FIT2008 (55 7 ElEHREIERERT 7 +—3F L)

F-007

An Efficient Construction of RBF Network Based on Training by SOM

Kazuhiko Yamashita'

1. Abstract

In this work we proposed to train both input to hid-
den as well as hidden to output layer weights of a RBF
network using Self-Organizing Maps (SOM) training.
Initially a two dimensional SOM is trained. Once SOM
training is over, the SOM input to output weights de-
termine the RBF hidden units’ location in problem
feature space. Next, for every individual sample the
winner SOM output is identified, and the label (class)
of the sample is tagged with SOM outputs. This tag
information is used to decide the connection weights
between RBF middle layer nodes to output nodes.
Thus by just executing SOM the RBF network is con-
structed. The performance is compared with multilayer
Perceptron trained with error back propagation.

2. Introduction
2.1 Self-Organizing Maps (SOM)

Artificial neural network (ANN) is a powerful tool
for solving clustering and the pattern recognition prob-
lems. One of the stable clustering tool is Self-
Organizing Maps (SOM). Moreover, it is easy to ma-
nipulate the number of outputs in case of SOM, and
still have meaningful results, and it has the property to
project the data distribution in multi-dimension space
in two dimension.

In addition, SOM can be used as a supervised net-
work, as classifier too. It is possible when the different
classes are well separated and the class information is
available. After SOM network training converges, we
input the different samples once at a time, and check
the winning output. We mark the winning output same
as the class of the input sample. When different classes
of samples are well separated in the feature space, and
there is no overlapping, we can uniquely assign class
label to different SOM output units. After this phase,
when an unknown sample is input, we can determine
the class from the winner output and its class-label.

In case, the distribution of samples in the feature
space is overlapping, we can not uniquely label the
SOM output units with class information. The same
output unit can sometimes win a class and some other
time win another class, if they were from the overlap-
ping region. But, this confusion can be resolved using a
RBF type neural network. We will elaborate this idea
in next section.

2.2 RBF Network

RBF Network (RBFN) is a three-layer feed forward
network. RBFN is a supervised artificial neural net-
work used for classification of interpolation problems.
The main important point of RBEFN is that its training
time is much faster than error-back propagation train-
in%. On the other hand, if the number of hidden units
is large, RBFN tends to get over-trained.

The name, radial basis function SRBF) network
comes from the type of functions used at the hidden
layer nodes, to convert the node input to output. One
of the most popular function has the form of normal
distribution, as shown below.

tDept. of Software and Information Science, Iwate Prefectural
University

Goutam Chakraborty!

325

Yuji Mizuno!

2
¢j:mm(_ﬂw—um>

Here, p; is center of function, o7 the variance and

)

T is the input vector. ¢; is output of the j** hidden
units. Physically, different hidden units take care of the
region surrounding them. They are like spline functions
in interpolation problems.

Finally, the input to the output units is the dot prod-
uct of output of hidden units and the hidden to output
weights vectors. If there are C classes, let the output
vector corresponding to z as input,

M
YT =) wks $5(7)
3=0

y(Z)=W3s

where M is the number of hidden units. In general,
for RBFN, the output units do not use any activation
function. The input-output relation at the output units
is linear. In that case, to minimize the training samples
error, i.e.,

(2)

3)

Error + % Z Z{yk(?n) - try? (4)

There is a straight calculation of the connection
weights. Here, W is the weight matrix, with C rows for
C-classes and M columns for connections to M hidden
units. W is the solution of the following linear equa-
tion:

aTowT =o"T (5)

Here, ® is a matrix with N rows and M columns,

where N is the number of samples and M is the number

of hidden nodes. The elements of first row is, ¢;("),
¢>2(?1?1), ¢3(Z1)...oam(Z1). Similarly, the second row

is 1 (Z2), ¢2(Z?), ¢3(T2) ... dpr(Z?). Thus, we have
N rows for N sample data. T is the class information
matrix, having N rows and C columns. As it is a linear

equation, and as in most of the cases ®T'® is invertible,
in general there is a solution.

We want to avoid the complex computation of ® ma-
trix, multiplication and inversion of big matrices. We
;S>r0011\>403e a method for setting the weight matrix using

3. Proposed System

As mentioned earlier, the proposed algorithm is
based on SOM. We first give a brief description of SOM
training algorithm. It is one of the unsupervised learn-
ing methods. The output nodes are self organized after
training. This network is also an important tool for vi-
sualization of multi-dimensional data. This network is
two-layer structure and, in this paper, the output layer
is two dimensional. The input to output layer nodes

(58 2 53

FIT2008 (557 BIRHBFRMI +—35 L)

OGO
®0
00O

@ winner unit
© neighboring units

Figure 1: Decision of RBF variance

connection weights modify according to the following
formula [1].
my(t + 1) = my(t) + ait)hei[z(t) — mi(t)] (6)

m; is input to hidden weights, z is input value and
he¢; is neighborhood function. ¢ is learning epoch num-
ber, and then, ¢; is learning rate. The learning rate
is decreased gradually as the training proceeds. Not
only the winner unit but also its neighboring units, as
defined by h.; are made to learn.

Once SOM training is over, the structure is retained
as it is as the input and hidden layer of RBFN. The
SOM outputs no longer retain its two-dimensional po-
sitional information as the middle-layer units of RBFN.
After SOM training is converged, we present the train-
ing samples one by one, and note which SOM output
wins. We keep a counter at all these nodes for every
class. For the winner node, we add the correspond-
ing counter by one. Once all the training samples are
presented, these counter values determine the middle
to output layer weights of the RBFN. If the counter
corresponding to a class (output unit) is zero, there is
no connection. Otherwise, there is a connection with
weight equal to the counter value. At the end, the
weights of all the connections to an output unit is nor-
malized. The value of o at a middle layer unit is also
determined from the SOM result as shown in Fig. 1.
Physically o; is decided from the average Euclidean
distance of four neighboring units and z.; is decided
from the number of winning samples of class c.

Thus the whole RBFN is constructed from SOM re-
sult alone.

4. Experiments and Results
4.1 Data sets

We used vowel data. There are ten different types
of vowel, and two formant frequencies as two features.
The data is described in Table 1. There are many
overlapping areas due to similarity in pronunciation of
nearby vowels. We used 511 samples as training data.
The number of test data of each class is sixteen.

[Vowel Data (training samples: 511, test samples: 160) |

Input “Output
1. First formant 1.~10. Vowel
2. Second formant

Table 1: Vowel data

4.2 RBFN using SOM

The parameters used for SOM training and the ex-
periment result are shown Table 2.

The total of recognition rate for test samples using
the proposed RBFN is 77.5% and the training time was
25.72 second. Low recognition rate for classl and class8
is due to strong overlapping.

326

SOM parameters

Learning rate 0.05
Radius 3
Training times 10000
Result of recognition
Class Recognition rate (%)
1 43.75
2 87.5
3 93.75
s 75.0
5] 68.70
[T100.0
7 100.0
8 0.0
9 93.75
10 62.5
Total of recognition rate [77.5
[Processing Time [25.72sec]

Table 2: SOM parameters and recognition rate

4.3 Results using Multilayer Perceptron

Parameter values and results using Multilayer Per-
ceptron trained by error back-propagation is shown Ta-

ble 3.

BP parameters

Learning rate

0.1

Hidden units

30

Training times

20000

Result of recognition

Class

Recognition rate (%)

87.5

87.5

96.25
875
62.5
68.75
100.0
75.0
87.5
0.0
71.25

9min 25.703sec]

e od ~J o erf i e v o

10
Total of recognition rate

Processing time

Table 3: BP parameters and recognition rate

The total recognition rate for test samples is 71.25
% and the training time is 9 minutes 25.703 second.
The learning rate is decrease gradually as training pro-
gressed. Here the worst recognition was for class10. Of
course, there is overlapping. Yet, different values of the
recognition rate shows that there are still ways to im-
prove the recognition rate. For BP, the training may
be stuck in local minimum. But similar results were
obtained when it is repeated.

5. Conclusion

In this paper, we proposed construction of RBF net-
work based on SOM. Our proposed method gives bet-
ter recognition rate than BP and it stands head and
shoulders above BP in training time.

Consequently, this method is better than BP as
learning machine. However, it is possible to use our
proposed RBFN as the initial state, and then further
training is possible for the middle to output connection
weights as well as the different o values to improve the
recognition rate. Due a good starting point, we conjec-
ture that this training will be finished quickly.

References
1] T. Kohonen: “Self-Organizing Maps”, Springer-
[g

Verlag Tokyo, pp.116, 2005.

(% 2 73D

