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Towards Social Robotics on Smartphones with Simple
XYZV Sensor Feedback

Marat ZHANIKEEV1,a)

Abstract: Social Robotics normally assumes visual feedback between robotic trainees and human trainers. Given that
robots rarely have adequate visual perception/recognition, such systems are noisy and prone to judgment errors. One
way to resolve this problem is to simplify the communication channel between humans and robots. This paper uses
simple gravity+motion XYZV sensors ubiquitous in modern personal devices – smartphones in particular – to power
gait-based exo-systems (power leg assist, etc). This paper discusses current work in progress on this topic, specifically
(1) gait modeling and recognition of kick-in moments for hardware, (2) use of the XYZV channel in both directions,
allowing humans to send feedback in realtime, (3) social robotics constructs and methods that support maximum flex-
ibility in applications of the otherwise traditionally narrow-purpose hardware systems.
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1. On the Concept of Social Robotics
Proper terminology has to be established early in this paper to

avoid missing the correct context for the term social robotics. In
some contexts, this term refers to social robots which represent
conventional robots but places in social context and therefore hav-
ing to interact with humans in a human-like manner. For example,
there is research on robots behaving like humans [3] and robots
that attempt to interact with humans in socially acceptable way
[4]. The boundaries of this kind of robotics are somewhat blurred
but we are mostly talking about robots which are trying to pose
themselves as humans in human-robot interactions. Another ma-
jor distinction of this area is that social likeness in this case is
completely artificial while the internals of the robots themselves
remains conventional.

The term accepted by this paper is different in nature. The dif-
ference is properly explained in [5] which explains both kinds
of social robotics without focusing on the either kind. An even
better taxonomy can be found in [6]. The term accepted by this
paper refers to a new kind of learning rather than to the mode of
interaction. In fact, this paper will argue that non-social and non-
traditional forms of Human-Robot Interaction (HRI) are better
since they carry less noise. They key, however, is in the learning
part, where social robots are expected to have:
• a bare minimum of fixed programming, sufficient to support

dynamic learning via HRI;
• learn the various skills via HRI without any prior knowledge

of the tasks they are supposed to accomplish.
The intended concept of social robotics is rare in recent liter-
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ature but is a recognized research subject nevertheless. Inferring
guidance from human feedback is studied in [10]. An interest-
ing viewpoint of reducing the complexity of the decision space
via HRI is studied in [11]. Finally, a wide range of topics from
the conceptual designs to practical implementations of guidance
mechanisms are considered in [12][13].

This research area remains incomplete. One of the major miss-
ing parts is the link between social robotics in its traditional hard-
ware environment and software automation. An earlier study by
this author discusses this very issue as part of software automa-
tion of context management [1]. Another recent study in [2] pro-
poses a human-robot learning process in MultiDimensional Clas-
sification (MDC) which builds on top of the context management
basics but also proposes the larger framework of a learning engine
based largely on HRI. The method in myt.metromaps.bayas is the
first known case of the concept of social robotics implemented in
software automation settings.

Table 1 compares hardware and software forms of social
robotics. The main differences are as follows. First, while Re-
inforcement Learning (RL) is common for hardware robots, soft-
ware robots make more sense as Classifiers – the case of Multi-
Dimensional Classifier (MDC) in [2] in most practical settings.
This border, however, can grow thinner in the future as software
automation becomes more commonplace – one particular area of

Table 1 Comparison of features between social robotics and software au-
tomation.
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Fig. 1 The goal of the research on social robotics.

applicability here is BigData analysis. Secondly, reasoning is
common only for hardware robots while software has a clearly
defined objective. This is a problem for hardware robots because
visual recognition is traditionally difficult to do reliably. This pa-
per argues that simplifying HRI in such a way that vision would
become unnecessary will help create a generation of highly reli-
able hardware robots in the future. Finally, guidance itself is dif-
ferent between the areas as humans in software automation need
to both provide guidance and make decisions. Partially, decisions
are absent from the harware case because of the reasoning. Here,
the tradeoff between reasoning and decision-making is obvious –
the less reasoning on the part of the robot requires more decision
making on the part of human operators.

The simplification in Table 1, besides lowing the reliance on vi-
sual recognition and the related reasoning, can also benefit from
minimizing the number of input channels. This paper argues that
a single XYZV channel is sufficient for most human-based mo-
tion robotics. XYZV channel is defined as the mixture of gravity
and acceleration sensor inputs available on most smartphones to-
day.

The scope of this paper is limited to smartphone-based robotics
and, to remain realistic, assumes only the presents of XYZV
channel. To make social robotics work in these settings, the same
XYZV channel has to be used for human feedback. This paper
defines two models for natural HRI interaction of such type while
the larger objective is for the smartphone-based robot to monitor
and react to human gait. The specific reaction in this paper is to
the upward step while walking up the stairs.

2. Towards Smart Robots
A good review of practical robots can be found in [7]. It in-

cludes many popular models like HAL but also discusses input
channels and designs for many other kind and shapes of robots.
HAL specifically – as a representative robot in Japan – is specif-
ically interesting as it is a perfect illustration of both the cur-
rent state of robotics and the objectives/expectations for social
robotics.

Fig.1 is the visual representation of this statement. Most ex-
isting hardware robots – including HAL – are extremely special-
ized. HAL itself is cannot be used outside of the physical form
it was created for because of its input channels. The core design
feature in HAL is that it depends on two main input channels:
(1) bioelectricity which measures impulses in muscle tissue just
before the muscle contracts, and (2) the sensor on the bottom of
the foot used to measure the so-called floor reaction – in plain
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Fig. 2 The model of input channels for sensor data and human feedback.
The ultimate simplification is when the same single channel is used
both for sensor input and human feedback.

words, when the person transfers the weight on its foot. These
channels support very reliable decisions because HAL always
knows which leg a person has the weight on and which mussle
is about to contract. Together with several logical constraints at
the level of let us not move both legs at the same time, the deci-
sions are extremely reliable in practice. Note that the high relia-
bilty is achieved by an extremely specialized design that depends
on irreplaceable/unchangeable sensor inputs, their relative posi-
tions (angle modeling), etc. For descriptions of decision function
implemented in the original HAL and its recent back-support ver-
sion see [9][9], respectively.

In this context, the research objective in this paper is to take
robotics from the lower-right corner of Fig.1 to the upper-left
corner by making possible a new generation of robots with (1)
flexible sensor inputs and (2) generic purpose. In plain words,
the objective is to facilitate evolution from dumb specific robots
to smart generic ones.

A crucial element in making this evolution possible in prac-
tice is context management. This part is missing from existing
research on social robotics. In fact, most robots discussed in cur-
rent literature are somewhat narrow-purpose and thus violate the
objective in Fig.1. This gap is due to the fact that generic ap-
proach to context management is not well understood today. The
method in [1] uses metromaps for both visualization and repre-
sentation of knowledge/context in any given system. While this
author argues that metromaps can provide sufficient generic sup-
port for social robotics, this claim needs more support by future
research results.

In the meantime, this paper makes several steps towards im-
plementing the objective in Fig.1 in practice. While the robot fur-
ther in this paper detects steps (human gait), the HRI part of the
method is generic and can be applied to any kind of smartphone
robotics, provided it can be implemented based on the XYZV
sensor input.

3. On Input and Feedback Channels
Fig.2 shows the generic model of robots in the social robotics

context. The novel feature is the presence of human feedback
which provides guidance to robot at runtime. The features of this
model are as follows.

Sensor Input is expected to be as generic as possible but al-
lows for multiple sources. In fact, even the XYZV channel is
complex and consists of four independent components – hence
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Fig. 3 A model representing reliability of robotic decisions represented in
dumb versus smart (social) curves.

the name. In case of HAL, inputs are not only multi-component
but also have multiple physical natures – bioelectricity, pressure
sensor, etc. Regardless of the number of distinct inputs, the robot
normally needs to make a simple decision. Again, in case of
HAL the decision is when to start its leg assist system. This is
a bit overly simplistic as HAL makes the binary decision once
but then implements the step cycle which is implemented as a se-
quence of power levels fed to the hardware in such a way that the
step is performed in a humanly compatible manner. Note here,
that even HAL does not use a personal provide here but rather
implements a generic step. However, even with these details, the
most important part is the binary decision of when to start a given
action.

Human Guidance is a communication channel between hu-
man and robot. The channel normally works in one direction as
it is only necessary for humans to supply feedback to robots, and
never the other way around. Physical channel can be anything.
For example, in current literature, robots use vision (cameras in
eyes) to monitor and detect gestures from human instructors. This
paper discusses much more reliable gestures delivered over the
XYZV channel.

Same Channel Interaction is an important objective for
smartphone-based robotics. This idea demands that the same
channel is used both for sensory input and human guidance. Note
that this is already part of existing social robots which get feed-
back via the same cameras they use for motion control.

Context Management is the part which is given very little at-
tention in existing literature. Given that decision space grows
considerably for generic robots, context switching performed
manually by humans can help reduce this complexity. This is
the same problem tackled in software automation ?. For now,
humans are expected to change the context manually, while auto-
matic switching can be considered in the future. A practical ex-
ample of this problem can be in form of making out the contextual
difference between walking up versus down the stairs. Existing
robots are normally unable to make this distinction automatically.

Fig.3 is another representation of the research objective. The
dumb curve represents traditional (non-social) robotics where re-
liability of robotic decisions are ensured via increasing the num-
ber of sensory inputs at the expense of increasing specificity. The
dumb curve suffers from the dimentiality curse, where too much
sensory data can have a negative effect on reliability.

In case of the smart curve, social robotics are expected to boost
the reliability of decisions even for few – ideally only one – sen-

sory inputs. Note that the simple one-channel robots such as those
based on the smartphone may not achieve the industrial level of
reliability, in which case it may take 2 or 3 channels before the
curve goes over the threshold. However, even in this case, it is ex-
pected that both the combination and physical nature of the input
are kept generic.

4. Experiments on the XYZV Channel in
Smartphones

The concept of social robotics explained earlier in this paper
has been tested on a commodity smartphone using the easily
available sensor inputs, namely the XYZ input from the gravity
sensor and V component from the acceleration sensor, making
the XYZV input for short. Note that it is possible to connect vari-
ous other sensors to a commodity smartphone to improve its sen-
sory capability, but this paper only considers the simples hard-
ware available to everyone by default.

Gait recognition using smartphones is a well-known research
subject, with several reliable models found in existing literature.
This paper implements one such method in order to detect steps in
the up-the-staircase form, i.e. it is expected that the terminating
point of an arc drawn by the foot is higher than the starting point.
The results further in this paper show that detection was far from
perfect which hints at a less than perfect implementation, but the
main target of this paper is to establish a feasible HRI channel
which the results for which were much better.

HRI was implemented as follows. The smartphone is attached
to the foot where it monitors the gait continuously. Once the robot
detects an upward step, it announces its decision by vibrating. Vi-
bration is easily available to smartphone apps and is also natural
to humans – many apps notify various events via vibration on
modern smartphones. Note that vibration here replaces the need
for an actual exoskeleton which was not available in these exper-
iments. In future work, vibration will be replaced with physical
actions performed by wearable hardware.

Human feedback is also expected to be as natural as possible
to humans. Since it is restricted to the XYZV channel by design,
the gestures can only delivered via physical interaction between
humans and smartphones. The following two gestures were im-
plemented:

Stroke Model is when human operator hits the phone as a
penalty for a wrong robotic decision.

Jerk Model is when human operator shakes/jerks its foot in
response to a wrong robotic decision. In the natural terms, this
is the equivalent of a mis-behaving (too numb or cold) leg/foot,
which one shakes in order to get it to work normally.

The obvious first technical problem with the above two mod-
els is that they are both punishments for wrong decisions. This
is a major shortcoming of this method. But future work will at-
tempt to improve in this area by introducing encouraging ges-
tures. However, this might be a difficult task since it is natural
to humans to apply greater force as punishment for bad behavior
while encouragements are normally comparatively tender. Also
note that positive feedback is not a requirement since the robot
can learn from negative feedback only, theoretically.

Fig.4 shows example episodes for each of the two models.
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Fig. 4 Episodes of step detection followed by either stroke or shake feed-
back from the human operator.

Both are the cases when (1) the step was detected wrongly –
that is, the robot detected an ascending step when the step was
actually horizontal and (2) human operator reacted to the wrong
decision via one of the two implemented gestures. The gesture in
both episodes was successfully detected by the robot. Note that
the announcement of the detection is delayed between 0.5 and 1s
due to the delay in software that is required to call the system
library for the vibration function. The same rule applies for all
robots including HAL – the latter is at advantage only because
it uses bioelectricity and can detect signals that happen before a
physical actions is performed by muscle tissue.

The overall results for over 100 experiments was as follows.
About 60% False Positives (FPs) and 30% False Negatives (FN)
(TP is therefore 70%) were detected which means the part of
software responsible for the detection of the step itself has ma-
jor faults. However, for all FPs, the detection rate of the guid-
ance gesture following within 0-3 seconds from the vibration was

found at 90% which is a good result. The high detection rate
owes to the fact that the search for the gesture is limited to the
0-3s interval from the vibration, which is a major positive effect
on performance.

5. Conclusion
This paper makes the first attempt to implement the concept

of social robotics on smartphone-based robots. Since the com-
modity smartphones only have access to the XYZV sensor input,
the system was designed to use the same XYZV channel for both
sensor input and human guidance. The guidance itself was im-
plemented as actions that human operations can find natural – the
operator would either hit/stroke the smartphone or shake/jerk it
to convey the displeasement with the decision made by the robot.
This represents although a simple but nevertheless a valid feed-
back that can be used to train the robot using the Reinforcement
Learning (RL) technique.

This paper is the first step towards the objectives explained in
this paper. The next study will propose an implement a flexible
learning engine based on the simple RL technique (negative feed-
back) shown in this paper. The key to the full technology is its
flexibility which can only be made possible with effective gener-
ation and management of context.
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