T, > 1}
_Pr{S,, >t-x,+t/a}
CPr{S,,>7-x,)
_exp[—{My(r+t/a)— My(x,)}]

exp[-M,(7) — My(x,)]

4

b

where J,(r) indicates the cofunction of the probability

distribution function and M (f)(= @K, (¢)) represents

the expected number of faults detected up to change-
point or a mean value function for the NHPP before
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Table 1 Actual data sets.

The number of Unit of Change-Point | Shape of Growth
data pairs Measurement Curves
DS1 26 Day 18 S-shaped
DS2 29 Day 24 S-shaped
DS3 26 Day 17 Exponential
DS4 29 Day 18 Exponential
DS5 28 Day 18 Exponential

change-point. From Eq. (4), the expected number of
faults detected up to € (7,00) after change-point,

M ,(2), can be formulated as

M, (t)=~logPr{T, >t—1}
logjl(t*r)
=My (T +"7,)— My(2).

®

Then, the expected number of faults detected up to
testing-time ¢ (f € (7,90),0 <7 <t) can be derived
as

Ay()=M,(t) (0<t<7)
Alt) = A () = My (7)+ M ,(2)
=M, (t+7%) (t<1).

From Eq. (6), we can see that an NHPP-based SRGM
with change-point can be developed by assuming a
suitable probability distribution function for the
software failure-occurrence time before change-point.

6

3 . Goodness-of-Fit Evaluation

We conduct goodness-of-fit comparisons of our
models with existing SRGMs, which do not
incorporate the effect of the change-point. We arrange
five data sets: DS1, DS2, DS3, DS4, and DS5. These
actual data sets were collected in actual testing-phases
for a web system and the change-point was generated

by changing the tester and increasing the test personnel.

Table 1 shows some information being related to these
data.

In this paper, we develop change-point models based
on our modeling framework by assuming two-types of
mean value functions before change-point: exponential
and delayed S-shaped SRGMs [1-3], which are the
same meaning that we assume the software failure-
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occurrence times distribution before change-point
follows an exponential distribution and a gamma
distribution with k=2, I'(2), respectively. Then, we

have the following mean value functions with the
effect of change-point as

A,()=a(l-e™) (0<t<7)

A() =qA () =a{l—exp[-b(z +"7)I} ()
t>71)
and
(A, (2) = a{l = (1 + bt) exp[-bt]}
0<t<7)
AW =3A, () =a{l-(1+b(z +"%))

exp[-b(z +7,)]}
(>7),

®

respectively. Parameters of our SRGMs can be
estimated by using the method of maximum likelihood.
Now we investigate goodness-of-fit of our models
statistically. This paper conducts Kolmogorov-Smirnov
Test (K-S goodness-of-fit test) [3] for investigating
goodness-of-fit of our models to the actual data. The
K-S goodness-of-fit test can be conducted along with
the following procedure. Suppose that we have

observed n data pairs (£,,y,) (i =0,1,2,---,n) with
respect to the total faults, y,, detected during constant
time-interval (0,7,](0<f <t, <---<t,), the K-S
test statistic, D, can be written as

D=maxD

-9
D, = max{lH(t')H(r,,) - %L |H(’%1(r,,) - y,.%"

}
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Table 2 The results of K-S goodness-of-fit.

Proposed Model

Existing Model Proposed Model Existing Model
(Exponential (Exponential (Delayed S-Shaped (Delayed S-
SRGM-Based) SRGM) SRGM-Based) Shaped SRGM)
DS1 0.265227 0.216352* 0.1934* 0.177095*
DS2 0.227221* 0.27147 0.17183* 0.197832*
DS3 0.125986* 0.119922% 0.149066* 0.171058*
DS4 0.076802* 0.085945* 0.127143* 0.13292*
DS5 0.124526* 0.117522% 0.11127* 0.119403*
(*: 5% significant)
Table 3 The results of goodness-of-fit comparison based on MSE.
Proposed Model | Existing Model | Proposed Model Existing Model
(Exponential (Exponential (Delayed S- (Delayed S-
SRGM-Based) SRGM) Shaped SRGM- Shaped SRGM)
Based)
DS1 18.4005 16.0848 7.77583 7.21958
DS2 24.6323 32.0834 22.1304 19.3189
DS3 2.19263 2.40089 6.05874 6.87789
DS4 0.331126 0.348901 1.60806 1.70385
DS5 2.2043 2.47239 7.49945 7.63319

The K-S test statistic D is needed to compared with a
critical value 4 , where n represents the number of

data pairs and @ a level of significance which is
usually given as 0.01 or 0.05. Then, we judge that an
NHPP model fits to the observed data at a level of
significance & if D<d, . Table 2 shows the results

of K-S goodness-of-fit test. From the results of K-S
goodness-of-fit, our  proposed models and
corresponding existing models (exponential and
delayed S-shaped SRGMs) mostly fits to the actual
data sets statistically. However, we cannot make sure
the evidence that our models have better performance
than the existing models, which do not incorporate the
effect of the change-point. And we conduct goodness-
of-fit comparisons of our models in Egs. (7) and (8)
with corresponding existing SRGMs, which do not
incorporate the effect of change-point, from the view
point of mean square errors (MSE). The MSE is
calculated as

2

1< N
MSE = ;Z[yk -] (10)
k=1
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where (¢, ) represents the estimated cumulative
number of faults detected during a time-interval 0,z,]-

The smaller MSE represents that the model fits well to
the actual data. Table 3 shows the results of goodness-
of-fit comparisons based on the MSE. In Table 3, the
bold-text represents having better performance
compared with an existing corresponding model and
the underlined bold-text represents having best
performance for each data set. From Table 3, for a
delayed S-shaped SRGM-based model, it is very
difficult to find the effectiveness of considering with
the effect of change-point. However, we can say that
taking the effect of the change-point into consideration
in software reliability growth modeling is one of the
effective ways for improving the accuracy of software
reliability assessment based on an SRGM.

4 . Numerical Examples

We show numerical examples of the applications of
our model in Eq. (7) for software reliability
assessment by using actual data. In this paper, we use
DS3, for which our proposed exponential SRGM-
based model indicated best performance on goodness-
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Figure 2 Estimated mean value function with change-point
and its 95% confidence limits. (change-point=17 (days))
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Figure 3 Estimated expected number of remaining faults.
(change-point=17 (days))

-of-fit in the previous section.
To start with, we estimate parameters of our model,
a,b, and o simultaneously based on the method of

maximum likelihood given that the change-point
7=17. As the result of parameter estimation, we can

get 4=44.482, b=0.0506, and & =0.781, which are
the estimated parameter of 4, b, and « , respectively.
Based on the parameter estimates, Figure 2 shows the
estimated mean value function with the effect of the
change-point in Eq. (7) and its 95% confidence limits.
From Fig. 2, we can see that the time-dependent
behavior of the estimated number of detected faults
changes at the change-point, and fits well to the actual
behavior. And we can say that the testing-environment
after the change-point is harder than that before the
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change-point since & =0.781.

Further, we show numerical examples for
software reliability assessment measures based on our
model in Eq. (7), such as the expected number of
remaining fault, software reliability function, and a
cumulative MTBF. The expected number of remaining
faults indicates the time-dependent behavior for the
expected number of undetected faults in the software
system. Then the expected number of remaining faults,
M(t), is derived as

M(f) = E[N(0) -~ N()] = A(0) - A(2)

=a—A(?). a

1)

Figure 3 shows the estimated time-dependent behavior
for the expected number of remaining faults. From Fig.
3, we can estimate the residual fault content at the
termination time of the testing, 47(26), to be about 10

faults. The software reliability function represents the
probability that a software failure does not occur in the
time-interval (z,7 + x](¢ > 0,x > 0) given that the testing
or the user operation has been going up to time ¢. Then,
the software reliability function is derived as

R(x|t) =exp[-{AC+x)-A@D}] (2

if the counting process {N(¢),z > 0} follows the NHPP
with mean value function A(¢). We should note that

Eq. (12) is derived under the condition that the
software system is operated in the same environment as
the testing-phase after the change-point. Figure 4
shows the estimated software reliability R(x| 26) . From

Fig. 4, we can estimate R(1.0|26)~0.5176 under the

assumption that the software is operated in the same
environment as the testing-phase after the change-point.
Finally, we discuss a cumulative mean time between
software failures (cumulative MTBF), which is one of
the substitute measures of the usual MTBF for the
NHPP model, in which the number of detectable faults
in the software is assumed to be finite. The cumulative
MTBEF as defined as follows:

t

MTBF (1) = o

(13)

Figure 5 depicts the time-dependent behavior of the
estimated cumulative MTBF. From Fig. S, we can
estimate the cumulative MTBF at the termination time
of the testing to be about 0.7647 (days).
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Figure 5 Estimated cumulative MTBF. (change-point=17 (days))

5. Conclusion

We discussed change-point modeling framework for
software reliability assessment, in which the relationship
between software failure-occurrence times before change-
point and those after the change-point was incorporated by
using an testing-environmental function. In our modeling
approach, we can easily develop a change-point model by
assuming a mean value function before the change-point.
And this paper investigated performance on software
reliability assessment based on our two-types specific
change-point models, which were developed by assuming
mean value functions before change-point follow
exponential and delayed S-shaped SRGMs, by using K-S
goodness-of-fit-test and MSE. Further, by comparing of
our models with corresponding existing SRGMs, which do
not incorporate the effect of change-point, we can see that
taking the effect of the change-point into consideration in
software reliability growth modeling is one of the effective
method for improving accuracy of quantitative software
reliability assessment based on SRGM.

We need to investigate more the effectiveness of our
modeling approach by comparing existing change-point

330

models. And, we are going to develop a more feasible
testing-environmental function for getting higher accuracy
for software reliability assessment based on an SRGM
developed under our modeling framework.
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